Araştırma Makalesi
BibTex RIS Kaynak Göster

CuAgAu üçlü nanoalaşımların optimizasyonu ve erime dinamiği

Yıl 2019, Cilt: 21 Sayı: 1, 336 - 351, 15.03.2019
https://doi.org/10.25092/baunfbed.547194

Öz

Bu çalışmada, N=23 ve N= 26 atomdan oluşan CuAgAu üçlü nanoalaşımların teorik bir çalışması, atomlar arası etkileşmeler Gupta çok cisim potansiyel enerji fonksiyonu ile modellenerek yapılmıştır.  Cu3AgnAu20-n (n=0-20) ve Cu4AgnAu22-n (n=0-22) üçlü nanoalaşımların tüm kompozisyonları için en düşük enerjili yapılar Basin Hopping algoritması kullanarak elde edilmiştir.  Nanoalaşımların kararlılığını incelemek için fazlalık enerji ve ikinci enerji farkı analizleri yapılmıştır.  Enerji analizleri sonucunda bulunan en kararlı nanoalaşımların erime davranışı Kanonik Moleküler Dinamik (MD) Simülasyon metodu kullanılarak incelenmiştir.  CuAgAu nanoalaşımların MD simülasyonları nanoalaşımların katı ve sıvı özelliklerini incelemek için düşük ve yüksek sıcaklıklarda gerçekleştirilmiştir.  CuAgAu nanoalaşımların erime noktasını hesaplamak için kalorik eğri, Lindemann kriteri ve radyal dağılım fonksiyonu hesaplanmıştır.  

Kaynakça

  • Wu, X., Wu, G., Chen, Y., Qiao, Y., Structural optimization of Cu-Ag-Au trimetallic clusters by adaptive immune optimization algorithm, The Journal of Physical Chemistry A, 115, 13316–13323, (2011).
  • Garip, A. K., 147 Atomlu Co-Pd Nanoalaşımlarının erime dinamiği, Karaelmas Fen ve Mühendislik Dergisi, 6(2), 369-376, (2016).
  • Ferrando, R., Structure and Properties of Nanoalloys, Volume 10 1st Edition, 350, (2016).
  • Flint, D., Why Are Transition Metals Good Catalysts, (2017). https://sciencing.com/why-are-transition-metals-good-catalysts-12342816.html, (25.10.2017).
  • Carabineiro, S. A. C., Special Issue: Coinage Metal (Copper, Silver, and Gold) Catalysis, Molecules, 21(6), 746, (2016).
  • Hashimoto, Y., Seniutinas, G., Balčytis, A., Juodkazis, S., Nishijima, Y., Au-Ag-Cu nano-alloys: tailoring of permittivity, Scientific Reports,.6:25010, (2016).
  • Ferrando, R., Jellinek, J., Johnston, R. L., Nanoalloys: from theory to applications of alloy clusters and nanoparticles, Chemical Reviews, 108(3), 845–910, (2008).
  • Garip, A. K., Arslan, H., 40 Atomlu Pd-Co İkili metal atom topaklarının yapısal özelliklerinin incelenmesi, Karaelmas Fen ve Mühendislik Dergisi, 4(2), 38-45, (2014).
  • Baletto, F., Ferrando, R., Structural properties of nanoclusters: Energetic, thermodynamics, and kinetic effects, Reviews of Modern Physics, 77, 371-423, (2005).
  • Deheer, W. A., The physics of simple metal clusters experimental aspects ans simple models, Reviews of Modern Physics, 65, 611-676, (1993).
  • Heiz, U., Schneider, W. D., Nanoassembled model catalysts, Journal of Physics D: Applied Physics, 33(11), 85-102, (2000).
  • Arslan, H., Garip, A. K., Johnston, R. L., Theoretical study of structures and chemical ordering of cobalt-palladium nanoclusters, Physical Chemistry Chemical Physics, 17(42), 28311-21, (2015).
  • Barcaro, G., Fortunelli, A., Rossi, A., Nita, G., Ferrando, R., Electronic and structural shell closure in AgCu and AuCu nanoclusters, The Journal of Physical Chemistry B, 110, 23197-23203, (2006).
  • Zhang, W., Zhang, F., Zhu, Z., Molecular dynamics study on the melting phase transition of aluminum clusters with around 55 atoms, Physical Review B, 74, 033412, (2006).
  • Shibuta, Y., Suzuki, T., A molecular dynamics study of the phase transition in bcc metal nanoparticles, The Journal of Chemical Physics, 129, 144102, (2008).
  • Rossi, G., Rapallo, A., Mottet, C., Fortunelli, A., Baletto, F., Ferrando, R., Magic polyicosahedral core-shell clusters, Physical Review Letters, 93, (2004).
  • Cheng, D. J., Huang, S. P., Wang, W. C., Thermal behavior of core-shell and three-shell layered clusters: Melting of Cu1Au54 and Cu12Au43, Physical Review B, 74, (2006).
  • Mottet, C., Rossi, G., Baletto, F., Ferrando, R., Single impurity effect on the melting of nanoclusters, Physical Review Letters, 95, (2005).
  • Chen, F. Y., Curley, B. C., Rossi, G., Johnston, R. L., Structure, melting, and thermal stability of 55 atom Ag-Au nanoalloys, The Journal of Physical Chemistry C, 111, 9157-9165, (2007).
  • Wu, X., Cai, W., Shao, X., Optimization of Bimetallic Cu–Au and Ag–Au clusters by using a modified adaptive immune optimization algorithm, Journal of Computational Chemistry, 30, 1992–2000, (2009).
  • Hong, L., Wang, H., Cheng, J., Huang, X., Sai, L., Zhao, J., Atomic structures and electronic properties of small Au–Ag binary clusters: Effects of size and composition, Computational and Theoretical Chemistry, 993, 36–44, (2012).
  • Cheng, D., Liu, X.,Cao1, D., Wang, W., Huang, S., Surface segregation of Ag–Cu–Au trimetallic clusters, Nanotechnology, 18, 475702 (7pp), (2007).
  • Todorov, I. T., Smith, W., The DLPOLY-4 User Manuel, (2015). ftp://ftp.dl.ac.uk/ccp5/DL_POLY/DL_POLY_4.0/DOCUMENTS/USRMAN4.pdf, (08.03.2016).
  • Cleri, F., Rosato, V., Tight-binding potentials for transition metals and alloys, Physical Review B, 48 (1), 22-33, (1993).
  • Pacheco-Contreras, R., Arteaga-Guerrero, A., Borbon-Gonzalez, D. J., Posada-Amarillas, A., Schon, J. C., Johnston, R. L., Energetic and Structural Analysis of 102-Atom Pd-Pt Nanoparticles: A Composition-Dependent Study. Journal of Computational and Theoretical Nanoscience, 7 (1), 199-204, (2010).
  • Taran, S., Garip, A. K., Arslan, H., Theoretical study of the structures and chemical ordering of CoPd nanoalloys supported on Mgo (001), International Journal of Modern Physics C, 27, 1650146, (2016).
  • Gupta, R. P., Lattice relaxation at a metal surface, Physical Review B, 23: 6265-6270, (1981).
  • Rapallo, A., Rossi, G., Ferrando, R., Fortunelli, A., Curley, B. C., Lloyd, L. D., Tarbuck, G. M. Johnston, R. L., Global optimization of bimetallic cluster structures. I. Size mismatched Ag-Cu, Ag-Ni, and Au-Cu systems, The Journal of Chemical Physics, 122, 194308-12, (2005).
  • Wales, D. J., GMIN User Guide, (2018). www.wales.ch.cam.ac.uk/GMIN.doc/node2.html, (12.08.2018).
  • Wales, D. J., Doye, J. P. K.,Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms, The Journal of Physical Chemistry A, 101, 5111-5116, (1997).
  • Ferrando, R., Fortunelli, A., Rossi, G., Quantum effects on the structure of pure and binary metallic nanoclusters, Physical Review B, 72, 085449, (2005).
  • Wu, G., Liu, Q., Wu, X., Geometrical and energetic properties in 38 atom trimetallic Au-Pd-Pt clusters, Chemical Physics Letters, 620, 92-97, (2015).
  • Shvartsburg, A. A., Jarrold, M. F., Solid Clusters above the Bulk Melting Point, Physical Review Letters, 85, 12, (2000).
  • Le Roux, S., Petkov, V., Interactive structure analysis of amorphous and crystalline systems, Journal of Applied Crystallography, 43, 181-185, (2010).
  • Haile, J. M., Molecular Dynamics Simulation: Elementary Methods, Wiley-Interscience ,(1992).
  • Rigby, M., Smith, E. B., Wakeham, W. A., Maitland, G. C., The Forces Between Molecules, 144, Oxford University Press, Clarendon Press , (1986).
  • Lee, M. S., Chacko, S., Kanhere, D. G., First principles investigation of finite temperature behavior in small sodium clusters, The Journal of Chemical Physics 123(16), 164310, (2005).
  • Ding, F., Bolton, K., Rosen, A., Molecular dynamics study of the surface melting of iron clusters, The European Physical Journal D, 34, 275–277, (2005).
  • Lindemann, F. A., The calculation of molecular vibration frequencies, Physik. Z, 11, 609–612, (1910).
  • Rossi, G., Ferrando, R., Rapallo, A., Fortunelli, A., Curley, B. C.,Lloyd, L. D., Johnston, R. L., Global optimization of bimetallic cluster structures. II. Size-matched Ag-Pd, Ag-Au, and Pd-Pt systems, The Journal of Chemical Physics, 122, 194309, (2005).
  • Yang, L., Gan, X., Xu, C., Lang, L., Jian, Z., Xiao, S., Deng, H., Li, X., Tian, Z., Hu, W., Molecular dynamics simulation of alloying during sintering of Li and Pb metallic nanoparticles, Computational Materials Science, 156, 47-55, (2019).
  • Nayak, S. K., Khanna, S. N., Rao, B. K., Jena, P., Thermodynamics of small nickel clusters, Journal of Physics: Condensed Matter, 10, 10853–10862, (1998).
  • Alavi, S., Thompson, D. L., Molecular dynamics simulations of the melting of aluminum nanoparticles, The Journal of Physical Chemistry A, 110, 1518-1523, (2006).
  • Arianfar, F., Rostamian, R., Behnejad, H., Molecular dynamics simulation of the melting process in Au15Ag40 nanoalloys, Physical Chemistry Research, 5(2), 359-366, (2017).
  • Nanda, K. K., Size dependent melting of nanoparticles: Hundred years of thermodynamic model, Pramana Journal of Pyhsics, 72(4), 617-628, (2009).
  • Pawlow, P., The dependency of the melting point on the surface energy of a solid body, Zeitschrift für Physikalische Chemie, 65, 545-548, (1909).
  • Ji, P., Zhang, Y., Yang, M., Structural, dynamic, and vibrational properties during heat transfer in Si/Ge superlattices: A Car-Parrinello molecular dynamics study, Journal Of Applied Physics, 114, 234905, (2013).
  • Cote, A. S., Smith, W., Lindan, P.J., A Molecular Dynamics tutorial, (2001). http://www.cse.scitech.ac.uk/ccg/software/Democritus/Theory/rdf.html

Optimization and melting dynamics of CuAgAu ternary nanoalloys

Yıl 2019, Cilt: 21 Sayı: 1, 336 - 351, 15.03.2019
https://doi.org/10.25092/baunfbed.547194

Öz

In this study, a theoretical investigation of CuAgAu ternary nanoalloys, consisting of N = 23 and N = 26 atoms, was carried out by modelling interatomic interactions with the Gupta many-body potential energy function.  The lowest energy structures for all compositions of Cu3AgnAu20-n (n=0-20) and Cu4AgnAu22-n (n=0-22) ternary nanoalloys were obtained using the Basin Hopping algorithm.  Excess energy and second energy difference analyzes were performed to investigate the stability of nanoalloys.  The melting behavior of the most stable nanoalloys, found by energy analyzes, were investigated using the Canonical Molecular Dynamics Simulation method.  MD simulations of CuAgAu nanoalloys have been carried out at low and high temperatures to study solid and liquid properties of nanoalloys.  Caloric curve, Lindemann index and radial distribution function were calculated for estimating the melting point of the CuAgAu nanoalloys.

Kaynakça

  • Wu, X., Wu, G., Chen, Y., Qiao, Y., Structural optimization of Cu-Ag-Au trimetallic clusters by adaptive immune optimization algorithm, The Journal of Physical Chemistry A, 115, 13316–13323, (2011).
  • Garip, A. K., 147 Atomlu Co-Pd Nanoalaşımlarının erime dinamiği, Karaelmas Fen ve Mühendislik Dergisi, 6(2), 369-376, (2016).
  • Ferrando, R., Structure and Properties of Nanoalloys, Volume 10 1st Edition, 350, (2016).
  • Flint, D., Why Are Transition Metals Good Catalysts, (2017). https://sciencing.com/why-are-transition-metals-good-catalysts-12342816.html, (25.10.2017).
  • Carabineiro, S. A. C., Special Issue: Coinage Metal (Copper, Silver, and Gold) Catalysis, Molecules, 21(6), 746, (2016).
  • Hashimoto, Y., Seniutinas, G., Balčytis, A., Juodkazis, S., Nishijima, Y., Au-Ag-Cu nano-alloys: tailoring of permittivity, Scientific Reports,.6:25010, (2016).
  • Ferrando, R., Jellinek, J., Johnston, R. L., Nanoalloys: from theory to applications of alloy clusters and nanoparticles, Chemical Reviews, 108(3), 845–910, (2008).
  • Garip, A. K., Arslan, H., 40 Atomlu Pd-Co İkili metal atom topaklarının yapısal özelliklerinin incelenmesi, Karaelmas Fen ve Mühendislik Dergisi, 4(2), 38-45, (2014).
  • Baletto, F., Ferrando, R., Structural properties of nanoclusters: Energetic, thermodynamics, and kinetic effects, Reviews of Modern Physics, 77, 371-423, (2005).
  • Deheer, W. A., The physics of simple metal clusters experimental aspects ans simple models, Reviews of Modern Physics, 65, 611-676, (1993).
  • Heiz, U., Schneider, W. D., Nanoassembled model catalysts, Journal of Physics D: Applied Physics, 33(11), 85-102, (2000).
  • Arslan, H., Garip, A. K., Johnston, R. L., Theoretical study of structures and chemical ordering of cobalt-palladium nanoclusters, Physical Chemistry Chemical Physics, 17(42), 28311-21, (2015).
  • Barcaro, G., Fortunelli, A., Rossi, A., Nita, G., Ferrando, R., Electronic and structural shell closure in AgCu and AuCu nanoclusters, The Journal of Physical Chemistry B, 110, 23197-23203, (2006).
  • Zhang, W., Zhang, F., Zhu, Z., Molecular dynamics study on the melting phase transition of aluminum clusters with around 55 atoms, Physical Review B, 74, 033412, (2006).
  • Shibuta, Y., Suzuki, T., A molecular dynamics study of the phase transition in bcc metal nanoparticles, The Journal of Chemical Physics, 129, 144102, (2008).
  • Rossi, G., Rapallo, A., Mottet, C., Fortunelli, A., Baletto, F., Ferrando, R., Magic polyicosahedral core-shell clusters, Physical Review Letters, 93, (2004).
  • Cheng, D. J., Huang, S. P., Wang, W. C., Thermal behavior of core-shell and three-shell layered clusters: Melting of Cu1Au54 and Cu12Au43, Physical Review B, 74, (2006).
  • Mottet, C., Rossi, G., Baletto, F., Ferrando, R., Single impurity effect on the melting of nanoclusters, Physical Review Letters, 95, (2005).
  • Chen, F. Y., Curley, B. C., Rossi, G., Johnston, R. L., Structure, melting, and thermal stability of 55 atom Ag-Au nanoalloys, The Journal of Physical Chemistry C, 111, 9157-9165, (2007).
  • Wu, X., Cai, W., Shao, X., Optimization of Bimetallic Cu–Au and Ag–Au clusters by using a modified adaptive immune optimization algorithm, Journal of Computational Chemistry, 30, 1992–2000, (2009).
  • Hong, L., Wang, H., Cheng, J., Huang, X., Sai, L., Zhao, J., Atomic structures and electronic properties of small Au–Ag binary clusters: Effects of size and composition, Computational and Theoretical Chemistry, 993, 36–44, (2012).
  • Cheng, D., Liu, X.,Cao1, D., Wang, W., Huang, S., Surface segregation of Ag–Cu–Au trimetallic clusters, Nanotechnology, 18, 475702 (7pp), (2007).
  • Todorov, I. T., Smith, W., The DLPOLY-4 User Manuel, (2015). ftp://ftp.dl.ac.uk/ccp5/DL_POLY/DL_POLY_4.0/DOCUMENTS/USRMAN4.pdf, (08.03.2016).
  • Cleri, F., Rosato, V., Tight-binding potentials for transition metals and alloys, Physical Review B, 48 (1), 22-33, (1993).
  • Pacheco-Contreras, R., Arteaga-Guerrero, A., Borbon-Gonzalez, D. J., Posada-Amarillas, A., Schon, J. C., Johnston, R. L., Energetic and Structural Analysis of 102-Atom Pd-Pt Nanoparticles: A Composition-Dependent Study. Journal of Computational and Theoretical Nanoscience, 7 (1), 199-204, (2010).
  • Taran, S., Garip, A. K., Arslan, H., Theoretical study of the structures and chemical ordering of CoPd nanoalloys supported on Mgo (001), International Journal of Modern Physics C, 27, 1650146, (2016).
  • Gupta, R. P., Lattice relaxation at a metal surface, Physical Review B, 23: 6265-6270, (1981).
  • Rapallo, A., Rossi, G., Ferrando, R., Fortunelli, A., Curley, B. C., Lloyd, L. D., Tarbuck, G. M. Johnston, R. L., Global optimization of bimetallic cluster structures. I. Size mismatched Ag-Cu, Ag-Ni, and Au-Cu systems, The Journal of Chemical Physics, 122, 194308-12, (2005).
  • Wales, D. J., GMIN User Guide, (2018). www.wales.ch.cam.ac.uk/GMIN.doc/node2.html, (12.08.2018).
  • Wales, D. J., Doye, J. P. K.,Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms, The Journal of Physical Chemistry A, 101, 5111-5116, (1997).
  • Ferrando, R., Fortunelli, A., Rossi, G., Quantum effects on the structure of pure and binary metallic nanoclusters, Physical Review B, 72, 085449, (2005).
  • Wu, G., Liu, Q., Wu, X., Geometrical and energetic properties in 38 atom trimetallic Au-Pd-Pt clusters, Chemical Physics Letters, 620, 92-97, (2015).
  • Shvartsburg, A. A., Jarrold, M. F., Solid Clusters above the Bulk Melting Point, Physical Review Letters, 85, 12, (2000).
  • Le Roux, S., Petkov, V., Interactive structure analysis of amorphous and crystalline systems, Journal of Applied Crystallography, 43, 181-185, (2010).
  • Haile, J. M., Molecular Dynamics Simulation: Elementary Methods, Wiley-Interscience ,(1992).
  • Rigby, M., Smith, E. B., Wakeham, W. A., Maitland, G. C., The Forces Between Molecules, 144, Oxford University Press, Clarendon Press , (1986).
  • Lee, M. S., Chacko, S., Kanhere, D. G., First principles investigation of finite temperature behavior in small sodium clusters, The Journal of Chemical Physics 123(16), 164310, (2005).
  • Ding, F., Bolton, K., Rosen, A., Molecular dynamics study of the surface melting of iron clusters, The European Physical Journal D, 34, 275–277, (2005).
  • Lindemann, F. A., The calculation of molecular vibration frequencies, Physik. Z, 11, 609–612, (1910).
  • Rossi, G., Ferrando, R., Rapallo, A., Fortunelli, A., Curley, B. C.,Lloyd, L. D., Johnston, R. L., Global optimization of bimetallic cluster structures. II. Size-matched Ag-Pd, Ag-Au, and Pd-Pt systems, The Journal of Chemical Physics, 122, 194309, (2005).
  • Yang, L., Gan, X., Xu, C., Lang, L., Jian, Z., Xiao, S., Deng, H., Li, X., Tian, Z., Hu, W., Molecular dynamics simulation of alloying during sintering of Li and Pb metallic nanoparticles, Computational Materials Science, 156, 47-55, (2019).
  • Nayak, S. K., Khanna, S. N., Rao, B. K., Jena, P., Thermodynamics of small nickel clusters, Journal of Physics: Condensed Matter, 10, 10853–10862, (1998).
  • Alavi, S., Thompson, D. L., Molecular dynamics simulations of the melting of aluminum nanoparticles, The Journal of Physical Chemistry A, 110, 1518-1523, (2006).
  • Arianfar, F., Rostamian, R., Behnejad, H., Molecular dynamics simulation of the melting process in Au15Ag40 nanoalloys, Physical Chemistry Research, 5(2), 359-366, (2017).
  • Nanda, K. K., Size dependent melting of nanoparticles: Hundred years of thermodynamic model, Pramana Journal of Pyhsics, 72(4), 617-628, (2009).
  • Pawlow, P., The dependency of the melting point on the surface energy of a solid body, Zeitschrift für Physikalische Chemie, 65, 545-548, (1909).
  • Ji, P., Zhang, Y., Yang, M., Structural, dynamic, and vibrational properties during heat transfer in Si/Ge superlattices: A Car-Parrinello molecular dynamics study, Journal Of Applied Physics, 114, 234905, (2013).
  • Cote, A. S., Smith, W., Lindan, P.J., A Molecular Dynamics tutorial, (2001). http://www.cse.scitech.ac.uk/ccg/software/Democritus/Theory/rdf.html
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Hüseyin Yıldırım 0000-0002-8554-3885

Haydar Arslan 0000-0002-6624-9314

Yayımlanma Tarihi 15 Mart 2019
Gönderilme Tarihi 4 Haziran 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 21 Sayı: 1

Kaynak Göster

APA Yıldırım, H., & Arslan, H. (2019). CuAgAu üçlü nanoalaşımların optimizasyonu ve erime dinamiği. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 336-351. https://doi.org/10.25092/baunfbed.547194
AMA Yıldırım H, Arslan H. CuAgAu üçlü nanoalaşımların optimizasyonu ve erime dinamiği. BAUN Fen. Bil. Enst. Dergisi. Mart 2019;21(1):336-351. doi:10.25092/baunfbed.547194
Chicago Yıldırım, Hüseyin, ve Haydar Arslan. “CuAgAu üçlü nanoalaşımların Optimizasyonu Ve Erime dinamiği”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21, sy. 1 (Mart 2019): 336-51. https://doi.org/10.25092/baunfbed.547194.
EndNote Yıldırım H, Arslan H (01 Mart 2019) CuAgAu üçlü nanoalaşımların optimizasyonu ve erime dinamiği. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 1 336–351.
IEEE H. Yıldırım ve H. Arslan, “CuAgAu üçlü nanoalaşımların optimizasyonu ve erime dinamiği”, BAUN Fen. Bil. Enst. Dergisi, c. 21, sy. 1, ss. 336–351, 2019, doi: 10.25092/baunfbed.547194.
ISNAD Yıldırım, Hüseyin - Arslan, Haydar. “CuAgAu üçlü nanoalaşımların Optimizasyonu Ve Erime dinamiği”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21/1 (Mart 2019), 336-351. https://doi.org/10.25092/baunfbed.547194.
JAMA Yıldırım H, Arslan H. CuAgAu üçlü nanoalaşımların optimizasyonu ve erime dinamiği. BAUN Fen. Bil. Enst. Dergisi. 2019;21:336–351.
MLA Yıldırım, Hüseyin ve Haydar Arslan. “CuAgAu üçlü nanoalaşımların Optimizasyonu Ve Erime dinamiği”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 21, sy. 1, 2019, ss. 336-51, doi:10.25092/baunfbed.547194.
Vancouver Yıldırım H, Arslan H. CuAgAu üçlü nanoalaşımların optimizasyonu ve erime dinamiği. BAUN Fen. Bil. Enst. Dergisi. 2019;21(1):336-51.