Araştırma Makalesi
BibTex RIS Kaynak Göster

Damping constant, dielectric susceptibility, inverse relaxation time and the activation energy calculated as a function of temperature from the Raman frequency for the rhombohedral-tetragonal phase transition in BaCeO3

Yıl 2017, Cilt: 19 Sayı: 3, 77 - 83, 07.12.2017
https://doi.org/10.25092/baunfbed.363769

Öz

Temperature dependences of the damping constant (half width at half maximum), dielectric susceptibility, inverse relaxation time and the activation energy using the 110 cm-1 and 125 cm-1 Raman modes are calculated in the ferroelectric phase (Torder parameter (spontaneous polarization) to calculate their damping constants using the pseudospinphonon coupled model and the energy fluctuation model for the orthorhombic-tetragonal transition in BaCeO3 (TC= 427 K). Our calculated values of the damping constant from both models are in good agreement with the observed data. The inverse relaxation time of the studied Raman modes is predicted using the calculated values of the damping constant from both models (PS and EF) and the values of the order parameter (squared). Dielectric susceptibility is also predicted through the observed frequencies of those Raman modes by using the Landau phenomenological theory. The values of the activation energy are also extracted from the damping constant as calculated from both models using the Raman modes studied in the ferroelectric phase of BaCeO3. )>

Kaynakça

  • Iwahara, H., High temperature proton conducting oxides and their applications to solid electrolyte fuel cells and steam electrolyzer for hydrogen production, Solid State Ionics, 28-30, 573- 578, (1988).
  • Scherban, T., Lee, W.K. and Nowick, A.S., Bulk protonic conduction in Yb-doped SrCeO3 and BaCeO3, Solid State Ionics, 28-30, 585-588, (1988).
  • Scherban, T., Villeneuve, R., Abello, L. and Lucazeau, G., Raman-scattering study of phase-transitions in undoped and rare-earth ion-doped BaCaO3 and SrCeO3, Journal of Raman Spectroscopy, 24, 805-814, (1993).
  • Loridant, S., Abello, L., Siebert, E. and Lucazeau, G., Correlations between structural and electrical properties of BaCeO3 studied by coupled in-situ Raman scattering and impedance spectroscopy, Solid State Ionics, 78, 249-258 (1995).
  • Knight, K.S., Structural phase transitions in BaCeO3, Solid State Ionics, 74, 109-117, (1994).
  • Jacobsen, A.J., Tofield, B.C. and. Fender, B.E.F, The structures of BaCeO3, BaPrO3 and BaTbO3 by neutron diffraction: lattice parameter relations and ionic radii in O-perovskites, Acta Crysttallogr , Sect. B 28, 956-961 (1972).
  • Genet, F., Loridant S., Ritter C. and Lucazeau G., Phase transitions in BaCeO3: neutron diffraction and Raman studies, Journal of Physics and Chemistry of Solids, 60, 2009-2021, (1999).
  • Egorov, V.M., Baikov, Yu.M., Kartenko, N.F., Melekh, B.T. and Filin, Yu.N., Calorimetric study of phase transitions in the perovskite BaCeO3, Physics of Solid State, 11, 1911-1914, (1998).
  • Melekh, B.T., Egorov, V.M., Baikov, Y.M., Kartenko, N.F., Filin, Y.N., Kompan, M.F., Venus, G.B. and Kulik V.B., Structure, phase transitions and optical properties of pure and rare earth doped BaCeO3, SrCeO3 prepared by inductive melting, Solid State Ionics, 97, 465-470 (1997).
  • Kuzmin, A.V., Gorelov, V.P., Melekh, B.T., Glerup, M. and Poulsen, F.W. Phase transitions in undoped BaCeO3, Solid State Ionics, 162-163,13-22 (2003).
  • Cammarata, A., Martorana, A. and Duca, D., Cation environment of BaCeO3-based protonic conductors: A computational study, The Journal of Physical Chemisty, A 113, 6381-6390 (2009).
  • Münch, W., Seifert, G., Kreuer, K.D. and Maier, J., A quantum molecular dynamics study of proton conduction phenomena in BaCeO3, Solid State Ionics, 86-88, 647-652 (1996).
  • Aycıbın, M., Erdinc, B. and Akkus, H., Electronic Structure and Lattice Dynamics of BaCeO3 compound in cubic phase, Journal of Electronic Materials, 43, 4301-4307 (2014).
  • Mitsui, A., Miyayaman M.mand Yongagida H., Evaluation of the activation energy for proton conduction in perovskite-type oxides, Solid State Ionics, 22, 213-217 (1987).
  • Lahajnar, G., Blinc, R. and Zumer, S., Proton spin-lattice relaxation by critical polarization fluctuations in KH2PO4, Physics of Condensed Matter, 18, 301-316 (1974).
  • Schaack, G. and Winterfeldt, V., Temperature behaviour of optical phonons near Tc in triglycine sulphate and triglycine selenite, Ferroelectrics, 15, 35-41, (1977).
  • Rakov, A.V., Brownian rotational movement of molecules of substances in the condensed state examined by Raman and infrared absorption, Optics and Spectroscopy, 7, 128-134, (1959).
  • Bartoli, F.J. and Litovitz, T.A., Raman Scattering: Orientational Motions in Liquids, The Journal of Chemical Physics, 56, 413-425 (1972).
  • Fahim, M.A., A detailed IR study of the order–disorder phase transition of NaNO2, Thermochimica Acta, 363, 121-127, (2000).
  • Blinc, R. and Zeks, B., Dynamics of order-disorder-type ferroelectrics and anti-ferroelectrics, Advances in Physics. 21, 693-757 (1972).
  • Kiraci, A. and Yurtseven, H., Calculation of the damping constant and the relaxation time for the soft-optic and acoustic mode in hexagonal barium titanate. Ferroelectrics,437, 137-148, (2012).
  • Yurtseven, H. and Kiraci, A, Damping constant (linewidth) and the relaxation time of the Brillouin LA mode for the ferroelectric-paraelectric transition in PbZr1-xTixO3, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 63, 1647-1655 (2016).
  • Kiraci, A. and Yurtseven, H., Temperature dependence of the damping constant and the relaxation time close to the tetragonal-cubic phase transition in SrZrO3, Journal of Molecular Structure, 1128, 51-56, (2017).
  • Kiraci, A. and Yurtseven, H., Temperature dependence of the polarization, dielectric constant, damping constant and the relaxation time close to the ferroelectric-paraelectric phase transition in LiNbO3, Optik, 132, 183-191, (2017).

BaCeO3'in rhombohedral-tetragonal faz geçişi için Raman frekansından sıcaklığın bir işlevi olarak hesaplanan sönüm sabiti, dielektrik duyarlılık, ters gevşeme zamanı ve aktivasyon enerjisi

Yıl 2017, Cilt: 19 Sayı: 3, 77 - 83, 07.12.2017
https://doi.org/10.25092/baunfbed.363769

Öz

BaCeO3 kristalinin ferroelektrik fazında (Tkatsayısı, dielektrik duyarlılık, ters gevşeme zamanı ve aktivasyon enerji değerleri sıcaklığa bağlı olarak hesaplanmıştır. BaCeO3 kristalinin ortorombik-tetragonal faz geçişinde (TC= 427 K) sönüm katsayısı değerlerini hesaplamak için, sanki spin-fonon çiftlenim ve enerji dalgalanma modellerini kullanarak Raman frekans değerleri düzen parametresi (kendiliğinden polarizasyon) ile ilişkilendirilmiştir. Hesaplanan sönüm katsayı değerlerimiz, gözlemlenen verilerle iyi bir uyum içindedir. Çalışılan Raman kiplerinin ters gevşeme süresi, her iki modelden hesaplanan sönüm sabitinin değerleri ve kendiliğinden polarizasyon (karesi) değerleri kullanılarak öngörülmüştür. Dielektrik duyarlılıkta, Landau fenomenolojik teorisi kullanarak, gözlemlenen Raman frekansları aracılığıyla öngörülmüştür. BaCeO3 kristalinin ferroelektrik fazında, ),>çalışılan Raman kiplerini kullanarak her iki modelden hesaplanan sönüm sabitinden aktivasyon enerjisi değerleride çıkarılmıştır. 

Kaynakça

  • Iwahara, H., High temperature proton conducting oxides and their applications to solid electrolyte fuel cells and steam electrolyzer for hydrogen production, Solid State Ionics, 28-30, 573- 578, (1988).
  • Scherban, T., Lee, W.K. and Nowick, A.S., Bulk protonic conduction in Yb-doped SrCeO3 and BaCeO3, Solid State Ionics, 28-30, 585-588, (1988).
  • Scherban, T., Villeneuve, R., Abello, L. and Lucazeau, G., Raman-scattering study of phase-transitions in undoped and rare-earth ion-doped BaCaO3 and SrCeO3, Journal of Raman Spectroscopy, 24, 805-814, (1993).
  • Loridant, S., Abello, L., Siebert, E. and Lucazeau, G., Correlations between structural and electrical properties of BaCeO3 studied by coupled in-situ Raman scattering and impedance spectroscopy, Solid State Ionics, 78, 249-258 (1995).
  • Knight, K.S., Structural phase transitions in BaCeO3, Solid State Ionics, 74, 109-117, (1994).
  • Jacobsen, A.J., Tofield, B.C. and. Fender, B.E.F, The structures of BaCeO3, BaPrO3 and BaTbO3 by neutron diffraction: lattice parameter relations and ionic radii in O-perovskites, Acta Crysttallogr , Sect. B 28, 956-961 (1972).
  • Genet, F., Loridant S., Ritter C. and Lucazeau G., Phase transitions in BaCeO3: neutron diffraction and Raman studies, Journal of Physics and Chemistry of Solids, 60, 2009-2021, (1999).
  • Egorov, V.M., Baikov, Yu.M., Kartenko, N.F., Melekh, B.T. and Filin, Yu.N., Calorimetric study of phase transitions in the perovskite BaCeO3, Physics of Solid State, 11, 1911-1914, (1998).
  • Melekh, B.T., Egorov, V.M., Baikov, Y.M., Kartenko, N.F., Filin, Y.N., Kompan, M.F., Venus, G.B. and Kulik V.B., Structure, phase transitions and optical properties of pure and rare earth doped BaCeO3, SrCeO3 prepared by inductive melting, Solid State Ionics, 97, 465-470 (1997).
  • Kuzmin, A.V., Gorelov, V.P., Melekh, B.T., Glerup, M. and Poulsen, F.W. Phase transitions in undoped BaCeO3, Solid State Ionics, 162-163,13-22 (2003).
  • Cammarata, A., Martorana, A. and Duca, D., Cation environment of BaCeO3-based protonic conductors: A computational study, The Journal of Physical Chemisty, A 113, 6381-6390 (2009).
  • Münch, W., Seifert, G., Kreuer, K.D. and Maier, J., A quantum molecular dynamics study of proton conduction phenomena in BaCeO3, Solid State Ionics, 86-88, 647-652 (1996).
  • Aycıbın, M., Erdinc, B. and Akkus, H., Electronic Structure and Lattice Dynamics of BaCeO3 compound in cubic phase, Journal of Electronic Materials, 43, 4301-4307 (2014).
  • Mitsui, A., Miyayaman M.mand Yongagida H., Evaluation of the activation energy for proton conduction in perovskite-type oxides, Solid State Ionics, 22, 213-217 (1987).
  • Lahajnar, G., Blinc, R. and Zumer, S., Proton spin-lattice relaxation by critical polarization fluctuations in KH2PO4, Physics of Condensed Matter, 18, 301-316 (1974).
  • Schaack, G. and Winterfeldt, V., Temperature behaviour of optical phonons near Tc in triglycine sulphate and triglycine selenite, Ferroelectrics, 15, 35-41, (1977).
  • Rakov, A.V., Brownian rotational movement of molecules of substances in the condensed state examined by Raman and infrared absorption, Optics and Spectroscopy, 7, 128-134, (1959).
  • Bartoli, F.J. and Litovitz, T.A., Raman Scattering: Orientational Motions in Liquids, The Journal of Chemical Physics, 56, 413-425 (1972).
  • Fahim, M.A., A detailed IR study of the order–disorder phase transition of NaNO2, Thermochimica Acta, 363, 121-127, (2000).
  • Blinc, R. and Zeks, B., Dynamics of order-disorder-type ferroelectrics and anti-ferroelectrics, Advances in Physics. 21, 693-757 (1972).
  • Kiraci, A. and Yurtseven, H., Calculation of the damping constant and the relaxation time for the soft-optic and acoustic mode in hexagonal barium titanate. Ferroelectrics,437, 137-148, (2012).
  • Yurtseven, H. and Kiraci, A, Damping constant (linewidth) and the relaxation time of the Brillouin LA mode for the ferroelectric-paraelectric transition in PbZr1-xTixO3, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 63, 1647-1655 (2016).
  • Kiraci, A. and Yurtseven, H., Temperature dependence of the damping constant and the relaxation time close to the tetragonal-cubic phase transition in SrZrO3, Journal of Molecular Structure, 1128, 51-56, (2017).
  • Kiraci, A. and Yurtseven, H., Temperature dependence of the polarization, dielectric constant, damping constant and the relaxation time close to the ferroelectric-paraelectric phase transition in LiNbO3, Optik, 132, 183-191, (2017).
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Ali Kiracı Bu kişi benim

Hamit Yurtseven

Yayımlanma Tarihi 7 Aralık 2017
Gönderilme Tarihi 20 Ağustos 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 19 Sayı: 3

Kaynak Göster

APA Kiracı, A., & Yurtseven, H. (2017). Damping constant, dielectric susceptibility, inverse relaxation time and the activation energy calculated as a function of temperature from the Raman frequency for the rhombohedral-tetragonal phase transition in BaCeO3. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(3), 77-83. https://doi.org/10.25092/baunfbed.363769
AMA Kiracı A, Yurtseven H. Damping constant, dielectric susceptibility, inverse relaxation time and the activation energy calculated as a function of temperature from the Raman frequency for the rhombohedral-tetragonal phase transition in BaCeO3. BAUN Fen. Bil. Enst. Dergisi. Aralık 2017;19(3):77-83. doi:10.25092/baunfbed.363769
Chicago Kiracı, Ali, ve Hamit Yurtseven. “Damping Constant, Dielectric Susceptibility, Inverse Relaxation Time and the Activation Energy Calculated As a Function of Temperature from the Raman Frequency for the Rhombohedral-Tetragonal Phase Transition in BaCeO3”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19, sy. 3 (Aralık 2017): 77-83. https://doi.org/10.25092/baunfbed.363769.
EndNote Kiracı A, Yurtseven H (01 Aralık 2017) Damping constant, dielectric susceptibility, inverse relaxation time and the activation energy calculated as a function of temperature from the Raman frequency for the rhombohedral-tetragonal phase transition in BaCeO3. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19 3 77–83.
IEEE A. Kiracı ve H. Yurtseven, “Damping constant, dielectric susceptibility, inverse relaxation time and the activation energy calculated as a function of temperature from the Raman frequency for the rhombohedral-tetragonal phase transition in BaCeO3”, BAUN Fen. Bil. Enst. Dergisi, c. 19, sy. 3, ss. 77–83, 2017, doi: 10.25092/baunfbed.363769.
ISNAD Kiracı, Ali - Yurtseven, Hamit. “Damping Constant, Dielectric Susceptibility, Inverse Relaxation Time and the Activation Energy Calculated As a Function of Temperature from the Raman Frequency for the Rhombohedral-Tetragonal Phase Transition in BaCeO3”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19/3 (Aralık 2017), 77-83. https://doi.org/10.25092/baunfbed.363769.
JAMA Kiracı A, Yurtseven H. Damping constant, dielectric susceptibility, inverse relaxation time and the activation energy calculated as a function of temperature from the Raman frequency for the rhombohedral-tetragonal phase transition in BaCeO3. BAUN Fen. Bil. Enst. Dergisi. 2017;19:77–83.
MLA Kiracı, Ali ve Hamit Yurtseven. “Damping Constant, Dielectric Susceptibility, Inverse Relaxation Time and the Activation Energy Calculated As a Function of Temperature from the Raman Frequency for the Rhombohedral-Tetragonal Phase Transition in BaCeO3”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 19, sy. 3, 2017, ss. 77-83, doi:10.25092/baunfbed.363769.
Vancouver Kiracı A, Yurtseven H. Damping constant, dielectric susceptibility, inverse relaxation time and the activation energy calculated as a function of temperature from the Raman frequency for the rhombohedral-tetragonal phase transition in BaCeO3. BAUN Fen. Bil. Enst. Dergisi. 2017;19(3):77-83.