Araştırma Makalesi
BibTex RIS Kaynak Göster

Metamalzeme tabanlı çok bantlı enerji hasadı uygulaması

Yıl 2018, Cilt: 20 Sayı: 1, 517 - 538, 14.06.2018
https://doi.org/10.25092/baunfbed.433960

Öz

Bu çalışmada, değişik boyutlu halka rezonatörlerinden oluşan mükemmel sinyal emici özellik gösteren bir metamalzeme enerji hasadı uygulaması için, tasarım, üretim, simülasyon ve deneysel çalışmaları gerçekleştirilmiştir. Önerilen yapının en önemli avantajlarından birisi, benzer çalışmaların aksine hiçbir tasarım öğesi değiştirilmeden 1.8GHz, 2.45 GHz ve 2.60 GHz de doğal olarak mükemmel sinyal emici özelliği göstermesidir. Bu değerler yapının hem GSM (Global System for Mobile) hem de ISM (Industrial Scientific Medical) bantlarında enerji hasadı amaçlı kullanılabileceğini göstermektedir. Simülasyon çalışmaları CST Microwave Studio programında gerçekleştirilmiştir, belirtilen bantlarda rezonatörler üzerinde oluşan enerjinin hasadı için HSMS 2860 Schottky diyot kullanılmıştır. Simülasyon sonuçlarını desteklemek için yansıma katsayısı (S11) ölçümü, diyot etkisinin belirlenmesi, spektrum analizör ve dc voltaj ölçümleri deneysel olarak gerçekleştirilmiştir. Yansıma katsayısı ölçümlerinde rezonans frekanslarında  -20dB lik bir değer elde edilirken, spektrum analizör ölçümünde yaklaşık 30dBm lik bir artış söz konusudur. Diyot üzerinde dc gerilim ölçümünde 47.6mV’ luk bir gerilim gözlenmiştir. Elde edilen deneysel ve simülasyon sonuçları birbirleri ile uyumlu olup önerilen yapının çok bantlı enerji hasadı uygulamalarında kullanılabileceğini göstermektedir.

Kaynakça

  • Shelby, R.A., Smith, D.R. ve Schultz, S., Experimental verification of a negative index of refraction. Science, 292.5514, 77-79, (2001).
  • Maci, S.A, Cloaking metamaterial based on an inhomogeneous linear field transformation. antennas and propagation, IEEE Transactions on, 58, 1136-1143, (2010).
  • Sabah, C., Dincer, F., Karaaslan, M., Unal,E., Akgol, O. ve Demirel, E., Perfect metamaterial absorber with polarization and incident angle independencies based on ring and cross-wire resonators for shielding and a sensor application, Opt. Commun, 322, 137-142, (2014).
  • Lee, J. ve Lim, S., Bandwidth-enhanced and polarization-insensitive metamaterial absorber using double resonance, Electron. Lett, 47, 8-9, (2012).
  • Karakaya, E., Mulazimoglu, C., Can, S., Yılmaz, E. ve Akaoglu, B., Metamaterial design for energy harvesting applications, Signal Processing and Communication Application Conference (SIU), 509-512, (2016).
  • Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R. ve Padilla, W.J., Perfect Metamaterial Absorber, Phys. Rev. Lett., 100, 207402, (2008).
  • Bakır, M., Delihacıoğlu, K., Karaaslan, M. ve Sabah C., U-shaped frequency selective surfaces for single and dual-band applications together with absorber and sensor configurations, IET Microwaves Antennas & Propagation, 10(3), 293-300, (2016).
  • Dincer F, Akgol O, Karaaslan M, Unal, E. ve Sabah C., Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime. Progress in Electromagnetics Research, 144, 93-101, (2014).
  • Dang, K. Z., Shi, J.M., Wang, J.C., Lin, Z.D. ve Wang, Q. C., Tunable wideband absorber based on resistively loaded lossy high-impedance surface, Chinese Phys. B, 24 104104, (2015).
  • Dincer, F., Karaaslan, M., Colak, S., Tetik, E., Akgol, O., Altıntas, O. ve Sabah, C., Multi-band polarization independent cylindrical metamaterial absorber and sensor application, Modern Physics Letters B, 30(08), 1650095, (2016).
  • Pranav, U.S., Sudheesh, S., Stanly, P., Sankar, S., Devika, R. ve Pradeep, A., Metamaterial based energy harvester, Procedia Computer Science, 93, 74-80, (2016).
  • Thamer, S., Almoneef, T.S. ve Ramahi, O.M., Metamaterial electromagnetic energy harvester with near unity efficiency, Appl. Phys. Lett. 106, 153902, (2015).
  • Cheng, Y.Z., Wang, Y., Nie, Y., Gong, R.Z., Xiong, X. ve Wang, X., Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements, Journal of Applied Physics, 111(4), 044902, (2012).
  • Yang, G., Ho, C. K. ve Guan, Y.L., Multi-antenna wireless energy transfer for backscatter communication systems, Selected Areas in Communications IEEE Journal on, 33, 2974-2987, (2015).
  • Mrnka,M., Vasina, P., Kufa, M., Hebelka, V. ve Raida, Z., The RF energy harvesting antennas operating in commercially deployed frequency bands: a comparative study, International Journal of Antennas and Propagation, 2016, Article ID 7379624, (2016).
  • Devi, K.A., Kwong, C.F., Chakrabarty, C.K. ve Norashidah, M.D, Investigations on characteristics of metamaterial based patch antenna for rf energy harvesting at GSM 900, Electrical and Electronic Engineering, 5(1), 7-13, (2015).
  • Dini, M., Filippi, M., Costanzo, A., Romani, A., Tartagni, M., Del Prete, M. ve Masotti, D., A fully-autonomous integrated RF energy harvesting system for wearable applications, European Microwave Conference 2013, 987–990, (2013).
  • Pinuela, M., Mitcheson, P.D., Lucyszyn, S. ve Ambient RF energy harvesting in urban and semi-urban environments, IEEE Trans. Microw. Theory Techn., 61(7), 2715-2726, (2013).
  • Anandhimeena, B. , Selvan, P. ve Raghavan, S, Compact metamaterial antenna with high directivity for bio-medical systems, Circuits and Systems, 7, 4036-4045, (2013).
  • Bakır, M., Karaaslan, M., Altıntaş, O., Bagmancı, M., Akdogan, V. ve Temurtaş, F., Tunable energy harvesting on UHF bands especially for GSM frequencies, International Journal of Microwave and Wireless Technologies, 10(1). 67-76, (2018).
  • Born M ve Wolf E, Principles of optics,7th Edition, Cambridge University Press, (1999).
  • Zhu, N., Ziolkowski, R.W. ve Xin, H., A metamaterial-inspired, electrically small rectenna for high-efficiency low power harvesting and scavenging at the GPS L1 frequency, Appl. Phys. Lett., 99, 114101, (2011).
  • Ramahi, O.M., Almoneef, T.S., AlShareef, M. ve Boybay, M.S., Metamaterial particles for electromagnetic energy harvesting, Appl. Phys. Lett. 101, 173903, (2012).
  • Almoneef, T.S. ve Ramahi, O.M., 3-dimensional stacked metamaterial arrays for electromagnetic energy harvesting, Prog. Electromagn.Res., 146, 109-115 (2014).
  • Vullers, R.J.M., Schaijk, R.V., Visser, H.J., Penders, J. ve Hoof, C.V, energy harvesting for autonomous wireless sensor networks, IEEE Solid-State Circuits Magazine, 2(2), 29-38, (2010).

Metamaterial based multiband energy harvesting application

Yıl 2018, Cilt: 20 Sayı: 1, 517 - 538, 14.06.2018
https://doi.org/10.25092/baunfbed.433960

Öz

In this study, perfect metamaterial absorber based structure, which consists of variable sized ring resonators is designed, produced, simulated and experimentally tested for energy harvesting applications. One of the major advantages of proposed structure is to achieve perfect signal absorber ability at 1.8GHz, 2.45 GHz and 2.60 GHz frequencies without making any alteration in design contrary to similar studies. These frequencies present that this structure can be applicable in both GSM (Global System for Mobile) and ISM (Industrial Scientific Medical) bands for energy harvesting purposes. Simulation studies are implemented by using CST Microwave Studio software and HSMS 2860 Schottky diode is used to harvest produced energy on resonators at stated bands. Reflection coefficient (S11) measurement, determination of the effects of Schottky diode on reflection, spectrum analyser measurement and dc voltage measurements are completed experimentally in order to validate simulation study results. While -20dB difference in resonance frequencies is observed during reflection coefficient measurements, 30dBm increment in resonance frequencies occurred during spectrum analyser measurement. 47.6mV is observed on Schottky diode during dc voltage measurements. Obtained both experiment and simulation results are congruent with each other and it indicates that proposed structure is appropriate for using in multiband energy harvesting applications. 

Kaynakça

  • Shelby, R.A., Smith, D.R. ve Schultz, S., Experimental verification of a negative index of refraction. Science, 292.5514, 77-79, (2001).
  • Maci, S.A, Cloaking metamaterial based on an inhomogeneous linear field transformation. antennas and propagation, IEEE Transactions on, 58, 1136-1143, (2010).
  • Sabah, C., Dincer, F., Karaaslan, M., Unal,E., Akgol, O. ve Demirel, E., Perfect metamaterial absorber with polarization and incident angle independencies based on ring and cross-wire resonators for shielding and a sensor application, Opt. Commun, 322, 137-142, (2014).
  • Lee, J. ve Lim, S., Bandwidth-enhanced and polarization-insensitive metamaterial absorber using double resonance, Electron. Lett, 47, 8-9, (2012).
  • Karakaya, E., Mulazimoglu, C., Can, S., Yılmaz, E. ve Akaoglu, B., Metamaterial design for energy harvesting applications, Signal Processing and Communication Application Conference (SIU), 509-512, (2016).
  • Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R. ve Padilla, W.J., Perfect Metamaterial Absorber, Phys. Rev. Lett., 100, 207402, (2008).
  • Bakır, M., Delihacıoğlu, K., Karaaslan, M. ve Sabah C., U-shaped frequency selective surfaces for single and dual-band applications together with absorber and sensor configurations, IET Microwaves Antennas & Propagation, 10(3), 293-300, (2016).
  • Dincer F, Akgol O, Karaaslan M, Unal, E. ve Sabah C., Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime. Progress in Electromagnetics Research, 144, 93-101, (2014).
  • Dang, K. Z., Shi, J.M., Wang, J.C., Lin, Z.D. ve Wang, Q. C., Tunable wideband absorber based on resistively loaded lossy high-impedance surface, Chinese Phys. B, 24 104104, (2015).
  • Dincer, F., Karaaslan, M., Colak, S., Tetik, E., Akgol, O., Altıntas, O. ve Sabah, C., Multi-band polarization independent cylindrical metamaterial absorber and sensor application, Modern Physics Letters B, 30(08), 1650095, (2016).
  • Pranav, U.S., Sudheesh, S., Stanly, P., Sankar, S., Devika, R. ve Pradeep, A., Metamaterial based energy harvester, Procedia Computer Science, 93, 74-80, (2016).
  • Thamer, S., Almoneef, T.S. ve Ramahi, O.M., Metamaterial electromagnetic energy harvester with near unity efficiency, Appl. Phys. Lett. 106, 153902, (2015).
  • Cheng, Y.Z., Wang, Y., Nie, Y., Gong, R.Z., Xiong, X. ve Wang, X., Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements, Journal of Applied Physics, 111(4), 044902, (2012).
  • Yang, G., Ho, C. K. ve Guan, Y.L., Multi-antenna wireless energy transfer for backscatter communication systems, Selected Areas in Communications IEEE Journal on, 33, 2974-2987, (2015).
  • Mrnka,M., Vasina, P., Kufa, M., Hebelka, V. ve Raida, Z., The RF energy harvesting antennas operating in commercially deployed frequency bands: a comparative study, International Journal of Antennas and Propagation, 2016, Article ID 7379624, (2016).
  • Devi, K.A., Kwong, C.F., Chakrabarty, C.K. ve Norashidah, M.D, Investigations on characteristics of metamaterial based patch antenna for rf energy harvesting at GSM 900, Electrical and Electronic Engineering, 5(1), 7-13, (2015).
  • Dini, M., Filippi, M., Costanzo, A., Romani, A., Tartagni, M., Del Prete, M. ve Masotti, D., A fully-autonomous integrated RF energy harvesting system for wearable applications, European Microwave Conference 2013, 987–990, (2013).
  • Pinuela, M., Mitcheson, P.D., Lucyszyn, S. ve Ambient RF energy harvesting in urban and semi-urban environments, IEEE Trans. Microw. Theory Techn., 61(7), 2715-2726, (2013).
  • Anandhimeena, B. , Selvan, P. ve Raghavan, S, Compact metamaterial antenna with high directivity for bio-medical systems, Circuits and Systems, 7, 4036-4045, (2013).
  • Bakır, M., Karaaslan, M., Altıntaş, O., Bagmancı, M., Akdogan, V. ve Temurtaş, F., Tunable energy harvesting on UHF bands especially for GSM frequencies, International Journal of Microwave and Wireless Technologies, 10(1). 67-76, (2018).
  • Born M ve Wolf E, Principles of optics,7th Edition, Cambridge University Press, (1999).
  • Zhu, N., Ziolkowski, R.W. ve Xin, H., A metamaterial-inspired, electrically small rectenna for high-efficiency low power harvesting and scavenging at the GPS L1 frequency, Appl. Phys. Lett., 99, 114101, (2011).
  • Ramahi, O.M., Almoneef, T.S., AlShareef, M. ve Boybay, M.S., Metamaterial particles for electromagnetic energy harvesting, Appl. Phys. Lett. 101, 173903, (2012).
  • Almoneef, T.S. ve Ramahi, O.M., 3-dimensional stacked metamaterial arrays for electromagnetic energy harvesting, Prog. Electromagn.Res., 146, 109-115 (2014).
  • Vullers, R.J.M., Schaijk, R.V., Visser, H.J., Penders, J. ve Hoof, C.V, energy harvesting for autonomous wireless sensor networks, IEEE Solid-State Circuits Magazine, 2(2), 29-38, (2010).
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Bakır

Yayımlanma Tarihi 14 Haziran 2018
Gönderilme Tarihi 8 Haziran 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 20 Sayı: 1

Kaynak Göster

APA Bakır, M. (2018). Metamalzeme tabanlı çok bantlı enerji hasadı uygulaması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(1), 517-538. https://doi.org/10.25092/baunfbed.433960
AMA Bakır M. Metamalzeme tabanlı çok bantlı enerji hasadı uygulaması. BAUN Fen. Bil. Enst. Dergisi. Temmuz 2018;20(1):517-538. doi:10.25092/baunfbed.433960
Chicago Bakır, Mehmet. “Metamalzeme Tabanlı çok Bantlı Enerji Hasadı Uygulaması”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20, sy. 1 (Temmuz 2018): 517-38. https://doi.org/10.25092/baunfbed.433960.
EndNote Bakır M (01 Temmuz 2018) Metamalzeme tabanlı çok bantlı enerji hasadı uygulaması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20 1 517–538.
IEEE M. Bakır, “Metamalzeme tabanlı çok bantlı enerji hasadı uygulaması”, BAUN Fen. Bil. Enst. Dergisi, c. 20, sy. 1, ss. 517–538, 2018, doi: 10.25092/baunfbed.433960.
ISNAD Bakır, Mehmet. “Metamalzeme Tabanlı çok Bantlı Enerji Hasadı Uygulaması”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20/1 (Temmuz 2018), 517-538. https://doi.org/10.25092/baunfbed.433960.
JAMA Bakır M. Metamalzeme tabanlı çok bantlı enerji hasadı uygulaması. BAUN Fen. Bil. Enst. Dergisi. 2018;20:517–538.
MLA Bakır, Mehmet. “Metamalzeme Tabanlı çok Bantlı Enerji Hasadı Uygulaması”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 20, sy. 1, 2018, ss. 517-38, doi:10.25092/baunfbed.433960.
Vancouver Bakır M. Metamalzeme tabanlı çok bantlı enerji hasadı uygulaması. BAUN Fen. Bil. Enst. Dergisi. 2018;20(1):517-38.