Araştırma Makalesi
BibTex RIS Kaynak Göster

Yeni bir oksazol-5-on türevinin yapısal karakterizasyonu ve DFT çalışmaları

Yıl 2018, Cilt: 20 Sayı: 1, 389 - 397, 11.04.2018
https://doi.org/10.25092/baunfbed.414333

Öz

Bu çalışmada, (4-(3-tiyofenilmetilen)-2-(4-tolil)oksazol-5-on) bileşiğinin moleküler ve kristal yapısı
tek-kristal X-ışını kırınımı yöntemiyle belirlendi. Kristal yapı içerisinde
moleküller, moleküller-arası C
–H∙∙∙O hidrojen bağları
ile bağlanarak




















  motifi ile sentrosimetrik dimerler
oluştururlar. Kristal yapı ayrıca zayıf molekül içi etkileşmeler ve C
–O···π
istiflenme etkileşmeleri sayesinde kararlıdır. Teorik çalışmalar (moleküler
geometri, frontier moleküler orbitaller ve moleküler elektrostatik potansiyel)
Yoğunluk Fonsiyonu Teorisi (YFT) metodu ile ve
B3LYP/6-311G(d,p)
baz seti kullanılarak gerçekleştirildi. Geometrik parametreler deneysel
verilerle karşılaştırıldı ve teorik sonuçların deneysel parametrelerle uyumlu
olduğu gözlendi. 

Kaynakça

  • Benedlt, D. and Daniel, V., Synthesis of 2-methyl-(Z)-4-(phenylimino)naphth[2,3-d]oxazol-9-one, a monoimine quinone with selective cytotoxicity toward cancer cells, Journal of Medicinal Chemistry, 37, 710–712, (1994).
  • Gelmi, M. L., Clerici, F. and Melis, A., 5(4H)-oxazolones. Part X. Acid and base effects on the translactonization reaction of 4-(2-Oxa-alkylidene)-5(4H)-oxazolones: New synthesis of 5-alkylidene-3-benzoylamino-2(5H)-furanones, Tetrahedron, 53, 1843–1854, (1997).
  • Martinez, A. P., Lee, W. W. and Goodman, L., Some 2-fluoroethylamines derived from hydrocinnamic acid, phenylpyruvic acid and DL-phenylalanine, Tetrahedron, 20, 2763–2771, (1964).
  • Lesieur, S. and Aichaw, H., Eur PAT 1990, 390, 673, 03 OCT; Chemical Abstracts, 114, 143, (1991).
  • Ando, K. and Asai, N., EUR PAT, 385, 664, 05 SEPT 1990; Chemical Abstracts, 114, 143, (1991).
  • Descas, P. and Jarry, C., EUR PAT, 392, 929, 17 OCT 1990; Chemical Abstracts, 114, 143, (1991).
  • Abdel-Aty, A. S., Pesticidal effects of some imidazolidine and oxazolone derivatives, World Journal of Agricultural Science, 5, 105–13, (2009).
  • Witvrouw, M., Pannecouque, C, Clercq, E. D., Fernandez-Alvarez, E. and Marco, J. L., Inhibition of human immunodeficiency virus type (HIV-1) replication by some diversely functionalized spirocyclopropyl derivatives, Archiv der Pharmazie, 332, 163–6, (1999).
  • Khan, K. M., Mughal, U. R., Khan, M. T. H., Ullah, Z., Perveen, S. and Choudhary, M. I., Oxazolones: new tyrosinase inhibitors; synthesis and their structure–activity relationships, Bioorganic & Medicinal Chemistry, 14, 6027–33, (2006).
  • Pashas, M. A., Jayashankara, V. P., Venugopala, K. N. and Rao, G. K., Zinc Oxide (ZnO): an efficient catalyst for the synthesis of 4- arylmethylidene-2-phenyl-5-(4H)-oxazolones having antimicrobial activity, Journal of Pharmacological and Toxicological Methods, 2, 264–70, (2007).
  • Schnettler, R. A., Jones Jr., W. D. and Claxton, G. P., Cardiotonic heterocyclic oxazolones, Merrell Dow Pharmaceuticals Inc., United States, Patent No.: US 4698353 (1987)
  • Pereira, E. R., Sancelme, M., Voldoire, A. and Prudhomme, M., Synthesis and antimicrobial activities of 3-N-substituted-4,5-bis(3-indolyl)oxazol-2-ones, Bioorganic & Medicinal Chemistry Letters, 7(190), 2503, (1997).
  • Viti, G., Namnicine, R., Ricci, R., Pestelline, V., Abeli, L. and Funo, M., New antagonists of platelet-activating factor containing 2-oxazolidinone or 2-morpholinone, European Journal of Medicinal Chemistry, 29, 401-406, (1994).
  • Ismail, M. I., Physical characteristics and polarographic reduction mechanism of some oxazolones, Canadian Journal of Chemistry, 69, 1886–92, (1991).
  • Matsunaga, H., Ishizuka, T. and Kunieda, T., Synthetic utility of five membered heterocycles-chiral functionalization and applications, Tetrahedron Letters, 61, 8073–94, (2005).
  • Han, R., Lu, S., Wang, Y., Zhang, X., Wu, Q. and He, T., Influence of monomer concentration during polymerization on performance and catalytic mechanism of resultant poly(3,4-ethylenedioxythiophene) counter electrodes for dyesensitized solar cells, Electrochimica Acta, 173, 796–803, (2015).
  • Hacioglu, S. O., Yiğit, D., Ermiş, E., Söylemez, S., Güllü, M. and Toppare, L., Syntheses and electrochemical characterization of low oxidation potential nitrogen analogs of pedot as electrochromic materials, Journal of the Electrochemical Society, 163(10), E293-E299, (2016).
  • Asatkar, A. K., Senanayak, S. P., Bedi, A., Panda, S., Narayan, K. S. and Zade, S. S., Zn(II) and Cu(II) complexes of a new thiophene based salphen-type ligand: solutionprocessable high-performance field-effect transistor materials, Chemical Communications, 50, 7036–7039, (2014).
  • Ermiş, E., Yiğit, D. and Güllü, M., Synthesis of poly(N-alkyl-3,4-dihydrothieno[3,4-b] [1,4]oxazine) derivatives and investigation of their supercapacitive performances for charge storage applications, Electrochimica Acta, 90, 623–633, (2013).
  • Pietrangelo, A., Sih, B. C., Boden, B. N., Wang, Z., Li, Q., Chou, K. C., MacLachlan, M. J. and Wolf, M. O., Nonlinear optical properties of Schiff-base-containing conductive polymer films electro-deposited in microgravity, Advanced Materials, 20 2280–2284, (2008).
  • Kingsborough, R. P. and Swager, T. M., Electroactivity enhancement by redox matching in Cobalt Salen-based conducting polymers, Advanced Materials, 10(14) 1100–1104, (1998).
  • Mas-Torrent, M. and Rovira, C., Novel small molecules for organic field-effect transistors: towards processability and high performance, Chemical Society Reviews, 37, 827–838, (2008).
  • Shirota, Y. and Kageyama, H., Charge carrier transporting molecular materials and their applications in devices, Chemical Reviews, 107, 953–1010, (2007).
  • Varis, S., Ak, M., Tanyeli, C., Akhmedov, I. M. and Toppare, L., Synthesis and characterization of a new soluble conducting polymer and its electrochromic device, Solid State Sciences, 8, 1477–1483, (2006).
  • CrysAlisPro Software System, Version 1.171.38.43, Rigaku Corporation, Oxford, UK, (2015).
  • Clark, R. C. and Reid, J. S., The analytical calculation of absorption in multifaceted crystals, Acta Crystallographica A51, 887–897, (1995).
  • Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. and Puschmann, H., OLEX2: A complete structure solution, refinement and analysis program, Journal of Applied Crystallography, 42, 339–341, (2009).
  • Sheldrick, G. M., SHELXT-Integrated space-group and crystal-structure determination, Acta Crystallographica, A71, 3–8, (2015).
  • Sheldrick, G. M., Crystal structure refinement with SHELXL, Acta Crystallographica, C71, 3(2015). 8, (2015).
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr. J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. and Fox, D. J., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, (2010).
  • Dennington, R., Keith, T. and Millam, J., GaussView, Version 5, Semichem Inc., Shawnee Mission, KS, (2009).
  • Becke, A. D., Density Functional Thermochemistry III, The role of exact exchange, The Journal of Chemical Physics, 98, 5648, (1993).
  • Ditchfield, R., Hehre, W. J. and Pople, J. A., Self Consistent Molecular Orbital Methods. IX. An Extended Gaussian Type Basis for Molecular Orbital Studies of Organic Molecules, The Journal of Chemical Physics, 54, 724–728, (1971).
  • Sharma, P., Subbulakshmi, K. N., Narayana, B., Byrappa K. and Kant, R., Crystal structure of 2-methyl-4-[(thiophen-2-yl)methylidene]-1,3-oxazol5(4H)-one, Acta Crystallographica, E71, o123–o124, (2015).
  • Gündoğdu, C., Alp, S., Ergün, Y., Tercan, B. and Hökelek, T., 2-(Naphthalen-1-yl)-4-(thiophen-2-ylmethylidene)-1,3-oxazol-5(4H)-one, Acta Crystallographica, E67, o1321–o1322, (2011).
  • Bernstein, J., Davis, R. E., Shimoni, L. and Chang, N. L., Patterns in hydrogen bonding: Functionality and graph set analysis in crystals, Angewandte Chemie International Edition in English, 34, 1555–1573, (1995).
  • Sen, I., Kara, H. and Azizoglu, A., Substituent effects on hydrogen bonding of aromatic amide-carboxylate, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 167, 50-58, (2016).
  • Govindarajan, M., Periandy, S. and Carthigayen, K., FT-IR and FT-Raman spectra, thermo dynamical behavior, HOMO and LUMO, UV, NLO properties, computed frequency estimation analysis and electronic structure calculations on α-bromotoluene, Spectrochimica Acta, A97, 411–422, (2012).
  • Çiçek, B., Çakır, Ü. and Azizoglu A., The associations of macrocyclic ethers with cations in 1,4-dioxane/water mixtures; potentiometric Na+ and K+ binding measurements and computational study, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 72, 121-125, (2012).

Structural characterization and DFT studies of an oxazol-5-one derivative

Yıl 2018, Cilt: 20 Sayı: 1, 389 - 397, 11.04.2018
https://doi.org/10.25092/baunfbed.414333

Öz

In this study, the crystal and
molecular structure of the compound
(4-(3-thiophenylmethylene)-2-(4-tolyl)oxazol-5-one) was determined by
the single-crystal X-ray diffraction method.
In the crystal
structure, molecules are linked by pairs of intermolecular C
H∙∙∙O hydrogen bonds,
forming centrosymmetric dimers with the




















 graph-set motif. Crystal structure
is also stabilized by the intramolecular weak interactions and C
O···π stacking
interactions. Theoretical studies such as molecular geometry, frontier
molecular orbitals and molecular electrostatic potential were performed using
the
Density Functional Theory (DFT) method B3LYP/6-311G(d,p)
basis set.
Geometric parameters were compared with the
experimental data and
it was observed that the theoretical results
were in agreement with the experimental parameters.

Kaynakça

  • Benedlt, D. and Daniel, V., Synthesis of 2-methyl-(Z)-4-(phenylimino)naphth[2,3-d]oxazol-9-one, a monoimine quinone with selective cytotoxicity toward cancer cells, Journal of Medicinal Chemistry, 37, 710–712, (1994).
  • Gelmi, M. L., Clerici, F. and Melis, A., 5(4H)-oxazolones. Part X. Acid and base effects on the translactonization reaction of 4-(2-Oxa-alkylidene)-5(4H)-oxazolones: New synthesis of 5-alkylidene-3-benzoylamino-2(5H)-furanones, Tetrahedron, 53, 1843–1854, (1997).
  • Martinez, A. P., Lee, W. W. and Goodman, L., Some 2-fluoroethylamines derived from hydrocinnamic acid, phenylpyruvic acid and DL-phenylalanine, Tetrahedron, 20, 2763–2771, (1964).
  • Lesieur, S. and Aichaw, H., Eur PAT 1990, 390, 673, 03 OCT; Chemical Abstracts, 114, 143, (1991).
  • Ando, K. and Asai, N., EUR PAT, 385, 664, 05 SEPT 1990; Chemical Abstracts, 114, 143, (1991).
  • Descas, P. and Jarry, C., EUR PAT, 392, 929, 17 OCT 1990; Chemical Abstracts, 114, 143, (1991).
  • Abdel-Aty, A. S., Pesticidal effects of some imidazolidine and oxazolone derivatives, World Journal of Agricultural Science, 5, 105–13, (2009).
  • Witvrouw, M., Pannecouque, C, Clercq, E. D., Fernandez-Alvarez, E. and Marco, J. L., Inhibition of human immunodeficiency virus type (HIV-1) replication by some diversely functionalized spirocyclopropyl derivatives, Archiv der Pharmazie, 332, 163–6, (1999).
  • Khan, K. M., Mughal, U. R., Khan, M. T. H., Ullah, Z., Perveen, S. and Choudhary, M. I., Oxazolones: new tyrosinase inhibitors; synthesis and their structure–activity relationships, Bioorganic & Medicinal Chemistry, 14, 6027–33, (2006).
  • Pashas, M. A., Jayashankara, V. P., Venugopala, K. N. and Rao, G. K., Zinc Oxide (ZnO): an efficient catalyst for the synthesis of 4- arylmethylidene-2-phenyl-5-(4H)-oxazolones having antimicrobial activity, Journal of Pharmacological and Toxicological Methods, 2, 264–70, (2007).
  • Schnettler, R. A., Jones Jr., W. D. and Claxton, G. P., Cardiotonic heterocyclic oxazolones, Merrell Dow Pharmaceuticals Inc., United States, Patent No.: US 4698353 (1987)
  • Pereira, E. R., Sancelme, M., Voldoire, A. and Prudhomme, M., Synthesis and antimicrobial activities of 3-N-substituted-4,5-bis(3-indolyl)oxazol-2-ones, Bioorganic & Medicinal Chemistry Letters, 7(190), 2503, (1997).
  • Viti, G., Namnicine, R., Ricci, R., Pestelline, V., Abeli, L. and Funo, M., New antagonists of platelet-activating factor containing 2-oxazolidinone or 2-morpholinone, European Journal of Medicinal Chemistry, 29, 401-406, (1994).
  • Ismail, M. I., Physical characteristics and polarographic reduction mechanism of some oxazolones, Canadian Journal of Chemistry, 69, 1886–92, (1991).
  • Matsunaga, H., Ishizuka, T. and Kunieda, T., Synthetic utility of five membered heterocycles-chiral functionalization and applications, Tetrahedron Letters, 61, 8073–94, (2005).
  • Han, R., Lu, S., Wang, Y., Zhang, X., Wu, Q. and He, T., Influence of monomer concentration during polymerization on performance and catalytic mechanism of resultant poly(3,4-ethylenedioxythiophene) counter electrodes for dyesensitized solar cells, Electrochimica Acta, 173, 796–803, (2015).
  • Hacioglu, S. O., Yiğit, D., Ermiş, E., Söylemez, S., Güllü, M. and Toppare, L., Syntheses and electrochemical characterization of low oxidation potential nitrogen analogs of pedot as electrochromic materials, Journal of the Electrochemical Society, 163(10), E293-E299, (2016).
  • Asatkar, A. K., Senanayak, S. P., Bedi, A., Panda, S., Narayan, K. S. and Zade, S. S., Zn(II) and Cu(II) complexes of a new thiophene based salphen-type ligand: solutionprocessable high-performance field-effect transistor materials, Chemical Communications, 50, 7036–7039, (2014).
  • Ermiş, E., Yiğit, D. and Güllü, M., Synthesis of poly(N-alkyl-3,4-dihydrothieno[3,4-b] [1,4]oxazine) derivatives and investigation of their supercapacitive performances for charge storage applications, Electrochimica Acta, 90, 623–633, (2013).
  • Pietrangelo, A., Sih, B. C., Boden, B. N., Wang, Z., Li, Q., Chou, K. C., MacLachlan, M. J. and Wolf, M. O., Nonlinear optical properties of Schiff-base-containing conductive polymer films electro-deposited in microgravity, Advanced Materials, 20 2280–2284, (2008).
  • Kingsborough, R. P. and Swager, T. M., Electroactivity enhancement by redox matching in Cobalt Salen-based conducting polymers, Advanced Materials, 10(14) 1100–1104, (1998).
  • Mas-Torrent, M. and Rovira, C., Novel small molecules for organic field-effect transistors: towards processability and high performance, Chemical Society Reviews, 37, 827–838, (2008).
  • Shirota, Y. and Kageyama, H., Charge carrier transporting molecular materials and their applications in devices, Chemical Reviews, 107, 953–1010, (2007).
  • Varis, S., Ak, M., Tanyeli, C., Akhmedov, I. M. and Toppare, L., Synthesis and characterization of a new soluble conducting polymer and its electrochromic device, Solid State Sciences, 8, 1477–1483, (2006).
  • CrysAlisPro Software System, Version 1.171.38.43, Rigaku Corporation, Oxford, UK, (2015).
  • Clark, R. C. and Reid, J. S., The analytical calculation of absorption in multifaceted crystals, Acta Crystallographica A51, 887–897, (1995).
  • Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. and Puschmann, H., OLEX2: A complete structure solution, refinement and analysis program, Journal of Applied Crystallography, 42, 339–341, (2009).
  • Sheldrick, G. M., SHELXT-Integrated space-group and crystal-structure determination, Acta Crystallographica, A71, 3–8, (2015).
  • Sheldrick, G. M., Crystal structure refinement with SHELXL, Acta Crystallographica, C71, 3(2015). 8, (2015).
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr. J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. and Fox, D. J., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, (2010).
  • Dennington, R., Keith, T. and Millam, J., GaussView, Version 5, Semichem Inc., Shawnee Mission, KS, (2009).
  • Becke, A. D., Density Functional Thermochemistry III, The role of exact exchange, The Journal of Chemical Physics, 98, 5648, (1993).
  • Ditchfield, R., Hehre, W. J. and Pople, J. A., Self Consistent Molecular Orbital Methods. IX. An Extended Gaussian Type Basis for Molecular Orbital Studies of Organic Molecules, The Journal of Chemical Physics, 54, 724–728, (1971).
  • Sharma, P., Subbulakshmi, K. N., Narayana, B., Byrappa K. and Kant, R., Crystal structure of 2-methyl-4-[(thiophen-2-yl)methylidene]-1,3-oxazol5(4H)-one, Acta Crystallographica, E71, o123–o124, (2015).
  • Gündoğdu, C., Alp, S., Ergün, Y., Tercan, B. and Hökelek, T., 2-(Naphthalen-1-yl)-4-(thiophen-2-ylmethylidene)-1,3-oxazol-5(4H)-one, Acta Crystallographica, E67, o1321–o1322, (2011).
  • Bernstein, J., Davis, R. E., Shimoni, L. and Chang, N. L., Patterns in hydrogen bonding: Functionality and graph set analysis in crystals, Angewandte Chemie International Edition in English, 34, 1555–1573, (1995).
  • Sen, I., Kara, H. and Azizoglu, A., Substituent effects on hydrogen bonding of aromatic amide-carboxylate, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 167, 50-58, (2016).
  • Govindarajan, M., Periandy, S. and Carthigayen, K., FT-IR and FT-Raman spectra, thermo dynamical behavior, HOMO and LUMO, UV, NLO properties, computed frequency estimation analysis and electronic structure calculations on α-bromotoluene, Spectrochimica Acta, A97, 411–422, (2012).
  • Çiçek, B., Çakır, Ü. and Azizoglu A., The associations of macrocyclic ethers with cations in 1,4-dioxane/water mixtures; potentiometric Na+ and K+ binding measurements and computational study, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 72, 121-125, (2012).
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Muhittin Aygün

Yayımlanma Tarihi 11 Nisan 2018
Gönderilme Tarihi 8 Mart 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 20 Sayı: 1

Kaynak Göster

APA Aygün, M. (2018). Structural characterization and DFT studies of an oxazol-5-one derivative. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(1), 389-397. https://doi.org/10.25092/baunfbed.414333
AMA Aygün M. Structural characterization and DFT studies of an oxazol-5-one derivative. BAUN Fen. Bil. Enst. Dergisi. Temmuz 2018;20(1):389-397. doi:10.25092/baunfbed.414333
Chicago Aygün, Muhittin. “Structural Characterization and DFT Studies of an Oxazol-5-One Derivative”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20, sy. 1 (Temmuz 2018): 389-97. https://doi.org/10.25092/baunfbed.414333.
EndNote Aygün M (01 Temmuz 2018) Structural characterization and DFT studies of an oxazol-5-one derivative. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20 1 389–397.
IEEE M. Aygün, “Structural characterization and DFT studies of an oxazol-5-one derivative”, BAUN Fen. Bil. Enst. Dergisi, c. 20, sy. 1, ss. 389–397, 2018, doi: 10.25092/baunfbed.414333.
ISNAD Aygün, Muhittin. “Structural Characterization and DFT Studies of an Oxazol-5-One Derivative”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20/1 (Temmuz 2018), 389-397. https://doi.org/10.25092/baunfbed.414333.
JAMA Aygün M. Structural characterization and DFT studies of an oxazol-5-one derivative. BAUN Fen. Bil. Enst. Dergisi. 2018;20:389–397.
MLA Aygün, Muhittin. “Structural Characterization and DFT Studies of an Oxazol-5-One Derivative”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 20, sy. 1, 2018, ss. 389-97, doi:10.25092/baunfbed.414333.
Vancouver Aygün M. Structural characterization and DFT studies of an oxazol-5-one derivative. BAUN Fen. Bil. Enst. Dergisi. 2018;20(1):389-97.