Araştırma Makalesi
BibTex RIS Kaynak Göster

Bitki örneklerinden seçici gallik asit ayrılması için gallik asit baskılanmış polimerlerin hazırlanması

Yıl 2021, , 560 - 576, 04.07.2021
https://doi.org/10.25092/baunfbed.893621

Öz

Bu çalışmada, yaygın olarak kullanılan doğal bir antioksidan olan gallik asidin (GA) moleküler baskılama yöntemi kullanılarak hazırlanan polimerlerle (MIP) bitki örneklerinden seçici ayrılması gerçekleştirilmiştir. Emülsiyon polimerizasyonu ile hazırlanan polimerler çeşitli yöntemlerle karakterize edilmiştir. GA adsorpsiyonunun optimizasyon çalışmaları, pH 3,5 ortamında 25°C’de 1,2 mg GA-MIP kullanılarak 60 dk sürenin GA adsorpsiyonu için en uygun koşullar olduğunu göstermiş ve GA adsorpsiyonu adsorpsiyon kinetikleri ve izotermleri ile incelenmiştir. Çalışılan tüm derişimler için IF değerinin 1’den büyük olması GA-MIP’lerin baskılanmamış polimerlere (GA-NIP) kıyasla daha fazla GA adsorpladığını kanıtlamaktadır. Ayrıca, IF değerinin GA derişimiyle ters orantılı olarak azalması spesifik olmayan etkileşimlerden kaynaklanmaktadır. MIP’lerin seçiciliğini belirlemek amacıyla GA analogları kullanılarak yarışmalı adsorpsiyon çalışmaları yapılmış ve GA ve analoglarının miktarları yüksek performanslı sıvı kromatografisi ile analiz edilmiştir. Tüm bağıl seçicilik katsayılarının 1’den büyük olması GA-MIP’lerin baskılanmamış polimerlere kıyasla GA’yı tüm analoglarından daha fazla adsorpladığını göstermektedir. Yeşil çay, siyah çay ve karanfil örnekleri ile yapılan gerçek örnek çalışmaları sonucunda en etkin GA adsorpsiyonu ve geri alımının karanfil örnekleriyle elde edildiği belirlenmiştir. HPLC kromatogramları incelendiğinde, GA’nın etkin ve seçici olarak MIP’lerden geri alındığı belirlenmiştir.

Kaynakça

  • Hsieh, S. C., Wu, C. C., Hsu, S. L. ve Yen, J. H., Molecular mechanisms of gallic acid-induced growth inhibition, apoptosis, and necrosis in hypertrophic scar fibroblasts, Life Sciences, 179, 130- 138, (2017).
  • Bhawani, S. A., Sen, T. S. ve Ibrahim, M. N. M., Synthesis of molecular imprinting polymers for extraction of gallic acid from urine, Chemistry Central Journal, 12,19-25, (2018).
  • Abdel-Hamid, R., Bakr, A., Newair, E. F. ve Garcia, F., Simultaneous voltammetric determination of gallic and protocatechuic acids in mango juice using a reduced graphene oxide-based electrochemical sensor, Beverages, 5, 17-28, (2019).
  • Badea, M., Modugno, F., Floroian, L., Tit, D. M., Restani, P., Bungau, S., Iovan, C., Badea, G. E. ve Aleya, L., Electrochemical strategies for gallic acid detection: Potential for application in clinical, food or environmental analyses, Science of the Total Environment, 672, 129-140, (2019).
  • Vissers, M. N., Zock, P. L. ve Katan, M. B., Bioavailability and antioxidant effects of olive oil phenols in humans: a review, European Journal of Clinical Nutrition, 58, 955-965, (2004).
  • Zhu, X. F., Cao, Q. E., Yang, X. Q., Li, F., Wang, G. S. ve Ding, Z. T., Preparation and recognition mechanism of gallic acid imprinted polymers, Helvetica, 92(1), 78-87, (2009).
  • Dos Santos, J. F. S., Tintino, S. R., de Freitas, T. S., Campina, F. F., de Menezes, I. R., Siqueira- Júnior, J. P., Coutinho, H. D. M. ve Cunha, F. A. B., In vitro e in silico evaluation of the inhibition of Staphylococcus aureus efflux pumps by caffeic and gallic acid, Comparative Immunology, Microbiology and Infectious Diseases, 57, 22–28, (2018).
  • You, H. L., Huang, C. C., Chen, C. J., Chang, C. C., Liao, P. L. ve Huang, S. T., Anti-pandemic influenza A (H1N1) virus potential of catechin and gallic acid, Journal of the Chinese Medical Association, 81, 458-468, (2018).
  • Abdel-Hamid, R. ve Newair, E. F., Adsorptive stripping voltammetric determination of gallic acid using an electrochemical sensor based on polyepinephrine/glassy carbon electrode and its determination in black tea sample, Journal of Electroanalytical Chemistry, 704, 32-37, (2013).
  • Asfaram, A., Ghaedi, M. ve Dashtian, K., Rapid ultrasound-assisted magnetic microextraction of gallic acid from urine, plasma and water samples by HKUST-1-MOF-Fe3O4-GA-MIP-NPs: UV–vis detection and optimization study, Ultrasonics Sonochemistry, 34, 561-570, (2017).
  • Mudnic, I., Modun, D., Rastija, V., Vukovic, J., Brizic, I., Katalinic, V., Kozina, B., Medic-Saric, M. ve Boban, M., Antioxidant and vasodilatory effects of phenolic acids in wine, Food Chemistry, 119, 1205–1210, (2010).
  • Lim, K. S., Park, J. K., Jeong, M. H., Bae, I. H., Park, D. S., Shim, J. W., Kim, J. H., Kim, H. K., Kim, S. S., Sim, D. S., Hong, Y. J., Kim, J. H. ve Ahn, Y., Anti- inflammatory effect of gallic acid-eluting stent in a porcine coronary restenosis model, Acta Cardiologica Sinica, 34, 224-232, (2018).
  • Zhang, J., Li, B., Yue, H., Wang, J. ve Zheng, Y., Highly selective and efficient imprinted polymers based on carboxyl-functionalized magnetic nanoparticles for the extraction of gallic acid from pomegranate rind, Journal of Separation science, 41(2), 417-602, (2018).
  • Asnaashari, M., Farhoosh, R. ve Sharif, A., Antioxidant activity of gallic acid and methyl gallate in triacylglycerols of Kilka fish oil and its oil-in-water emulsion, Food Chemistry, 159, 439-444, (2014).
  • Hsu, S. S., Chou, C. T., Liao, W. C., Shieh, P., Kuo, D. H., Kuo, C. C., Jan, C. R. ve Liang, W. Z., The effect of gallic acid on cytotoxicity, Ca2+ homeostasis and ROS production in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes, Chemico-Biological Interactions, 252, 61-73, (2016).
  • Suwalsky, M., Colina, J., Gallardo, M. J., Jemiola-Rzeminska, M., Strzalka, K., Manrique- Moreno, M. ve Sepúlveda, B., Antioxidant capacity of gallic acid in vitro assayed on human erythrocytes, The Journal of Membrane Biology, 249, 769-779, (2016).
  • Huang, D. W., Chang, W. C., Wu, J. S., Shih, R. W. ve Shen, S. C., Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet, Nutrition Research, 36, 150-160, (2016).
  • Kong, F., Su, Z., Guo, X., Zeng, F. ve Bi, Y., Antidiabetic and lipid-lowering effects of the polyphenol extracts from the leaves of Clausena lansium (Lour.) skeels on streptozotocin-induced type 2 diabetic rats, Journal of Food Science, 83, 212-220, (2018).
  • Civenni, G., Iodice, M. G., Nabavi, S. F., Habtemariam, S., Nabavi, S. M., Catapano, C. V. ve Daglia, M., Gallic acid and methyl-3-O- methyl gallate: a comparative study on their effects on prostate cancer stem cells, RSC Advances, 5, 63800-63806, (2015).
  • Chen, Y. J., Lee, Y. C., Huang, C. H. ve Chang, L. S., Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells, Toxicology and Applied Pharmacology, 310, 98-107, (2016).
  • Heidarian, E., Keloushadi, M., Ghatreh-Samani, K. ve Valipour, P., The reduction of IL-6 gene expression, pAKT, pERK1/2, pSTAT3 signaling pathways and invasion activity by gallic acid in prostate cancer PC3 cells, Biomedicine & Pharmacotherapy, 84, 264-269, (2016).
  • Kim, S. H., Jun, C. D., Suk, K., Choi, B. J., Lim, H. J., Park, S., Lee, S. H., Shin, H. Y., Kim, D. K. ve Shin, T. Y., Gallic acid inhibits histamine release and pro-inflammatory cytokine production in mast cells, Toxicological Sciences, 91, 123-131, (2006).
  • Kim, Y. J., Antimelanogenic and antioxidant properties of gallic acid, Biological and Pharmaceutical Bulletin, 30, 1052-1055, (2007).
  • Jagan, S., Ramakrishnan, G., Anandakumar, P., Kamaraj, S. ve Devaki, T., Antiproliferative potential of gallic acid against diethylnitrosamine-induced rat hepatocellular carcinoma, Molecular and Cellular Biochemistry, 319, 51-59, (2008).
  • Costa, A. M., Souza, C. G. M., Bracth, A., Kadowski, M. K., Souza, A. C. S., Oliveira, R. F. ve Peralta, R. M., Production of tannase and gallic acid by Aspergillus tamarii in submerged and solid state cultures, African Journal of Biomedical Research, 7, 197-202, (2013).
  • Bajpai, B. ve Patil, S., A new approach to microbial production of gallic acid, Brazilian Journal of Microbiology, 39, 708-711, (2008).
  • Lokeshwari, N. ve Reddy, S. Microbiological production of gallic acid by a mutant strain of Aspergillus oryzae using cashew husk, Pharmacophore, 1, 112-122, (2010).
  • Pardeshi, S., Dhodapkar, R. ve Kumar, A., Molecularly imprinted microspheres and nanoparticles prepared using precipitation polymerisation method for selective extraction of gallic acid from Emblica officinalis, Food Chemistry, 146, 385-393, (2014).
  • Hu, X., Xie, L. W., Guo, J. F., Li, H., Jiang, X. Y., Zhang, Y. P. ve Shi, S. Y., Hydrophilic gallic acid-imprinted polymers over magnetic mesoporous silica microspheres with excellent molecular recognition ability in aqueous fruit juices, Food Chemistry, 179, 206-212, (2015).
  • Hao, Y., Gao, R. X., Liu, D. C., Tang, Y. H. ve Guo, Z. J., Selective extraction of gallic acid in pomegranate rind using surface imprinting polymers over magnetic carbon nanotubes, Analytical and Bioanalytical Chemistry, 407, 7681-7690, (2015).
  • Puoci, F., Scoma, A., Cirillo, G., Bertin, L., Fava, F. ve Picci, N., Selective extraction and purification of gallic acid from actual site olive mill wastewaters by means of molecularly imprinted microparticles, Chemical Engineering Journal, 198–199, 529–535, (2012).
  • Schwarz, L. J., Danylec, B., Harris, S. J., Boysen, R. I. ve Hearn, M. T. W., Preparation of molecularly imprinted polymers for the selective recognition of the bioactive polyphenol, (E)-resveratrol, Journal of Chromatography A, 1218, 2189-2195, (2011).
  • Cirillo, G., Parisi, O. I., Curcio, M., Puoci, F., Iemma, F., Spizzirri, U. ve Picci, G. N., Molecularly imprinted polymers as drug delivery systems for the sustained release of glycyrrhizic acid, Journal of Pharmacy and Pharmacology, 62, 577-582, (2010).
  • Yücebaş, B. B., Yaman, Y. T., Bolat, G., Özgür, E., Uzun, L. ve Abaci, S., Molecular imprinted polymer based electrochemical sensor for selective T detection of paraben, Sensors & Actuators: B. Chemical, 305, 127368, (2020).
  • Inanan T., Tüzmen, N., Akgöl, S. ve Denizli, A., Selective cholesterol adsorption by molecular imprinted polymeric nanospheres and application to GIMS, International Journal of Biological Macromolecules, 92, 451-460, (2016).
  • Can Agca A., Batcıoğlu, K. ve Sarer, E., Evaluation of gallic acid, EGCG contents and antiradical activity of green tea and black tea extracts, Ankara Üniversitesi Eczacılık Fakültesi Dergisi, 44(1), 50-60, (2020).
  • Adaromola, B. ve Onigbinde, A., Effect of extraction solvent on the phenolic content, flavonoid content and antioxidant capacity of clove bud, IOSR Journal of Pharmacy and Biological Sciences, 11(3), 33-38, (2016).
  • Gaumet, M., Vargas, A., Gurny, R. ve Delie, F., Nanoparticles for drug delivery: the need for precision in reporting particle size parameters, European Journal of Pharmaceutics and Biopharmaceutics, 69(1), 1-9, (2008).
  • Byun, H. S. ve Chun, D., Adsorption and separation properties of gallic acid imprinted polymers prepared using supercritical fluid technology, The Journal of Supercritical Fluids, 120, 2, 249-257, (2017).
  • Doostmohammadi, A., Monshi, A., Salehi, R., Fathi, M. H., Golniya, Z. ve Daniels, A. U., Bioactive glass nanoparticles with negative zeta potential, Ceramics International, 37, 2311-2316, (2011).

Preparation of gallic acid imprinted polymers for selective gallic acid separation from plant samples

Yıl 2021, , 560 - 576, 04.07.2021
https://doi.org/10.25092/baunfbed.893621

Öz

In this study, gallic acid (GA) which is a commonly used natural antioxidant has been separated from plant samples with the polymers (MIP) prepared by using molecular imprinting technique. The polymers produced by emulsion polymerization has been characterized by several methods. Optimization studies for the adsorption of GA has been indicated that pH 3.5 medium at 25°C with using 1,2 mg GA-MIP for 60 min period are optimum conditions for GA adsorption and GA adsorption has been investigated by adsorption kinetics and isotherms. IF values being more than 1 for all working concentrations have demonstrated that GA-MIPs adsorbed more GA in regard to non-imprinted polymers (GA-NIPs). However, decreasing IF values inversely proportional with increasing concentration are due to the non-specific interactions. For the identification of MIPS’ selectivity, competitive adsorption studies have been carried out with using GA analogues and amounts of GA and its analogues have been analyzed with high performance liquid chromatography (HPLC). All relative selectivity coefficients greater than 1 have showed that GA-MIPs adsorbed more GA than its analogues as regards to GA-NIPs. As a result of real sample studies with green tea, black tea and clove samples, most efficient GA adsorption and recovery has been achieved with clove samples. It is indicated by analyzing HPLC chromatograms, GA has been recovered effectively and selectively from MIPs.

Kaynakça

  • Hsieh, S. C., Wu, C. C., Hsu, S. L. ve Yen, J. H., Molecular mechanisms of gallic acid-induced growth inhibition, apoptosis, and necrosis in hypertrophic scar fibroblasts, Life Sciences, 179, 130- 138, (2017).
  • Bhawani, S. A., Sen, T. S. ve Ibrahim, M. N. M., Synthesis of molecular imprinting polymers for extraction of gallic acid from urine, Chemistry Central Journal, 12,19-25, (2018).
  • Abdel-Hamid, R., Bakr, A., Newair, E. F. ve Garcia, F., Simultaneous voltammetric determination of gallic and protocatechuic acids in mango juice using a reduced graphene oxide-based electrochemical sensor, Beverages, 5, 17-28, (2019).
  • Badea, M., Modugno, F., Floroian, L., Tit, D. M., Restani, P., Bungau, S., Iovan, C., Badea, G. E. ve Aleya, L., Electrochemical strategies for gallic acid detection: Potential for application in clinical, food or environmental analyses, Science of the Total Environment, 672, 129-140, (2019).
  • Vissers, M. N., Zock, P. L. ve Katan, M. B., Bioavailability and antioxidant effects of olive oil phenols in humans: a review, European Journal of Clinical Nutrition, 58, 955-965, (2004).
  • Zhu, X. F., Cao, Q. E., Yang, X. Q., Li, F., Wang, G. S. ve Ding, Z. T., Preparation and recognition mechanism of gallic acid imprinted polymers, Helvetica, 92(1), 78-87, (2009).
  • Dos Santos, J. F. S., Tintino, S. R., de Freitas, T. S., Campina, F. F., de Menezes, I. R., Siqueira- Júnior, J. P., Coutinho, H. D. M. ve Cunha, F. A. B., In vitro e in silico evaluation of the inhibition of Staphylococcus aureus efflux pumps by caffeic and gallic acid, Comparative Immunology, Microbiology and Infectious Diseases, 57, 22–28, (2018).
  • You, H. L., Huang, C. C., Chen, C. J., Chang, C. C., Liao, P. L. ve Huang, S. T., Anti-pandemic influenza A (H1N1) virus potential of catechin and gallic acid, Journal of the Chinese Medical Association, 81, 458-468, (2018).
  • Abdel-Hamid, R. ve Newair, E. F., Adsorptive stripping voltammetric determination of gallic acid using an electrochemical sensor based on polyepinephrine/glassy carbon electrode and its determination in black tea sample, Journal of Electroanalytical Chemistry, 704, 32-37, (2013).
  • Asfaram, A., Ghaedi, M. ve Dashtian, K., Rapid ultrasound-assisted magnetic microextraction of gallic acid from urine, plasma and water samples by HKUST-1-MOF-Fe3O4-GA-MIP-NPs: UV–vis detection and optimization study, Ultrasonics Sonochemistry, 34, 561-570, (2017).
  • Mudnic, I., Modun, D., Rastija, V., Vukovic, J., Brizic, I., Katalinic, V., Kozina, B., Medic-Saric, M. ve Boban, M., Antioxidant and vasodilatory effects of phenolic acids in wine, Food Chemistry, 119, 1205–1210, (2010).
  • Lim, K. S., Park, J. K., Jeong, M. H., Bae, I. H., Park, D. S., Shim, J. W., Kim, J. H., Kim, H. K., Kim, S. S., Sim, D. S., Hong, Y. J., Kim, J. H. ve Ahn, Y., Anti- inflammatory effect of gallic acid-eluting stent in a porcine coronary restenosis model, Acta Cardiologica Sinica, 34, 224-232, (2018).
  • Zhang, J., Li, B., Yue, H., Wang, J. ve Zheng, Y., Highly selective and efficient imprinted polymers based on carboxyl-functionalized magnetic nanoparticles for the extraction of gallic acid from pomegranate rind, Journal of Separation science, 41(2), 417-602, (2018).
  • Asnaashari, M., Farhoosh, R. ve Sharif, A., Antioxidant activity of gallic acid and methyl gallate in triacylglycerols of Kilka fish oil and its oil-in-water emulsion, Food Chemistry, 159, 439-444, (2014).
  • Hsu, S. S., Chou, C. T., Liao, W. C., Shieh, P., Kuo, D. H., Kuo, C. C., Jan, C. R. ve Liang, W. Z., The effect of gallic acid on cytotoxicity, Ca2+ homeostasis and ROS production in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes, Chemico-Biological Interactions, 252, 61-73, (2016).
  • Suwalsky, M., Colina, J., Gallardo, M. J., Jemiola-Rzeminska, M., Strzalka, K., Manrique- Moreno, M. ve Sepúlveda, B., Antioxidant capacity of gallic acid in vitro assayed on human erythrocytes, The Journal of Membrane Biology, 249, 769-779, (2016).
  • Huang, D. W., Chang, W. C., Wu, J. S., Shih, R. W. ve Shen, S. C., Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet, Nutrition Research, 36, 150-160, (2016).
  • Kong, F., Su, Z., Guo, X., Zeng, F. ve Bi, Y., Antidiabetic and lipid-lowering effects of the polyphenol extracts from the leaves of Clausena lansium (Lour.) skeels on streptozotocin-induced type 2 diabetic rats, Journal of Food Science, 83, 212-220, (2018).
  • Civenni, G., Iodice, M. G., Nabavi, S. F., Habtemariam, S., Nabavi, S. M., Catapano, C. V. ve Daglia, M., Gallic acid and methyl-3-O- methyl gallate: a comparative study on their effects on prostate cancer stem cells, RSC Advances, 5, 63800-63806, (2015).
  • Chen, Y. J., Lee, Y. C., Huang, C. H. ve Chang, L. S., Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells, Toxicology and Applied Pharmacology, 310, 98-107, (2016).
  • Heidarian, E., Keloushadi, M., Ghatreh-Samani, K. ve Valipour, P., The reduction of IL-6 gene expression, pAKT, pERK1/2, pSTAT3 signaling pathways and invasion activity by gallic acid in prostate cancer PC3 cells, Biomedicine & Pharmacotherapy, 84, 264-269, (2016).
  • Kim, S. H., Jun, C. D., Suk, K., Choi, B. J., Lim, H. J., Park, S., Lee, S. H., Shin, H. Y., Kim, D. K. ve Shin, T. Y., Gallic acid inhibits histamine release and pro-inflammatory cytokine production in mast cells, Toxicological Sciences, 91, 123-131, (2006).
  • Kim, Y. J., Antimelanogenic and antioxidant properties of gallic acid, Biological and Pharmaceutical Bulletin, 30, 1052-1055, (2007).
  • Jagan, S., Ramakrishnan, G., Anandakumar, P., Kamaraj, S. ve Devaki, T., Antiproliferative potential of gallic acid against diethylnitrosamine-induced rat hepatocellular carcinoma, Molecular and Cellular Biochemistry, 319, 51-59, (2008).
  • Costa, A. M., Souza, C. G. M., Bracth, A., Kadowski, M. K., Souza, A. C. S., Oliveira, R. F. ve Peralta, R. M., Production of tannase and gallic acid by Aspergillus tamarii in submerged and solid state cultures, African Journal of Biomedical Research, 7, 197-202, (2013).
  • Bajpai, B. ve Patil, S., A new approach to microbial production of gallic acid, Brazilian Journal of Microbiology, 39, 708-711, (2008).
  • Lokeshwari, N. ve Reddy, S. Microbiological production of gallic acid by a mutant strain of Aspergillus oryzae using cashew husk, Pharmacophore, 1, 112-122, (2010).
  • Pardeshi, S., Dhodapkar, R. ve Kumar, A., Molecularly imprinted microspheres and nanoparticles prepared using precipitation polymerisation method for selective extraction of gallic acid from Emblica officinalis, Food Chemistry, 146, 385-393, (2014).
  • Hu, X., Xie, L. W., Guo, J. F., Li, H., Jiang, X. Y., Zhang, Y. P. ve Shi, S. Y., Hydrophilic gallic acid-imprinted polymers over magnetic mesoporous silica microspheres with excellent molecular recognition ability in aqueous fruit juices, Food Chemistry, 179, 206-212, (2015).
  • Hao, Y., Gao, R. X., Liu, D. C., Tang, Y. H. ve Guo, Z. J., Selective extraction of gallic acid in pomegranate rind using surface imprinting polymers over magnetic carbon nanotubes, Analytical and Bioanalytical Chemistry, 407, 7681-7690, (2015).
  • Puoci, F., Scoma, A., Cirillo, G., Bertin, L., Fava, F. ve Picci, N., Selective extraction and purification of gallic acid from actual site olive mill wastewaters by means of molecularly imprinted microparticles, Chemical Engineering Journal, 198–199, 529–535, (2012).
  • Schwarz, L. J., Danylec, B., Harris, S. J., Boysen, R. I. ve Hearn, M. T. W., Preparation of molecularly imprinted polymers for the selective recognition of the bioactive polyphenol, (E)-resveratrol, Journal of Chromatography A, 1218, 2189-2195, (2011).
  • Cirillo, G., Parisi, O. I., Curcio, M., Puoci, F., Iemma, F., Spizzirri, U. ve Picci, G. N., Molecularly imprinted polymers as drug delivery systems for the sustained release of glycyrrhizic acid, Journal of Pharmacy and Pharmacology, 62, 577-582, (2010).
  • Yücebaş, B. B., Yaman, Y. T., Bolat, G., Özgür, E., Uzun, L. ve Abaci, S., Molecular imprinted polymer based electrochemical sensor for selective T detection of paraben, Sensors & Actuators: B. Chemical, 305, 127368, (2020).
  • Inanan T., Tüzmen, N., Akgöl, S. ve Denizli, A., Selective cholesterol adsorption by molecular imprinted polymeric nanospheres and application to GIMS, International Journal of Biological Macromolecules, 92, 451-460, (2016).
  • Can Agca A., Batcıoğlu, K. ve Sarer, E., Evaluation of gallic acid, EGCG contents and antiradical activity of green tea and black tea extracts, Ankara Üniversitesi Eczacılık Fakültesi Dergisi, 44(1), 50-60, (2020).
  • Adaromola, B. ve Onigbinde, A., Effect of extraction solvent on the phenolic content, flavonoid content and antioxidant capacity of clove bud, IOSR Journal of Pharmacy and Biological Sciences, 11(3), 33-38, (2016).
  • Gaumet, M., Vargas, A., Gurny, R. ve Delie, F., Nanoparticles for drug delivery: the need for precision in reporting particle size parameters, European Journal of Pharmaceutics and Biopharmaceutics, 69(1), 1-9, (2008).
  • Byun, H. S. ve Chun, D., Adsorption and separation properties of gallic acid imprinted polymers prepared using supercritical fluid technology, The Journal of Supercritical Fluids, 120, 2, 249-257, (2017).
  • Doostmohammadi, A., Monshi, A., Salehi, R., Fathi, M. H., Golniya, Z. ve Daniels, A. U., Bioactive glass nanoparticles with negative zeta potential, Ceramics International, 37, 2311-2316, (2011).
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Tülden İnanan Bu kişi benim 0000-0003-2833-4283

Yayımlanma Tarihi 4 Temmuz 2021
Gönderilme Tarihi 26 Ekim 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA İnanan, T. (2021). Bitki örneklerinden seçici gallik asit ayrılması için gallik asit baskılanmış polimerlerin hazırlanması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(2), 560-576. https://doi.org/10.25092/baunfbed.893621
AMA İnanan T. Bitki örneklerinden seçici gallik asit ayrılması için gallik asit baskılanmış polimerlerin hazırlanması. BAUN Fen. Bil. Enst. Dergisi. Temmuz 2021;23(2):560-576. doi:10.25092/baunfbed.893621
Chicago İnanan, Tülden. “Bitki örneklerinden seçici Gallik Asit ayrılması için Gallik Asit baskılanmış Polimerlerin hazırlanması”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, sy. 2 (Temmuz 2021): 560-76. https://doi.org/10.25092/baunfbed.893621.
EndNote İnanan T (01 Temmuz 2021) Bitki örneklerinden seçici gallik asit ayrılması için gallik asit baskılanmış polimerlerin hazırlanması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 2 560–576.
IEEE T. İnanan, “Bitki örneklerinden seçici gallik asit ayrılması için gallik asit baskılanmış polimerlerin hazırlanması”, BAUN Fen. Bil. Enst. Dergisi, c. 23, sy. 2, ss. 560–576, 2021, doi: 10.25092/baunfbed.893621.
ISNAD İnanan, Tülden. “Bitki örneklerinden seçici Gallik Asit ayrılması için Gallik Asit baskılanmış Polimerlerin hazırlanması”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23/2 (Temmuz 2021), 560-576. https://doi.org/10.25092/baunfbed.893621.
JAMA İnanan T. Bitki örneklerinden seçici gallik asit ayrılması için gallik asit baskılanmış polimerlerin hazırlanması. BAUN Fen. Bil. Enst. Dergisi. 2021;23:560–576.
MLA İnanan, Tülden. “Bitki örneklerinden seçici Gallik Asit ayrılması için Gallik Asit baskılanmış Polimerlerin hazırlanması”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 23, sy. 2, 2021, ss. 560-76, doi:10.25092/baunfbed.893621.
Vancouver İnanan T. Bitki örneklerinden seçici gallik asit ayrılması için gallik asit baskılanmış polimerlerin hazırlanması. BAUN Fen. Bil. Enst. Dergisi. 2021;23(2):560-76.

Cited By

Synthesis of PHEMA-Based Polymeric Particles for Gallic Acid Purification
Artıbilim: Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi
https://doi.org/10.55198/artibilimfen.1128003