Araştırma Makalesi
BibTex RIS Kaynak Göster

Mechanical properties of kaolin-bentonite mixture soils treated with cement, lime and fly ash

Yıl 2020, Cilt: 22 Sayı: 1, 92 - 105, 10.01.2020
https://doi.org/10.25092/baunfbed.679124

Öz

The present study examines the strength and deformation properties of clay soils stabilized with cement, fly ash and lime. For this reason, clay soil that consisted of kaolin and bentonite was constituted and this soil was admixed with cement and lime. Also, fly ash was used as a pozzolan with these additives. Different curing periods were applied and unconfined compressive testing was performed to investigate the effects of additives and curing times on the mechanical behavior of clay soils. Harvard miniature compactor was used to prepare the specimens. The treated specimens showed a brittle behavior compared to the untreated soil specimens and the deformations were much smaller. Deformations were also decreased due to the increment of curing times. Highest unconfined compressive strength was achieved in specimens with 6% lime-3% fly ash combination. The compressive strength of treated specimens were 6.6 times greater than the compressive strength of untreated specimens at the end of 180 days. Therefore, lime-fly ash additive was able to replace cement additive for stabilization of specimens from the point of mechanical and economical view.

Kaynakça

  • Furlan, A. P., Razakamanantsoa, A. Ranaivomanana, H., Levacher, D. ve Katsumi, T., Shear strength performance of marine sediments stabilized using cement, lime and fly ash, Construction and Building Materials, 184, 454-463, (2018).
  • Khabbaz, H. ve Fatahi, B., Chemical stabilization of closed landfill sites using chemical agents. In: Anagnostopoulos, A., et al. (Eds.), Proceedings of 15th European Conference on Soil Mechanics and Geotechnical Engineering, IOS Press, 1777–1782, (2011).
  • Louafi, B. ve Bahar, R., Sand: an additive for stabilization of swelling clay soils, International Journal of Geosciences, 3, 719–725, (2012).
  • Sharma, N. K., Swain, S. K. ve Sahoo, U. C., Stabilization of a clayey soil with fly ash and lime: a micro level investigation, Geotechnical and Geological Engineering, 30, 1197–1205, (2012).
  • Khemissa, M. ve Mahamedi, A., Cement and lime mixture stabilization of an expansive overconsolidated clay, Applied Clay Science, 95, 104-110, (2014).
  • Chew, S. H., Kamruzzaman, A. H. M. ve Lee, F.H.: Physicochemical and engineering behavior of cement treated clays, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 130, 7, 696–706 (2004).
  • Bell, F. G., Lime stabilization of clay minerals and soils, Engineering Geology, 42, 4, 223-237, (1996).
  • Little, D. N., Males, E. H., Prusinski, J. R. ve Stewart, B., Cementitious stabilization, 79th Millennium Report Series, Transportation Research Board, Washington, US, (2000).
  • Keshawarz, M. S. ve Dutta, U., Stabilization of South Texas soils with fly ash: fly ash for soil improvement, Geotechnical Special Publication No. 36, ASCE, US, (1993).
  • Erdal, C., Class C fly ashes for the stabilization of an expansive soil, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 27, 7, 568–573 (2001).
  • Cömert, A. T., Uçucu küllerin zemin stabilizasyonuna etkisi, Yüksek Lisans Tezi, Sakarya Üniveristesi, Fen Bilimleri Enstitüsü, Sakarya (2005).
  • Sariosseiri, F. ve Muhunthan, B., Geotechnical properties of Palouse Loess modified with cement kiln dust and Portland cement, GeoCongress, New Orleans, Louisiana, United States, 978-0-7844-0972-5, (2008).
  • Ünver, E., Problemli kil zeminlerin uçucu kül ile iyileştirilmesi, Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir, (2015).
  • Baldovino, J. A., Moreira, E. B., Teixeira, W., Izzo, R. L. S., Rose, J. L., Effects of lime addition on geotechnical properties of sedimentary soil in Curitiba, Brazil, Journal of Rock Mechanics and Geotechnical Engineering, 10, 1, 188-194, (2018).
  • Sharma, L. K., Sirdesai, N. N., Sharma, K. M. ve Singh, T. N., Experimental study to examine the independent roles of lime and cement on the stabilization of a mountain soil: A comparative study, Applied Clay Science, 152, 183-195, (2018)
  • ASTM D4318, Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International, West Conshohocken, PA, (2017).
  • ASTM D2487, Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM International, West Conshohocken, PA, (2017).
  • ASTM D854, Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM International, West Conshohocken, PA, (2014).
  • ASTM D698, Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)), ASTM International, West Conshohocken, PA, (2012).
  • Humboldt Mfg. Co., Harvard Miniature Compaction Apparatus, (2014). https://www.humboldtmfg.com/manuals/H-4165_Harvard_0714.pdf, (28.02.2019).
  • D’onofrio, A. ve Penna, A., Influence of compaction variables on the small strain behaviour of a clayey silt in Di Benedetto et al. (eds), Deformation Characteristics of Geomaterials, Swets & Zeitlinger, Lisse, 337-344, (2003).
  • ASTM D2166, Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM International, West Conshohocken, PA, (2016).
  • Uddin, K., Balasubramaniam, A. S. ve Bergado, D. T., Engineering behavior of cement treated Bangkok soft clay, Geotechnical Engineering Journal, 28, 1, 89-119, (1997).
  • Zentar, R., Wang, D., Abriak, N.E., Benzerzour, M. ve Chen, W., Utilization of siliceous– aluminous fly ash and cement for solidification of marine sediments, Construction and Building Materials, 35, 856–863, (2012).
  • Pakbaz,M. S. ve Alipour, R., Influence of cement addition on the geotechnical properties of an Iranian clay, Applied Clay Science, 67–68, 1-4, (2012).
  • Consoli, N. C., Lopes L. S. Jr ve Heineck K. S., Key parameters for the strength control of lime stabilized soils, Journal of Materials in Civil Engineering 21(5):210–216 (2009).
  • Yunus, N. Z. M., Marto, A., Pakir, F., Kasran, K., Azri, M. A., Jamal, S. N. J. ve Abdullah, N., Performance of lime-treated marine clay on strength and compressibility characteristics, International Journal of Geotechnical and Construction Materials and Environment, 8, 1, 1232-1238, (2015).
  • Wang, D., Abriak, N. E. ve Zentar, R., Strength and deformation properties of Dunkirk marine sediments solidified with cement, lime and fly ash, Engineering Geology, 166, 90-99, (2013).
  • Calik, U. ve Sadoglu, E., Classification, shear strength, and durability of expansive clayey soil stabilized with lime and perlite, Natural Hazards, 71, 3, 1289-1303, (2014).
  • Ghobadi M. H., Abdilor, Y. ve Babazadeh, R., Stabilization of clay soils using lime and effect of pH variations on shear strength parameters, Bulletin of Engineering Geology and the Environment, 73, 2, 611-619, (2014).
  • Negawo, W. J., Di Emidio, G., Bezuijen, A., Verastegui Flores, R. D. ve François, B., Lime-stabilisation of high plasticity swelling clay from Ethiopia. European Journal of Environmental and Civil Engineering, 10.1080/19648189.2017.1304272, (2017).
  • Lilley, A. A., Soil-cement roads: experiments with fly ash, Cement and Concrete Association, Gt. Britain, Technical Report TRA/158 (Oct. 1954).
  • Sasanian, S. ve Newson, T. A., Basic parameters governing the behaviour of cement-treated clays, Soils and Foundations, 54(2), 209-224, (2014).
  • Kalantari, B. ve Prasad, A., A study of the effect of various curing techniques on the strength of stabilized peat, Transportation Geotechnics, 1, 3, 119–128, (2014).
  • Zhao, H., Zhou, K., Zhao, C., Gong, B. W. ve Liu, J. A long-term investigation on microstructure of cement-stabilized handan clay, European Journal of Environmental and Civil Engineering, 20, 199–214.10.1080/19648189.2015.1030087, (2016).
  • Taylor, H. F. W., Cement Chemistry, Thomas Telford, London. (1997).
  • Sariosseiri, F. Ve Muhunthan, B., Effect of cement treatment on geotechnical properties of some Washington State soils, Engineering Geology, 104, 119–125, (2009).
  • Little, N. D. ve Nair, S., Recommended practice for stabilization of subgrade soils and base materials, National Cooperative Highway Research Program, Texas Transportation Institute, A&M University, Texas, (2009).

Çimento, kireç ve uçucu kül ile iyileştirilen kaolin bentonit karışımı zeminlerin mekanik özellikleri

Yıl 2020, Cilt: 22 Sayı: 1, 92 - 105, 10.01.2020
https://doi.org/10.25092/baunfbed.679124

Öz

Bu çalışmada çimento, kireç ve uçucu kül ile yapılan iyileştirmenin kil zeminlerin mukavemet ve deformasyon özellikleri üzerindeki etkisi araştırılmıştır. Bu amaçla kaolin-bentonit karışımı bir zemine çimento, kireç ve bu bağlayıcılara puzolan olarak uçucu kül katılarak hazırlanan numuneler farklı kür sürelerinde bekletildikten sonra serbest basınç deneyi ile dayanımları tespit edilmiş, katkı maddelerinin ve kür sürelerinin mekanik davranışa olan etkisi araştırılmıştır. Numunelerin hazırlanmasında Harvard minyatür kompaktörü kullanılmıştır. Katkı içermeyen zemine göre katkı maddeleri ile iyileştirilmiş zeminlerin çok daha gevrek bir davranış sergilediği ve göçme anındaki deformasyonlarının küçüldüğü gözlenmiştir. Kür süresinin artması da deformasyon seviyesinin azalmasına sebep olmuştur. %6 kireç-%3 uçucu kül içeren numuneler en yüksek mukavemeti vermiştir. Katkısız örneklere göre dayanım 180 gün sonunda 6.6 kat artmıştır. Kireç-uçucu kül katkısının çimentonun yerini alabilecek yüksek mukavemet ve daha düşük maliyetle bir alternatif oluşturabileceği görülmüştür.

Kaynakça

  • Furlan, A. P., Razakamanantsoa, A. Ranaivomanana, H., Levacher, D. ve Katsumi, T., Shear strength performance of marine sediments stabilized using cement, lime and fly ash, Construction and Building Materials, 184, 454-463, (2018).
  • Khabbaz, H. ve Fatahi, B., Chemical stabilization of closed landfill sites using chemical agents. In: Anagnostopoulos, A., et al. (Eds.), Proceedings of 15th European Conference on Soil Mechanics and Geotechnical Engineering, IOS Press, 1777–1782, (2011).
  • Louafi, B. ve Bahar, R., Sand: an additive for stabilization of swelling clay soils, International Journal of Geosciences, 3, 719–725, (2012).
  • Sharma, N. K., Swain, S. K. ve Sahoo, U. C., Stabilization of a clayey soil with fly ash and lime: a micro level investigation, Geotechnical and Geological Engineering, 30, 1197–1205, (2012).
  • Khemissa, M. ve Mahamedi, A., Cement and lime mixture stabilization of an expansive overconsolidated clay, Applied Clay Science, 95, 104-110, (2014).
  • Chew, S. H., Kamruzzaman, A. H. M. ve Lee, F.H.: Physicochemical and engineering behavior of cement treated clays, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 130, 7, 696–706 (2004).
  • Bell, F. G., Lime stabilization of clay minerals and soils, Engineering Geology, 42, 4, 223-237, (1996).
  • Little, D. N., Males, E. H., Prusinski, J. R. ve Stewart, B., Cementitious stabilization, 79th Millennium Report Series, Transportation Research Board, Washington, US, (2000).
  • Keshawarz, M. S. ve Dutta, U., Stabilization of South Texas soils with fly ash: fly ash for soil improvement, Geotechnical Special Publication No. 36, ASCE, US, (1993).
  • Erdal, C., Class C fly ashes for the stabilization of an expansive soil, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 27, 7, 568–573 (2001).
  • Cömert, A. T., Uçucu küllerin zemin stabilizasyonuna etkisi, Yüksek Lisans Tezi, Sakarya Üniveristesi, Fen Bilimleri Enstitüsü, Sakarya (2005).
  • Sariosseiri, F. ve Muhunthan, B., Geotechnical properties of Palouse Loess modified with cement kiln dust and Portland cement, GeoCongress, New Orleans, Louisiana, United States, 978-0-7844-0972-5, (2008).
  • Ünver, E., Problemli kil zeminlerin uçucu kül ile iyileştirilmesi, Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir, (2015).
  • Baldovino, J. A., Moreira, E. B., Teixeira, W., Izzo, R. L. S., Rose, J. L., Effects of lime addition on geotechnical properties of sedimentary soil in Curitiba, Brazil, Journal of Rock Mechanics and Geotechnical Engineering, 10, 1, 188-194, (2018).
  • Sharma, L. K., Sirdesai, N. N., Sharma, K. M. ve Singh, T. N., Experimental study to examine the independent roles of lime and cement on the stabilization of a mountain soil: A comparative study, Applied Clay Science, 152, 183-195, (2018)
  • ASTM D4318, Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International, West Conshohocken, PA, (2017).
  • ASTM D2487, Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM International, West Conshohocken, PA, (2017).
  • ASTM D854, Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM International, West Conshohocken, PA, (2014).
  • ASTM D698, Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)), ASTM International, West Conshohocken, PA, (2012).
  • Humboldt Mfg. Co., Harvard Miniature Compaction Apparatus, (2014). https://www.humboldtmfg.com/manuals/H-4165_Harvard_0714.pdf, (28.02.2019).
  • D’onofrio, A. ve Penna, A., Influence of compaction variables on the small strain behaviour of a clayey silt in Di Benedetto et al. (eds), Deformation Characteristics of Geomaterials, Swets & Zeitlinger, Lisse, 337-344, (2003).
  • ASTM D2166, Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM International, West Conshohocken, PA, (2016).
  • Uddin, K., Balasubramaniam, A. S. ve Bergado, D. T., Engineering behavior of cement treated Bangkok soft clay, Geotechnical Engineering Journal, 28, 1, 89-119, (1997).
  • Zentar, R., Wang, D., Abriak, N.E., Benzerzour, M. ve Chen, W., Utilization of siliceous– aluminous fly ash and cement for solidification of marine sediments, Construction and Building Materials, 35, 856–863, (2012).
  • Pakbaz,M. S. ve Alipour, R., Influence of cement addition on the geotechnical properties of an Iranian clay, Applied Clay Science, 67–68, 1-4, (2012).
  • Consoli, N. C., Lopes L. S. Jr ve Heineck K. S., Key parameters for the strength control of lime stabilized soils, Journal of Materials in Civil Engineering 21(5):210–216 (2009).
  • Yunus, N. Z. M., Marto, A., Pakir, F., Kasran, K., Azri, M. A., Jamal, S. N. J. ve Abdullah, N., Performance of lime-treated marine clay on strength and compressibility characteristics, International Journal of Geotechnical and Construction Materials and Environment, 8, 1, 1232-1238, (2015).
  • Wang, D., Abriak, N. E. ve Zentar, R., Strength and deformation properties of Dunkirk marine sediments solidified with cement, lime and fly ash, Engineering Geology, 166, 90-99, (2013).
  • Calik, U. ve Sadoglu, E., Classification, shear strength, and durability of expansive clayey soil stabilized with lime and perlite, Natural Hazards, 71, 3, 1289-1303, (2014).
  • Ghobadi M. H., Abdilor, Y. ve Babazadeh, R., Stabilization of clay soils using lime and effect of pH variations on shear strength parameters, Bulletin of Engineering Geology and the Environment, 73, 2, 611-619, (2014).
  • Negawo, W. J., Di Emidio, G., Bezuijen, A., Verastegui Flores, R. D. ve François, B., Lime-stabilisation of high plasticity swelling clay from Ethiopia. European Journal of Environmental and Civil Engineering, 10.1080/19648189.2017.1304272, (2017).
  • Lilley, A. A., Soil-cement roads: experiments with fly ash, Cement and Concrete Association, Gt. Britain, Technical Report TRA/158 (Oct. 1954).
  • Sasanian, S. ve Newson, T. A., Basic parameters governing the behaviour of cement-treated clays, Soils and Foundations, 54(2), 209-224, (2014).
  • Kalantari, B. ve Prasad, A., A study of the effect of various curing techniques on the strength of stabilized peat, Transportation Geotechnics, 1, 3, 119–128, (2014).
  • Zhao, H., Zhou, K., Zhao, C., Gong, B. W. ve Liu, J. A long-term investigation on microstructure of cement-stabilized handan clay, European Journal of Environmental and Civil Engineering, 20, 199–214.10.1080/19648189.2015.1030087, (2016).
  • Taylor, H. F. W., Cement Chemistry, Thomas Telford, London. (1997).
  • Sariosseiri, F. Ve Muhunthan, B., Effect of cement treatment on geotechnical properties of some Washington State soils, Engineering Geology, 104, 119–125, (2009).
  • Little, N. D. ve Nair, S., Recommended practice for stabilization of subgrade soils and base materials, National Cooperative Highway Research Program, Texas Transportation Institute, A&M University, Texas, (2009).
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Tuğba Eskişar 0000-0002-0269-2149

Yayımlanma Tarihi 10 Ocak 2020
Gönderilme Tarihi 8 Mart 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 22 Sayı: 1

Kaynak Göster

APA Eskişar, T. (2020). Çimento, kireç ve uçucu kül ile iyileştirilen kaolin bentonit karışımı zeminlerin mekanik özellikleri. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(1), 92-105. https://doi.org/10.25092/baunfbed.679124
AMA Eskişar T. Çimento, kireç ve uçucu kül ile iyileştirilen kaolin bentonit karışımı zeminlerin mekanik özellikleri. BAUN Fen. Bil. Enst. Dergisi. Ocak 2020;22(1):92-105. doi:10.25092/baunfbed.679124
Chicago Eskişar, Tuğba. “Çimento, Kireç Ve uçucu kül Ile iyileştirilen Kaolin Bentonit karışımı Zeminlerin Mekanik özellikleri”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, sy. 1 (Ocak 2020): 92-105. https://doi.org/10.25092/baunfbed.679124.
EndNote Eskişar T (01 Ocak 2020) Çimento, kireç ve uçucu kül ile iyileştirilen kaolin bentonit karışımı zeminlerin mekanik özellikleri. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 1 92–105.
IEEE T. Eskişar, “Çimento, kireç ve uçucu kül ile iyileştirilen kaolin bentonit karışımı zeminlerin mekanik özellikleri”, BAUN Fen. Bil. Enst. Dergisi, c. 22, sy. 1, ss. 92–105, 2020, doi: 10.25092/baunfbed.679124.
ISNAD Eskişar, Tuğba. “Çimento, Kireç Ve uçucu kül Ile iyileştirilen Kaolin Bentonit karışımı Zeminlerin Mekanik özellikleri”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/1 (Ocak 2020), 92-105. https://doi.org/10.25092/baunfbed.679124.
JAMA Eskişar T. Çimento, kireç ve uçucu kül ile iyileştirilen kaolin bentonit karışımı zeminlerin mekanik özellikleri. BAUN Fen. Bil. Enst. Dergisi. 2020;22:92–105.
MLA Eskişar, Tuğba. “Çimento, Kireç Ve uçucu kül Ile iyileştirilen Kaolin Bentonit karışımı Zeminlerin Mekanik özellikleri”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 22, sy. 1, 2020, ss. 92-105, doi:10.25092/baunfbed.679124.
Vancouver Eskişar T. Çimento, kireç ve uçucu kül ile iyileştirilen kaolin bentonit karışımı zeminlerin mekanik özellikleri. BAUN Fen. Bil. Enst. Dergisi. 2020;22(1):92-105.