Araştırma Makalesi
BibTex RIS Kaynak Göster

Mineral katkılı betonların kimyasal durabilitesinin toplam bağlayıcı miktarı ve eşdeğer su/çimento parametreleriyle beraber incelenmesi

Yıl 2019, Cilt: 21 Sayı: 1, 459 - 473, 15.03.2019
https://doi.org/10.25092/baunfbed.548918

Öz

Bu çalışmada değişik mineral katkılar içeren farklı betonların hava, %3,5 deniz suyu ve %5 sülfürik asit ortamlarında durabilite performansı toplam bağlayıcı miktarı ve eşdeğer su/çimento oranı parametreleri ile beraber incelenmesi amaçlanmıştır. Deney kapsamında farklı kimyasal etkilere karşı kontrol betonu (K), uçucu kül katkılı beton (U), cüruf katkılı beton (C), ve hem uçucu kül hem de silis dumanı katkılı beton (US) üretilmiştir. Kontrol (K) ve uçucu kül betonlarının (U) eşdeğer su/çimento oranı 0.45 olup, bağlayıcı miktarları sırasıyla 400 ve 470 kg/m3’tür. Cüruflu (C) ve hem uçucu kül hem de silis dumanı içeren betonların (US) betonların eşdeğer su/çimento oranı 0.53 olup, bağlayıcı miktarları 500 ve 440 kg/m3’tür. Eşdeğer su/çimento hesapları TS 13515 standardına göre belirlenmiştir. Üretilen betonların farklı ortamlardaki durabilite performansı görsel inceleme, ağırlık ve basınç dayanımlarındaki değişimler ile belirlenip, toplam bağlayıcı ve eşdeğer su/çimento oranı parametrelerinin beton performansına etkileri kapsamlı bir şekilde irdelenmiştir. Sonuçlara göre, uçucu küllü ve silis dumanlı beton diğer betonlardan daha yüksek eşdeğer su/çimento oranına ve diğerlerinden daha az bağlayıcı miktarı içermesine rağmen kimyasal etkilere karşı en iyi performansı göstermiştir. En kötü kimyasal performansı ise yüksek CaO içerdiğinden cüruflu ve kontrol betonlar göstermiştir. TS 13515 standardında kullanılan çimento eşdeğerlik katsayısı uçucu kül için uygun sonuçlar verirken, cüruflu ve silis dumanı içeren betonların eşdeğer su/çimento hesaplamalarında kullanılmak üzere TS 13515 standardına önemli tavsiyelerde bulunulmuştur. 

Kaynakça

  • Andrew, R.M., Global CO2 emissions from cement production, Earth System Science Data, 10(1), 195-217, (2018).
  • Duan, P., Shui, Z., Chen, W., ve Shen, C., Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete, Construction and Building Materials, 44, 1-6, (2013).
  • Aydın, S., Yazıcı, H., Yiğiter, H., ve Baradan, B., Sulfuric acid resistance of high-volume fly ash concrete, Building and Environment, 42(2), 717-721, (2007).
  • Oner, A., Akyuz, S., ve Yildiz, R. An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete, Cement and Concrete Research, 35(6), 1165-1171, (2005).
  • ACI Committee 211, Guide for selecting proportions for high-strength concrete with Portland cement and fly ash, ACI Materials Journal, (1993).
  • Saha, A.K., Effect of class F fly ash on the durability properties of concrete, Sustainable Environment Research, 28(1), 25-31, (2018).
  • Imbabi, M.S., Carrigan, C., ve McKenna, S., Trends and developments in green cement and concrete technology, International Journal of Sustainable Built Environment, 1(2), 194-216, (2012).
  • Chindaprasirt, P., Chotithanorm, C., Cao, H.T., ve Sirivivatnanon, V., Influence of fly ash fineness on the chloride penetration of concrete, Construction and Building Materials, 21(2), 356-361, (2007).
  • Tokyay, M., Betonda UK, GYFC ve SD’nin Rolü: Mevcut Bilgi Birikimi, Beton 2013 Hazır Beton Kongresi, 21-23 Şubat, 201-238, (2013).
  • Tavasoli, S., Nili, M., ve Serpoosh, B., Effect of GGBS on the frost resistance of self-consolidating concrete, Construction and Building Materials, 165, 717-722, (2018).
  • Aldea, C.M., Young, F., Wang, K., ve Shah, S.P., Effects of curing conditions on properties of concrete using slag replacement, Cement and Concrete Research, 30(3), 465-472, (2000).
  • Abdelkader, B., El-Hadj, K., ve Karim, E., Efficiency of granulated blast furnace slag replacement of cement according to the equivalent binder concept, Cement and Concrete Composites, 32, 3, 226-231, (2010).
  • Dotto, J.M.R., De Abreu, A.G., Dal Molin, D.C.C., ve Müller, I.L., Influence of silica fume addition on concretes physical properties and on corrosion behaviour of reinforcement bars, Cement and Concrete Composites, 26(1), 31-39, (2004).
  • Panjehpour, M., Ali, A.A.A., ve Demirboga, R., A review for characterization of silica fume and its effects on concrete properties, International Journal of Sustainable Construction Engineering and Technology, 2(2), (2011).
  • Chung, D.D.L, Improving cement-based materials by using silica fume, Journal of Materials Science, 37(4), 673-682, (2002).
  • Pala, M., Özbay, E., Öztaş, A., ve Yuce, M. I., Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks, Construction and Building Materials, 21(2), 384-394, (2007).
  • Pedro, D., De Brito, J., ve Evangelista, L., Evaluation of high-performance concrete with recycled aggregates: Use of densified silica fume as cement replacement, Construction and Building Materials, 147, 803-814, (2017)
  • Yajun, J., ve Cahyadi, J.H., Effects of densified silica fume on microstructure and compressive strength of blended cement pastes, Cement and Concrete Research, 33(10), 1543-1548, (2003).
  • Zhang, Z., Zhang, B., ve Yan, P., Comparative study of effect of raw and densified silica fume in the paste, mortar and concrete, Construction and Building Materials, 105, 82-93, (2016).
  • Bhattacharya, M., ve Harish, K.V., An integrated approach for studying the hydration of portland cement systems containing silica füme, Construction and Building Materials, 188, 1179-1192, (2018).
  • Muralidharan, S., Parande, A.K., Saraswathy, V., Kumar, K., ve Palaniswamy, N., Effect of silica fume on the corrosion performance of reinforcements in concrete, Zaštita materijala, 49(4), 3-8, (2008).
  • Song, H.W., Pack, S.W., Nam, S.H., Jang, J.C., ve Saraswathy, V., Estimation of the permeability of silica fume cement concrete, Construction and Building Materials, 24(3), 315-321, (2010).
  • TS 13515, Complementary standard for application of TS EN 206-1, Türk Standartları, Ankara, (2012).
  • ASTM C39/C39M-01, American Society for Testing and Materials. Standard test method for compressive strength of cylindrical concrete specimens, American Standard, Philadelphia, (2001).
  • Bakharev, T., Resistance of geopolymer materials to acid attack, Cement and Concrete Research, 35(4), 658–670, (2005)
  • Çevik, A., Alzeebaree, R., Humur, G., Niş, A., ve Gülşan, M.E., Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete, Ceramics International, 44(11), 12253-12264, (2018).
  • Bassuoni, M.T., ve Nehdi, M.L., Resistance of self-consolidating concrete to sulfuric acid attack with consecutive pH reduction, Cement and Concrete Research, 37(7), 1070-1084, (2007).
  • Wallah, S., ve Rangan, B. V., Low-calcium fly ash-based geopolymer concrete: long-term properties, (2006).
  • Gülşan, M.E., Mohammedameen, A., Şahmaran, M., Niş, A., Alzeebaree, R., ve Abdulkadir, Ç., Effects of sulphuric acid on mechanical and durability properties of ECC confined by FRP fabrics, Advances in Concrete Construction, 6(2), 199-220, (2018).
  • S. Li ve D. M. Roy, Preparation and characterization of high and low CaO/SiO2 ratio ‘pure’ C--S--H for chemically bonded ceramics, Journal of Material Research, 3(2), 380–386, (1988).
  • Li, Z. ve Ding, Z., Property improvement of Portland cement by incorporating with metakaolin and slag, Cement and Concrete Research, 33(4), 579–584, (2003).
  • Zhutovsky, S., ve Hooton, R.D., Accelerated testing of cementitious materials for resistance to physical sulfate attack, Construction and Building Materials, 145, 98-106, (2017).
  • Al-Dulaijan, S.U., Macphee, D.E., Maslehuddin, M., Al-Zahrani, M.M. ve Ali, M.R., Performance of plain and blended cements exposed to high sulphate concentrations, Advances in Cement Research,19, 4, 9, (2007).
  • Thokchom, S., Fly ash geopolymer pastes in sulphuric acid, International Journal of Engineering Innıvation and Research, 3(6), 943-947, (2014).
  • Attiogbe, E.K. ve Rizkalla, S.H., Response of concrete to sulfuric acid attack, ACI Material Journal, 85, 481–488, (1988).
  • Sanni, S. H., ve Khadiranaikar, R. B., Performance of geopolymer concrete under severe environmental conditions, International Journal of Civil and Structural Engineering, 3, 2, 396, (2012).
  • Santhanam, M., Cohen, M. D., ve Olek, J., Sulfate attack research—whither now?, Cement and Concrete Research, 31(6), 845-851, (2001).

Investigation of chemical durability of mineral additive concretes with total binder amounts and equivalent water/cement ratio parameters together

Yıl 2019, Cilt: 21 Sayı: 1, 459 - 473, 15.03.2019
https://doi.org/10.25092/baunfbed.548918

Öz

In the study, different mineral additive concretes were investigated under air, 3,5% seawater and 5% sulfuric acid environments considering the parameters of total binder amounts and equivalent water/cement ratio together. For this purpose, control concrete (K), and concretes including fly ash (U), slag (C), fly ash and silica fume (US) were produced. The equivalent water/cement ratio for control concrete and concrete with fly ash was 0,45 and binder amounts were 400 and 470 kg/m3, respectively. The equivalent water/cement ratio for concrete with slag, concrete with fly ash and silica fume was 0,53 and binder amounts were 500 and 440 kg/m3, respectively. The equivalent water/cement ratio was calculated using TS13515 standard. Chemical resistance was determined via visual inspection, change in weight and compressive strength. According to the results, concrete with fly ash and silica fume showed superior chemical resistance while it had higher equivalent water/cement ratio and lower binder materials. The concrete with slag and control concrete showed the lowest performance due to the higher CaO content. The equivalence coefficient defined by TS13515 standard for fly ash showed good results with experiments; however, significant recommendations have been made to the standard for the calculations of equivalent water/cement ratio of concretes with slag and silica fume.

Kaynakça

  • Andrew, R.M., Global CO2 emissions from cement production, Earth System Science Data, 10(1), 195-217, (2018).
  • Duan, P., Shui, Z., Chen, W., ve Shen, C., Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete, Construction and Building Materials, 44, 1-6, (2013).
  • Aydın, S., Yazıcı, H., Yiğiter, H., ve Baradan, B., Sulfuric acid resistance of high-volume fly ash concrete, Building and Environment, 42(2), 717-721, (2007).
  • Oner, A., Akyuz, S., ve Yildiz, R. An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete, Cement and Concrete Research, 35(6), 1165-1171, (2005).
  • ACI Committee 211, Guide for selecting proportions for high-strength concrete with Portland cement and fly ash, ACI Materials Journal, (1993).
  • Saha, A.K., Effect of class F fly ash on the durability properties of concrete, Sustainable Environment Research, 28(1), 25-31, (2018).
  • Imbabi, M.S., Carrigan, C., ve McKenna, S., Trends and developments in green cement and concrete technology, International Journal of Sustainable Built Environment, 1(2), 194-216, (2012).
  • Chindaprasirt, P., Chotithanorm, C., Cao, H.T., ve Sirivivatnanon, V., Influence of fly ash fineness on the chloride penetration of concrete, Construction and Building Materials, 21(2), 356-361, (2007).
  • Tokyay, M., Betonda UK, GYFC ve SD’nin Rolü: Mevcut Bilgi Birikimi, Beton 2013 Hazır Beton Kongresi, 21-23 Şubat, 201-238, (2013).
  • Tavasoli, S., Nili, M., ve Serpoosh, B., Effect of GGBS on the frost resistance of self-consolidating concrete, Construction and Building Materials, 165, 717-722, (2018).
  • Aldea, C.M., Young, F., Wang, K., ve Shah, S.P., Effects of curing conditions on properties of concrete using slag replacement, Cement and Concrete Research, 30(3), 465-472, (2000).
  • Abdelkader, B., El-Hadj, K., ve Karim, E., Efficiency of granulated blast furnace slag replacement of cement according to the equivalent binder concept, Cement and Concrete Composites, 32, 3, 226-231, (2010).
  • Dotto, J.M.R., De Abreu, A.G., Dal Molin, D.C.C., ve Müller, I.L., Influence of silica fume addition on concretes physical properties and on corrosion behaviour of reinforcement bars, Cement and Concrete Composites, 26(1), 31-39, (2004).
  • Panjehpour, M., Ali, A.A.A., ve Demirboga, R., A review for characterization of silica fume and its effects on concrete properties, International Journal of Sustainable Construction Engineering and Technology, 2(2), (2011).
  • Chung, D.D.L, Improving cement-based materials by using silica fume, Journal of Materials Science, 37(4), 673-682, (2002).
  • Pala, M., Özbay, E., Öztaş, A., ve Yuce, M. I., Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks, Construction and Building Materials, 21(2), 384-394, (2007).
  • Pedro, D., De Brito, J., ve Evangelista, L., Evaluation of high-performance concrete with recycled aggregates: Use of densified silica fume as cement replacement, Construction and Building Materials, 147, 803-814, (2017)
  • Yajun, J., ve Cahyadi, J.H., Effects of densified silica fume on microstructure and compressive strength of blended cement pastes, Cement and Concrete Research, 33(10), 1543-1548, (2003).
  • Zhang, Z., Zhang, B., ve Yan, P., Comparative study of effect of raw and densified silica fume in the paste, mortar and concrete, Construction and Building Materials, 105, 82-93, (2016).
  • Bhattacharya, M., ve Harish, K.V., An integrated approach for studying the hydration of portland cement systems containing silica füme, Construction and Building Materials, 188, 1179-1192, (2018).
  • Muralidharan, S., Parande, A.K., Saraswathy, V., Kumar, K., ve Palaniswamy, N., Effect of silica fume on the corrosion performance of reinforcements in concrete, Zaštita materijala, 49(4), 3-8, (2008).
  • Song, H.W., Pack, S.W., Nam, S.H., Jang, J.C., ve Saraswathy, V., Estimation of the permeability of silica fume cement concrete, Construction and Building Materials, 24(3), 315-321, (2010).
  • TS 13515, Complementary standard for application of TS EN 206-1, Türk Standartları, Ankara, (2012).
  • ASTM C39/C39M-01, American Society for Testing and Materials. Standard test method for compressive strength of cylindrical concrete specimens, American Standard, Philadelphia, (2001).
  • Bakharev, T., Resistance of geopolymer materials to acid attack, Cement and Concrete Research, 35(4), 658–670, (2005)
  • Çevik, A., Alzeebaree, R., Humur, G., Niş, A., ve Gülşan, M.E., Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete, Ceramics International, 44(11), 12253-12264, (2018).
  • Bassuoni, M.T., ve Nehdi, M.L., Resistance of self-consolidating concrete to sulfuric acid attack with consecutive pH reduction, Cement and Concrete Research, 37(7), 1070-1084, (2007).
  • Wallah, S., ve Rangan, B. V., Low-calcium fly ash-based geopolymer concrete: long-term properties, (2006).
  • Gülşan, M.E., Mohammedameen, A., Şahmaran, M., Niş, A., Alzeebaree, R., ve Abdulkadir, Ç., Effects of sulphuric acid on mechanical and durability properties of ECC confined by FRP fabrics, Advances in Concrete Construction, 6(2), 199-220, (2018).
  • S. Li ve D. M. Roy, Preparation and characterization of high and low CaO/SiO2 ratio ‘pure’ C--S--H for chemically bonded ceramics, Journal of Material Research, 3(2), 380–386, (1988).
  • Li, Z. ve Ding, Z., Property improvement of Portland cement by incorporating with metakaolin and slag, Cement and Concrete Research, 33(4), 579–584, (2003).
  • Zhutovsky, S., ve Hooton, R.D., Accelerated testing of cementitious materials for resistance to physical sulfate attack, Construction and Building Materials, 145, 98-106, (2017).
  • Al-Dulaijan, S.U., Macphee, D.E., Maslehuddin, M., Al-Zahrani, M.M. ve Ali, M.R., Performance of plain and blended cements exposed to high sulphate concentrations, Advances in Cement Research,19, 4, 9, (2007).
  • Thokchom, S., Fly ash geopolymer pastes in sulphuric acid, International Journal of Engineering Innıvation and Research, 3(6), 943-947, (2014).
  • Attiogbe, E.K. ve Rizkalla, S.H., Response of concrete to sulfuric acid attack, ACI Material Journal, 85, 481–488, (1988).
  • Sanni, S. H., ve Khadiranaikar, R. B., Performance of geopolymer concrete under severe environmental conditions, International Journal of Civil and Structural Engineering, 3, 2, 396, (2012).
  • Santhanam, M., Cohen, M. D., ve Olek, J., Sulfate attack research—whither now?, Cement and Concrete Research, 31(6), 845-851, (2001).
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Anıl Niş 0000-0001-9092-8088

Yayımlanma Tarihi 15 Mart 2019
Gönderilme Tarihi 24 Ekim 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 21 Sayı: 1

Kaynak Göster

APA Niş, A. (2019). Mineral katkılı betonların kimyasal durabilitesinin toplam bağlayıcı miktarı ve eşdeğer su/çimento parametreleriyle beraber incelenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 459-473. https://doi.org/10.25092/baunfbed.548918
AMA Niş A. Mineral katkılı betonların kimyasal durabilitesinin toplam bağlayıcı miktarı ve eşdeğer su/çimento parametreleriyle beraber incelenmesi. BAUN Fen. Bil. Enst. Dergisi. Mart 2019;21(1):459-473. doi:10.25092/baunfbed.548918
Chicago Niş, Anıl. “Mineral katkılı betonların Kimyasal Durabilitesinin Toplam bağlayıcı Miktarı Ve eşdeğer su/çimento Parametreleriyle Beraber Incelenmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21, sy. 1 (Mart 2019): 459-73. https://doi.org/10.25092/baunfbed.548918.
EndNote Niş A (01 Mart 2019) Mineral katkılı betonların kimyasal durabilitesinin toplam bağlayıcı miktarı ve eşdeğer su/çimento parametreleriyle beraber incelenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 1 459–473.
IEEE A. Niş, “Mineral katkılı betonların kimyasal durabilitesinin toplam bağlayıcı miktarı ve eşdeğer su/çimento parametreleriyle beraber incelenmesi”, BAUN Fen. Bil. Enst. Dergisi, c. 21, sy. 1, ss. 459–473, 2019, doi: 10.25092/baunfbed.548918.
ISNAD Niş, Anıl. “Mineral katkılı betonların Kimyasal Durabilitesinin Toplam bağlayıcı Miktarı Ve eşdeğer su/çimento Parametreleriyle Beraber Incelenmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21/1 (Mart 2019), 459-473. https://doi.org/10.25092/baunfbed.548918.
JAMA Niş A. Mineral katkılı betonların kimyasal durabilitesinin toplam bağlayıcı miktarı ve eşdeğer su/çimento parametreleriyle beraber incelenmesi. BAUN Fen. Bil. Enst. Dergisi. 2019;21:459–473.
MLA Niş, Anıl. “Mineral katkılı betonların Kimyasal Durabilitesinin Toplam bağlayıcı Miktarı Ve eşdeğer su/çimento Parametreleriyle Beraber Incelenmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 21, sy. 1, 2019, ss. 459-73, doi:10.25092/baunfbed.548918.
Vancouver Niş A. Mineral katkılı betonların kimyasal durabilitesinin toplam bağlayıcı miktarı ve eşdeğer su/çimento parametreleriyle beraber incelenmesi. BAUN Fen. Bil. Enst. Dergisi. 2019;21(1):459-73.