Araştırma Makalesi
BibTex RIS Kaynak Göster

Mekanik alaşımlama metoduyla üretilen A356/XNi ön alaşımlarda nikelin mikroyapı ve aşınma davranışı üzerine rolü

Yıl 2022, Cilt: 24 Sayı: 2, 483 - 496, 08.07.2022

Öz

Bu çalışmada, A356 alaşım tozları mekanik alaşımlama (MA) metoduyla farklı miktarda Nikel (Ni) ile ön alaşımlandırılmıştır. Ni miktarına bağlı ön alaşımlanmış A356/XNi alaşımlarındaki mikroyapısal incelemeler optik mikroskop (OM) ve tarama elektron mikroskobu (SEM), enerji dağılımlı x-ışını spektrometresi (EDS) ile gerçekleştirilmiştir. A356/XNi alaşımların mekanik özellikleri; yoğunluk, makro sertlik ve aşınma testleri ile değerlendirilmiştir. A356X/Ni alaşımları farklı yük ve mesafelerde pin-on disk tipi aşınma test cihazında test edilmiştir. Sonuç olarak karakterizasyon çalışmalarında Ni miktarının artmasına bağlı olarak yapıda oluşan Al-Ni ve Al-Ni-Fe içerikli intermetalik fazlarının tane sınırlarındaki oranının arttığı belirlenmiştir. Makro sertliğin %0,5 Ni ilavesine kadar yaklaşık %10 düştüğü, fakat daha sonra %2,0 Ni ilavesi ile %23 arttığı belirlenmiştir. Aşınma testlerinde aşınma yükünün artması ile hacimsel aşınma miktarı artmaktadır. 10 N da en düşük hacimsel aşınma A356/%2,0Ni alaşımında, 20 N da en düşük hacimsel aşınma A356/%0,25Ni alaşımında elde edilmiştir. Özellikle aşınma testlerinde Ni eklenmesiyle hacimsel aşınma miktarının daha kararlı hale geldiği dikkat çekicidir.

Destekleyen Kurum

Karabük Üniversitesi

Proje Numarası

FLY-2019-2070

Teşekkür

Yazarlar FLY-2019-2070 numaralı proje kapsamında bu çalışmaya verdikleri katkılardan dolayı Karabük Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğüne teşekkür ederler.

Kaynakça

  • Miller, W. S., Zhuang, L., Bottema, J., Wittebrood, A. J., De Smet, P., Haszler ve A., Vieregge, A., Recent development in aluminium alloys for the automotive industry, Mater. Sci. Eng. A., 280, (2000).
  • Zhou, J., Wan, X. ve Li, Y., Advanced Aluminium Products and Manufacturing Technologies Applied on Vehicles Presented at the EuroCarBody Conference, Elsevier Ltd., (2015).
  • Tunçay, T. ve Özyürek, D., The Effects on Microstructure and Mechanical Properties of Filtration in Al-Si-Mg Alloys, J. Fac. Eng. Archit. Gazi Univ., 29, 271–279, (2014).
  • Dispinar, D. ve Campbell, J., Porosity, hydrogen and bifilm content in Al alloy castings, Mater. Sci. Eng. A., 528, 3860–3865, (2011).
  • Dispinar, D. ve Campbell, J., Effect of casting conditions on aluminium metal quality, J. Mater. Process. Technol., 182, 405–410, (2007).
  • Tunçay, T. ve Bayoğlu, S., The Effect of Iron Content on Microstructure and Mechanical Properties of A356 Cast Alloy, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 48, 794–804, (2017).
  • Abdoli, H., Salahi, E. ve Farnoush, H., & Pourazrang, K., Evolutions during synthesis of Al–AlN-nanostructured composite powder by mechanical alloying, Journal of Alloys and Compounds, 461(1-2), 166-172, (2008).
  • Dileep, B. P., Ravikumar, V., ve Vital, H. R.. Mechanical and corrosion behavior of Al-Ni-Sic metal matrix composites by powder metallurgy, Materials Today: Proceedings, 5(5), 12257-12264, (2018).
  • Hosseini Vajargah, P., Abdizadeh, H., ve Baghchesara, M. A., Fabrication of TiB2 nanoparticulates-reinforced aluminum matrix composites by powder metallurgy route, Journal of Composite Materials, 49(25), 3115-3125, (2015).
  • Abdizadeh, H., Ebrahimifard, R., ve Baghchesara, M. A., Investigation of microstructure and mechanical properties of nano MgO reinforced Al composites manufactured by stir casting and powder metallurgy methods: A comparative study, Composites Part B: Engineering, 56, 217-221, (2014).
  • Suryanarayana, C., Mechanical alloying and milling, Prog. Mater. Sci., 46, 1–84, (2001).
  • Suryanarayana, C., Recent advances in the synthesis of alloy phases by mechanical alloying/milling, Met. Mater. Int., 2, 195–209, (1996).
  • Benjamin, J.S. ve Volin, T.E., The mechanism of mechanical alloying, Metall. Trans., 5, 1929–1934, (1974).
  • Canté, M. V., Spinelli, J. E., Cheung, N., ve Garcia, A., The correlation between dendritic microstructure and mechanical properties of directionally solidified hypoeutectic Al-Ni alloys, Metals and Materials International, 16(1), 39-49, (2010).
  • Suwanpreecha, C., Pandee, P., Patakham, U., ve Limmaneevichitr, C., New generation of eutectic Al-Ni casting alloys for elevated temperature services, Materials Science and Engineering: A, 709, 46-54, (2018).
  • Du, Y., ve Clavaguera, N., Thermodynamic assessment of the Al-Ni system, Journal of Alloys and Compounds, 237(1-2), 20-32, (1996).
  • Shi, D., Wen, B., Melnik, R., Yao, S., ve Li, T., First-principles studies of Al–Ni intermetallic compounds, Journal of Solid State Chemistry, 182(10), 2664-2669, (2009).
  • Czichos, H., ve Saito, T., Springer handbook of materials measurement methods, L. Smith (Ed.). Berlin: Springer, 978, 399-429, (2006).
  • Menezes, P. L., Nosonovsky, M., Ingole, S. P., Kailas, S. V. ve Lovell, M. R., Tribology for Scientists and Engineers, (pp. 295-340). New York: Springer, (2013).
  • Lu, L., Lai, M.O. ve Zhang, S., Materials Processing Techno|ogy Diffusion in mechanical alloying, J. Mater. Process. Technol., 67, 100–104, (1997).
  • Atkinson, H. V. ve Davies, S., Fundamental aspects of hot isostatic pressing: An overview, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 31, 2981–3000, (2000).
  • Huo, S.H., Qian, M., Schaffer, G.B. ve Crossin, E., Aluminium powder metallurgy, in: Fundam. Alum. Metall. Prod. Process. Appl., Elsevier Ltd., 655–701, (2010).
  • German, R.M., Liquid Phase Sintering, 1st edition, Springer Science, New York, (1985).
  • German, R.M., Suri, P. ve Park, S.J., Review: Liquid phase sintering, J. Mater. Sci., 44, 1–39, (2009).
  • German, R.M., Sintering With a Liquid Phase, in: Sinter. from Empir. Obs. to Sci. Princ., Elsevier, 247–303, (2014).
  • Archard, J.F. ve Hirst, W., The wear of metals under unlubricated conditions, Proc. R. Soc. London. Ser. A. Math. Phys. Sci., 236, 397–410, (1956).
  • Yang, L.J., Wear coefficient equation for aluminium-based matrix composites against steel disc, Wear., 255, 579–592, (2003).
  • Archard, J.F., Contact and rubbing of flat surfaces, J. Appl. Phys., 24, 981–988, (1953).
  • Zhang, T., McHugh, P.E. ve Leen, S.B., Computational study on the effect of contact geometry on fretting behaviour, Wear., 271, 1462–1480, (2011).
  • Zhu, J. ve Yan, H., Fabrication of an A356/fly-ash-mullite interpenetrating composite and its wear properties, Ceram. Int., 43, 12996–13003, (2017).
  • Senna, M., High-Energy Ball Milling: Mechanochemical Processing of Nanopowders, first edn, in: High-Energy Ball Milling, Woodhead Publ., 63–91, (2010).
  • Razavi-Tousi, S.S. ve Szpunar, J.A., Effect of ball size on steady state of aluminum powder and efficiency of impacts during milling, Powder Technol., 284, 149–158, (2015).
  • Samal, P.K. ve Newkirk, J.W., Powder Metallurgy, first ed., ASM International Materials Park, Ohio, (2015).
  • Sopicka-Lizer, M., High Energy Ball Milling, Woodhead Publishing Ltd., Cambridge (2010), Woodhead Pub., (2010).
  • Da Silva, C.R.Á. ve Pintaude, G., Uncertainty analysis on the wear coefficient of Archard model, Tribol. Int., 41, 473–481, (2008).
  • Norul Amierah Binti Nor Zamani ve AKM Asif Iqbal ve D.M., Nuruzzaman, Mechanical and Tribological Behavior of Powder Metallurgy Processed Aluminum–Graphite Composite, Russ. J. Non-Ferrous Met., 60, 274–281, (2019).

The role of nickel on wear behavior and microstructure of pre-alloyed A356/XNi alloys produced via mechanical alloying method

Yıl 2022, Cilt: 24 Sayı: 2, 483 - 496, 08.07.2022

Öz

In this study, A356 alloy powders were alloyed with different amounts of Nickel (Ni) by the mechanical alloying (MA) method. Microstructural investigations of A356/XNi alloys based on Ni content were performed with an optical microscope (OM) and scanning electron microscope (SEM), energy dispersive x-ray spectrometers (EDS). Mechanical properties of A356/Ni alloys were evaluated by density, macro hardness, and wear tests. The pre-alloyed A356/XNi alloys were tested via pin-on-disc type wear test apparatus at different loads and sliding distances. Eventually, it was determined that the rate of the Al-Ni and Al-Ni-Fe-containing intermetallic phases formed in the structure at the grain boundaries increased due to the increase in the amount of Ni in the characterization studies (OM, SEM, and EDS). It was determined that the macro hardness decreased by about 10% until the addition of 0.5% Ni but then increased by 23% with 2.0% Ni. In wear tests, the wear rate increases with the increase in wear load. The lowest wear at 10 N load was obtained in A356/2.0%Ni alloy, and the lowest wear at 20 N load was obtained in A356/0.25%Ni alloy. Remarkably, the wear amount becomes more stable with the addition of Ni, especially in wear tests.

Proje Numarası

FLY-2019-2070

Kaynakça

  • Miller, W. S., Zhuang, L., Bottema, J., Wittebrood, A. J., De Smet, P., Haszler ve A., Vieregge, A., Recent development in aluminium alloys for the automotive industry, Mater. Sci. Eng. A., 280, (2000).
  • Zhou, J., Wan, X. ve Li, Y., Advanced Aluminium Products and Manufacturing Technologies Applied on Vehicles Presented at the EuroCarBody Conference, Elsevier Ltd., (2015).
  • Tunçay, T. ve Özyürek, D., The Effects on Microstructure and Mechanical Properties of Filtration in Al-Si-Mg Alloys, J. Fac. Eng. Archit. Gazi Univ., 29, 271–279, (2014).
  • Dispinar, D. ve Campbell, J., Porosity, hydrogen and bifilm content in Al alloy castings, Mater. Sci. Eng. A., 528, 3860–3865, (2011).
  • Dispinar, D. ve Campbell, J., Effect of casting conditions on aluminium metal quality, J. Mater. Process. Technol., 182, 405–410, (2007).
  • Tunçay, T. ve Bayoğlu, S., The Effect of Iron Content on Microstructure and Mechanical Properties of A356 Cast Alloy, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 48, 794–804, (2017).
  • Abdoli, H., Salahi, E. ve Farnoush, H., & Pourazrang, K., Evolutions during synthesis of Al–AlN-nanostructured composite powder by mechanical alloying, Journal of Alloys and Compounds, 461(1-2), 166-172, (2008).
  • Dileep, B. P., Ravikumar, V., ve Vital, H. R.. Mechanical and corrosion behavior of Al-Ni-Sic metal matrix composites by powder metallurgy, Materials Today: Proceedings, 5(5), 12257-12264, (2018).
  • Hosseini Vajargah, P., Abdizadeh, H., ve Baghchesara, M. A., Fabrication of TiB2 nanoparticulates-reinforced aluminum matrix composites by powder metallurgy route, Journal of Composite Materials, 49(25), 3115-3125, (2015).
  • Abdizadeh, H., Ebrahimifard, R., ve Baghchesara, M. A., Investigation of microstructure and mechanical properties of nano MgO reinforced Al composites manufactured by stir casting and powder metallurgy methods: A comparative study, Composites Part B: Engineering, 56, 217-221, (2014).
  • Suryanarayana, C., Mechanical alloying and milling, Prog. Mater. Sci., 46, 1–84, (2001).
  • Suryanarayana, C., Recent advances in the synthesis of alloy phases by mechanical alloying/milling, Met. Mater. Int., 2, 195–209, (1996).
  • Benjamin, J.S. ve Volin, T.E., The mechanism of mechanical alloying, Metall. Trans., 5, 1929–1934, (1974).
  • Canté, M. V., Spinelli, J. E., Cheung, N., ve Garcia, A., The correlation between dendritic microstructure and mechanical properties of directionally solidified hypoeutectic Al-Ni alloys, Metals and Materials International, 16(1), 39-49, (2010).
  • Suwanpreecha, C., Pandee, P., Patakham, U., ve Limmaneevichitr, C., New generation of eutectic Al-Ni casting alloys for elevated temperature services, Materials Science and Engineering: A, 709, 46-54, (2018).
  • Du, Y., ve Clavaguera, N., Thermodynamic assessment of the Al-Ni system, Journal of Alloys and Compounds, 237(1-2), 20-32, (1996).
  • Shi, D., Wen, B., Melnik, R., Yao, S., ve Li, T., First-principles studies of Al–Ni intermetallic compounds, Journal of Solid State Chemistry, 182(10), 2664-2669, (2009).
  • Czichos, H., ve Saito, T., Springer handbook of materials measurement methods, L. Smith (Ed.). Berlin: Springer, 978, 399-429, (2006).
  • Menezes, P. L., Nosonovsky, M., Ingole, S. P., Kailas, S. V. ve Lovell, M. R., Tribology for Scientists and Engineers, (pp. 295-340). New York: Springer, (2013).
  • Lu, L., Lai, M.O. ve Zhang, S., Materials Processing Techno|ogy Diffusion in mechanical alloying, J. Mater. Process. Technol., 67, 100–104, (1997).
  • Atkinson, H. V. ve Davies, S., Fundamental aspects of hot isostatic pressing: An overview, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 31, 2981–3000, (2000).
  • Huo, S.H., Qian, M., Schaffer, G.B. ve Crossin, E., Aluminium powder metallurgy, in: Fundam. Alum. Metall. Prod. Process. Appl., Elsevier Ltd., 655–701, (2010).
  • German, R.M., Liquid Phase Sintering, 1st edition, Springer Science, New York, (1985).
  • German, R.M., Suri, P. ve Park, S.J., Review: Liquid phase sintering, J. Mater. Sci., 44, 1–39, (2009).
  • German, R.M., Sintering With a Liquid Phase, in: Sinter. from Empir. Obs. to Sci. Princ., Elsevier, 247–303, (2014).
  • Archard, J.F. ve Hirst, W., The wear of metals under unlubricated conditions, Proc. R. Soc. London. Ser. A. Math. Phys. Sci., 236, 397–410, (1956).
  • Yang, L.J., Wear coefficient equation for aluminium-based matrix composites against steel disc, Wear., 255, 579–592, (2003).
  • Archard, J.F., Contact and rubbing of flat surfaces, J. Appl. Phys., 24, 981–988, (1953).
  • Zhang, T., McHugh, P.E. ve Leen, S.B., Computational study on the effect of contact geometry on fretting behaviour, Wear., 271, 1462–1480, (2011).
  • Zhu, J. ve Yan, H., Fabrication of an A356/fly-ash-mullite interpenetrating composite and its wear properties, Ceram. Int., 43, 12996–13003, (2017).
  • Senna, M., High-Energy Ball Milling: Mechanochemical Processing of Nanopowders, first edn, in: High-Energy Ball Milling, Woodhead Publ., 63–91, (2010).
  • Razavi-Tousi, S.S. ve Szpunar, J.A., Effect of ball size on steady state of aluminum powder and efficiency of impacts during milling, Powder Technol., 284, 149–158, (2015).
  • Samal, P.K. ve Newkirk, J.W., Powder Metallurgy, first ed., ASM International Materials Park, Ohio, (2015).
  • Sopicka-Lizer, M., High Energy Ball Milling, Woodhead Publishing Ltd., Cambridge (2010), Woodhead Pub., (2010).
  • Da Silva, C.R.Á. ve Pintaude, G., Uncertainty analysis on the wear coefficient of Archard model, Tribol. Int., 41, 473–481, (2008).
  • Norul Amierah Binti Nor Zamani ve AKM Asif Iqbal ve D.M., Nuruzzaman, Mechanical and Tribological Behavior of Powder Metallurgy Processed Aluminum–Graphite Composite, Russ. J. Non-Ferrous Met., 60, 274–281, (2019).
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Tansel Tunçay 0000-0002-7762-8504

Berat Taşar 0000-0002-3405-917X

Badegül Tunçay 0000-0003-4012-8343

Talha Sunar 0000-0002-4683-6095

Proje Numarası FLY-2019-2070
Yayımlanma Tarihi 8 Temmuz 2022
Gönderilme Tarihi 1 Aralık 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 24 Sayı: 2

Kaynak Göster

APA Tunçay, T., Taşar, B., Tunçay, B., Sunar, T. (2022). Mekanik alaşımlama metoduyla üretilen A356/XNi ön alaşımlarda nikelin mikroyapı ve aşınma davranışı üzerine rolü. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(2), 483-496.
AMA Tunçay T, Taşar B, Tunçay B, Sunar T. Mekanik alaşımlama metoduyla üretilen A356/XNi ön alaşımlarda nikelin mikroyapı ve aşınma davranışı üzerine rolü. BAUN Fen. Bil. Enst. Dergisi. Temmuz 2022;24(2):483-496.
Chicago Tunçay, Tansel, Berat Taşar, Badegül Tunçay, ve Talha Sunar. “Mekanik alaşımlama Metoduyla üretilen A356/XNi ön alaşımlarda Nikelin Mikroyapı Ve aşınma davranışı üzerine Rolü”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, sy. 2 (Temmuz 2022): 483-96.
EndNote Tunçay T, Taşar B, Tunçay B, Sunar T (01 Temmuz 2022) Mekanik alaşımlama metoduyla üretilen A356/XNi ön alaşımlarda nikelin mikroyapı ve aşınma davranışı üzerine rolü. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 2 483–496.
IEEE T. Tunçay, B. Taşar, B. Tunçay, ve T. Sunar, “Mekanik alaşımlama metoduyla üretilen A356/XNi ön alaşımlarda nikelin mikroyapı ve aşınma davranışı üzerine rolü”, BAUN Fen. Bil. Enst. Dergisi, c. 24, sy. 2, ss. 483–496, 2022.
ISNAD Tunçay, Tansel vd. “Mekanik alaşımlama Metoduyla üretilen A356/XNi ön alaşımlarda Nikelin Mikroyapı Ve aşınma davranışı üzerine Rolü”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24/2 (Temmuz 2022), 483-496.
JAMA Tunçay T, Taşar B, Tunçay B, Sunar T. Mekanik alaşımlama metoduyla üretilen A356/XNi ön alaşımlarda nikelin mikroyapı ve aşınma davranışı üzerine rolü. BAUN Fen. Bil. Enst. Dergisi. 2022;24:483–496.
MLA Tunçay, Tansel vd. “Mekanik alaşımlama Metoduyla üretilen A356/XNi ön alaşımlarda Nikelin Mikroyapı Ve aşınma davranışı üzerine Rolü”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 24, sy. 2, 2022, ss. 483-96.
Vancouver Tunçay T, Taşar B, Tunçay B, Sunar T. Mekanik alaşımlama metoduyla üretilen A356/XNi ön alaşımlarda nikelin mikroyapı ve aşınma davranışı üzerine rolü. BAUN Fen. Bil. Enst. Dergisi. 2022;24(2):483-96.