Araştırma Makalesi
BibTex RIS Kaynak Göster

Nostoc commune yüklü pH duyarlı taşıyıcı mikrokürelerin üretimi ve farklı pH değerlerindeki salım kinetiklerinin incelenmesi

Yıl 2022, Cilt: 24 Sayı: 2, 581 - 593, 08.07.2022

Öz

Mikroküreler, kontrollü ilaç salımı için kullanılan, etkin maddeyi moleküler düzeyde partiküller şeklinde taşıyan ve çapları birkaç mikrondan milimetreye kadar değişebilen taşıyıcılardır. Mikroküreler, pH değişimine bağlı olarak kontrollü salım yapabilmektedir. Bu çalışmada, doğal jelatin ve sodyum aljinat polimerleri kullanılarak pH duyarlı ilaç taşıyıcı mikroküreler üretilmiştir. Mikrokürelere literatürde antikanser etkileri olduğu ve kolon kanserinde antitümör ajanı olarak kullanımının gelecek vadettiği raporlanan N. commune ekstraktı hazırlanarak hücre başına yaklaşık 0,12 mg yüklenmiştir. Gastrointestinal sistemde mikroküre parçalanma ve etkin madde salım özelliklerinin incelenmesi için farklı pH ortamlarında spektrofotometrik olarak salım kinetiği çalışmaları yapılmıştır. Sonuçta, ekstrakt salınımının kolonun pH'ında en hızlı olduğu ve mikrokürelerin etken madde hedefleme için kolon kanseri tedavisinde kullanılma potansiyeline sahip olduğu görülmüştür.

Kaynakça

  • Tüylek, Z., İlaç taşıyıcı nanosistemler, Arşiv Kaynak Tarama Dergisi, 28, 3, 184-192, (2019).
  • Ummadi, S., Shravani, B., Rao, N. G. R., Reddy, M. S. Nayak, B. S., Overview on controlled release dosage form, International Journal of Pharma Sciences, 3, 4, 258-269, (2013).
  • Sung, Y. K., Kim, S. W., Recent advances in polymeric drug delivery systems, Biomaterials Research, 24, 12, (2020).
  • Akash, M. S. H, Rehman, K., Chen, S., Natural and synthetic polymers as drug carriers for delivery of therapeutic proteins, Polymer Reviews, 55, 3, 371-406, (2015).
  • Mogoşanu, G., D., Grumezescu, A. M., Bejenaru, L. E., Bejenaru, C., Natural and synthetic polymers for drug delivery and targeting, Nanobiomaterials in Drug Delivery, 229-284, William Andrew Publishing, (2016).
  • Aravamudhan, A., Ramos, D., Nada, A., Kumbar, S., Natural Polymers: Polysaccharides and Their Derivatives for Biomedical Applications, Elsevier, 67-89, (2014).
  • Kim, J. K., Kim, H. J., Chung, J. Y., Lee, J. H., Young, S. B., Kim, Y. H., Natural and synthetic biomaterials for controlled drug delivery, Archives of Pharmacal Research, 37, 1,60, 8, (2014).
  • Gültekin, H. E., Değim, Z., Biodegradable polymeric nanoparticles are effective systems for controlled drug delivery, FABAD Journal of Pharmaceutical Sciences, 38, 2, 107-118, (2013).
  • Tüylek Z., İlaç taşıyıcı sistemler ve nanoteknolojik etkileşim, Bozok Tıp Dergisi, 7, 3, 89-98, (2017).
  • Dhakar, R. C., Maurya, S., D., Sagar, B., PS., Bhagat, S., Prajapati, S., K., Jain, C. P., Variables influencing the drug entrapment efficiency of microspheres: A pharmaceutical review, Der Pharmacia Lettre, 2, 5, 102-116, (2010).
  • Singh, A., Sharma, A., Kaur, S. Micro carrier as colon drug delivery system: a review. International Journal of Research and Development in Pharmacy & Life Sciences, 3, 6, 1211-1216, (2014).
  • Singh, C., Purohit, S., Singh, M., Pandey, B. L., Design and evaluation of microspheres: a review, Journal of Drug Delivery Research, 2, 2, (2013).
  • Singh, P., Prakash, D., Ramesh, B., Singh, N., Mani, T. T., Biodegradable polymeric microspheres as drug carriers; a review, Indian Journal of Novel Drug delivery, 3, 2, 70-82, (2011).
  • Brannon-Peppas, L., Peppas, N. A., Dynamic and equilibrium swelling behaviour of pH-sensitive hydrogels containing 2-hydroxyethyl methacrylate, Biomaterials, 11, 9, 635-644, (1990).
  • Balamuralidhara, V., Pramodkumar, T. M., Srujana, N., Venkatesh, M. P., Gupta, N. V., Krishna, K. L., Gangadharappa, H. V., pH sensitive drug delivery systems:a review, American Journal of Drug Discovery and Development, 1, 1, 24-48, (2011).
  • Kawaguchi, H., Functional polymer microspheres, Progress in Polymer Science, 25, 8, 1171-1210, (2000).
  • Vasir, J. K., Tambwekar, K., Garg, S., Bioadhesive microspheres as a controlled drug delivery system, International Journal of Pharmaceutics, 255, 1–2, 2, 13-32, (2003).
  • Edlund, U., A., Degredable polymer microparticles for controlled drug delivery, Advances in Polymer Science, 157, 487-495. (2002).
  • Şengel Türk, C. T., Hasçiçek, C., Gönül, N., Kolona Hedeflenen İlaç Taşıyıcı Sistemler, Ankara Eczacılık Fakültesi Dergisi, 35,2, 125-148, (2006).
  • Wang, G., Wang, J., Wu, W., To, S. S. T., Zhao, H., Wang, J., Rewiev advances in lipid-based drug delivery: enhancing efficiency for hydrophobic drugs, Expert Opinion Drug Delivery, 12, 9, (2015).
  • Liu, L., Fishman, M. L., Kost, J., Hicks, K. B., Pectin-based systems for colon-specific drug delivery via oral route, Biomaterials, 24, 19, 3333-3343, (2003).
  • Thakral, S., Thakral, N. K., Majumdar, D. K., Eudragit®: a technology evaluation, Expert Opinion on Drug Delivery, 10, 1, 131-149, (2013).
  • Nollenberger, K., Albers, J., Review, Poly(meth)acrylate-based coatings, International Journal of Pharmaceutics, 457, 2, 461-469, (2013).
  • Draget, K. I., Skjåk-Bræk, G., Smidsrød, O., Alginate based new materials, International Journal of Biological Macromolecules, 21, 1–2, 47-55, (1997).
  • Lee, K. Y., Mooney, D. J., Alginate: properties and biomedical applications, Progress in Polymer Science, 37, 1,106-126, (2012).
  • Erge, A., Zorba, Ö., Derleme Makale jelatin ve fizikokimyasal özellikleri, Akademik Gıda, 14, 4, 431-440, (2016).
  • Gómez-Guillén, M. C., Giménez, B., López-Caballero, M.E., Montero, M.P., Functional and bioactive properties of collagen and gelatin from alternative sources: a review, Food Hydrocolloids, 25, 8, 1813-1827, (2011).
  • Gorgieva, S., Kokol, V., Collagen-vs. gelatine-based biomaterials and their biocompatibility:review and perspectives, Biomaterials: Applications for Nanomedicine InTech, 17-52, (2011).
  • Ward, D. M., Castenholz, R. W., Miller, S. R., Cyanobacteria in geothermal habitats, In: Whitton B., Ecology of Cyanobacteria II, Springer, 39-63, Dordrecht, (2012).
  • Ak, İ., Cirik, S., Mavi-yeşil algler (siyanobakteriler) ve termalizm, Ege Journal of Fisheries and Aquatic Sciences, 34, 2, 227-233, (2017).
  • Li, Z., Guo, M., Healthy efficacy of Nostoc commune vaucher, Oncotarget, 9, 18, 14669-14679, (2018).
  • Novis, P. M., Whitehead, D., Gregorich, E. G., Hunt, J. E., Sparrow, A. D., Hopkins, D. W., Elberling, B., Greenfield, L.G., Annual carbon fixation in terrestrial populations of Nostoc commune (Cyanobacteria) from an antarctic dry valley is driven by temperature regime, Global Change Biology, 13, 224-1237, (2007).
  • Holst, J., Butterbach‐Bahl, K., Liy, C. Y., Cheng, X. H., Kaiser, A.J., Schnitzler, J. P., Zechmeister-Boltenstern, S., Brüggemann, N., Dinitrogen fixation by biological soil crusts in inner mongolian steppe, Biology and Fertility of Soils, 45, 679–690, (2009).
  • Møller, C. L., Vangsøe, M. T., Sand‐Jensen, K., Comparative growth and metabolism of gelatinous colonies of three cyanobacteria, Nostoc commune, Nostoc pruniforme and Nostoc zetterstedtii, at different temperatures, Freshwater Biology, 59, 10, 2183-2193, (2014).
  • Schmidt, T., Cyanobacteria, in Soule, T., Garcia-Pichel, F., Encyclopedia of Microbiology, Elsevier, 799-817, (2019).
  • Wei, F., Liu, Y., Bi,, C., Chen, S., Wang Y., Zhang, B., Nostoc sphaeroids Kütz ameliorates hyperlipidemia and maintains the intestinal barrier and gut microbiota composition of high‐fat diet mice, Food science & nutrition, 8, 5, 2348-2359, (2020).
  • Rakhimzhanova, A., Kılınçarslan, Ö., Mammadov, R., Stellaria media ekstraktlarının antioksidan aktivitesinin belirlenmesi ve fenolik bileşenlerinin karakterizasyonu, Ordu Ünivertisesi Bilim ve Teknoloji Dergisi, 8(2), 165-173, (2018).
  • Ninomiya, M., Satoh, H., Yamaguchi, Y., Takenaka, H., Koketsu, M., Antioxidative activity and chemical constituents ofedible terrestrial alga nostoccommune vauch., Bioscience, Biotechnology, and Biochemistry,75:11, 2175-2177, (2011).
  • Wang, H. B., Wu, S. J., & Liu, D., Preparation of polysaccharides from cyanobacteria Nostoc commune and their antioxidant activities, Carbohydrate Polymers, 99, 553–555, (2014).
  • Mercan, N., Kivrak, I., Duru, M.E., Chemical composition effects onto antimicrobial and antioxidant activities of propolis collected from different regions of Turkey, Annals of Microbiology, 56, 373, (2006).
  • Ceylan, O., Karakus, H., Çiçek, H., Design and in vitro antibiofilm activity of propolis diffusion-controlled biopolymers. Biotechnology and Applied Biochemistry, 68(4), 789–800, (2021).
  • Zhi-Cheng, Y., Jin, L., Ahmad, Z., Huang, J., Chang, M., Li, J., Ganoderma lucidum polysaccharide loaded sodium alginate micro-particles prepared via electrospraying in controlled deposition environments, International Journal of Pharmaceutics, 524 148–158, (2017).
  • Karakuş, H., Propolis için uygun taşıyıcı sentezi ve ağız sindirim sistemindeki bazı biyolojik aktivitelerin tayini, Yüksek Lisans Tezi, Muğla Sıtkı Koçman Üniversitesi, Fen Bilimleri Enstitüsü, Muğla, (2017).
  • Saarai, A., Kasparkova, V., Sedlacek, T., Saha, P., A Comparative Study of Crosslinked Sodium Alginate/Gelatin Hydrogels for Wound Dressing, Gemesed'11: Proceedings of the 4th WSEAS, International conference on Energy and development, environment, biomedicine, 384–389, (2011).
  • Zhi-Cheng, Y., Jin, L., Ahmad, Z., Huang, J., Chang, M., Li, J., Ganoderma lucidum polysaccharide loaded sodium alginate micro-particles prepared via electrospraying in controlled deposition environments, International Journal of Pharmaceutics, 524 148–158, (2017).
  • Hameed, M. S. A., Hassan, S. H., Mohammed, R., Gamal, R., Isolation and characterization of antimicrobial active compounds from the cyanobacterium Nostoc commune Vauch, Journal of Pure and Applied Microbiology, (2013).
  • Afzal, S., Khan, S., Ranjha, N. M., Jalil, A., Riaz, A., Haider, M. S., Sarwar, S., Saher, F., Naeem, F., The Structural, Crystallinity, and Thermal Properties of pH-responsive Interpenetrating Gelatin/Sodium Alginate-based Polymeric Composites for the Controlled Delivery of Cetirizine HCl, Turkish Journal Of Pharmaceutical Sciences, 15, 1, 63-76, (2018).

Production of Nostoc commune loaded pH sensitive carrier microspheres and analysis of release kinetics at different pH values

Yıl 2022, Cilt: 24 Sayı: 2, 581 - 593, 08.07.2022

Öz

Microspheres are carriers used for controlled drug release, carrying the active substance in the form of particles at the molecular level, and their diameters can vary from a few microns to millimeters. Microspheres can make controlled release depending on the pH change. In this study, pH sensitive drug carrier microspheres were produced using natural gelatin and sodium alginate polymers. N. commune extract, which has been reported to have anticancer effects in the literature and to be used as an antitumor agent in colon cancer, was prepared and loaded with approximately 0.12 mg per cell. In order to examine the microsphere fragmentation and drug release properties in the gastrointestinal system, spectrophotometric release kinetics studies were carried out in different pH environments. In conclusion, it was observed that the release of the extract is fastest at the pH of the colon and the microspheres have the potential to be used in colon cancer therapy for drug targeting.

Kaynakça

  • Tüylek, Z., İlaç taşıyıcı nanosistemler, Arşiv Kaynak Tarama Dergisi, 28, 3, 184-192, (2019).
  • Ummadi, S., Shravani, B., Rao, N. G. R., Reddy, M. S. Nayak, B. S., Overview on controlled release dosage form, International Journal of Pharma Sciences, 3, 4, 258-269, (2013).
  • Sung, Y. K., Kim, S. W., Recent advances in polymeric drug delivery systems, Biomaterials Research, 24, 12, (2020).
  • Akash, M. S. H, Rehman, K., Chen, S., Natural and synthetic polymers as drug carriers for delivery of therapeutic proteins, Polymer Reviews, 55, 3, 371-406, (2015).
  • Mogoşanu, G., D., Grumezescu, A. M., Bejenaru, L. E., Bejenaru, C., Natural and synthetic polymers for drug delivery and targeting, Nanobiomaterials in Drug Delivery, 229-284, William Andrew Publishing, (2016).
  • Aravamudhan, A., Ramos, D., Nada, A., Kumbar, S., Natural Polymers: Polysaccharides and Their Derivatives for Biomedical Applications, Elsevier, 67-89, (2014).
  • Kim, J. K., Kim, H. J., Chung, J. Y., Lee, J. H., Young, S. B., Kim, Y. H., Natural and synthetic biomaterials for controlled drug delivery, Archives of Pharmacal Research, 37, 1,60, 8, (2014).
  • Gültekin, H. E., Değim, Z., Biodegradable polymeric nanoparticles are effective systems for controlled drug delivery, FABAD Journal of Pharmaceutical Sciences, 38, 2, 107-118, (2013).
  • Tüylek Z., İlaç taşıyıcı sistemler ve nanoteknolojik etkileşim, Bozok Tıp Dergisi, 7, 3, 89-98, (2017).
  • Dhakar, R. C., Maurya, S., D., Sagar, B., PS., Bhagat, S., Prajapati, S., K., Jain, C. P., Variables influencing the drug entrapment efficiency of microspheres: A pharmaceutical review, Der Pharmacia Lettre, 2, 5, 102-116, (2010).
  • Singh, A., Sharma, A., Kaur, S. Micro carrier as colon drug delivery system: a review. International Journal of Research and Development in Pharmacy & Life Sciences, 3, 6, 1211-1216, (2014).
  • Singh, C., Purohit, S., Singh, M., Pandey, B. L., Design and evaluation of microspheres: a review, Journal of Drug Delivery Research, 2, 2, (2013).
  • Singh, P., Prakash, D., Ramesh, B., Singh, N., Mani, T. T., Biodegradable polymeric microspheres as drug carriers; a review, Indian Journal of Novel Drug delivery, 3, 2, 70-82, (2011).
  • Brannon-Peppas, L., Peppas, N. A., Dynamic and equilibrium swelling behaviour of pH-sensitive hydrogels containing 2-hydroxyethyl methacrylate, Biomaterials, 11, 9, 635-644, (1990).
  • Balamuralidhara, V., Pramodkumar, T. M., Srujana, N., Venkatesh, M. P., Gupta, N. V., Krishna, K. L., Gangadharappa, H. V., pH sensitive drug delivery systems:a review, American Journal of Drug Discovery and Development, 1, 1, 24-48, (2011).
  • Kawaguchi, H., Functional polymer microspheres, Progress in Polymer Science, 25, 8, 1171-1210, (2000).
  • Vasir, J. K., Tambwekar, K., Garg, S., Bioadhesive microspheres as a controlled drug delivery system, International Journal of Pharmaceutics, 255, 1–2, 2, 13-32, (2003).
  • Edlund, U., A., Degredable polymer microparticles for controlled drug delivery, Advances in Polymer Science, 157, 487-495. (2002).
  • Şengel Türk, C. T., Hasçiçek, C., Gönül, N., Kolona Hedeflenen İlaç Taşıyıcı Sistemler, Ankara Eczacılık Fakültesi Dergisi, 35,2, 125-148, (2006).
  • Wang, G., Wang, J., Wu, W., To, S. S. T., Zhao, H., Wang, J., Rewiev advances in lipid-based drug delivery: enhancing efficiency for hydrophobic drugs, Expert Opinion Drug Delivery, 12, 9, (2015).
  • Liu, L., Fishman, M. L., Kost, J., Hicks, K. B., Pectin-based systems for colon-specific drug delivery via oral route, Biomaterials, 24, 19, 3333-3343, (2003).
  • Thakral, S., Thakral, N. K., Majumdar, D. K., Eudragit®: a technology evaluation, Expert Opinion on Drug Delivery, 10, 1, 131-149, (2013).
  • Nollenberger, K., Albers, J., Review, Poly(meth)acrylate-based coatings, International Journal of Pharmaceutics, 457, 2, 461-469, (2013).
  • Draget, K. I., Skjåk-Bræk, G., Smidsrød, O., Alginate based new materials, International Journal of Biological Macromolecules, 21, 1–2, 47-55, (1997).
  • Lee, K. Y., Mooney, D. J., Alginate: properties and biomedical applications, Progress in Polymer Science, 37, 1,106-126, (2012).
  • Erge, A., Zorba, Ö., Derleme Makale jelatin ve fizikokimyasal özellikleri, Akademik Gıda, 14, 4, 431-440, (2016).
  • Gómez-Guillén, M. C., Giménez, B., López-Caballero, M.E., Montero, M.P., Functional and bioactive properties of collagen and gelatin from alternative sources: a review, Food Hydrocolloids, 25, 8, 1813-1827, (2011).
  • Gorgieva, S., Kokol, V., Collagen-vs. gelatine-based biomaterials and their biocompatibility:review and perspectives, Biomaterials: Applications for Nanomedicine InTech, 17-52, (2011).
  • Ward, D. M., Castenholz, R. W., Miller, S. R., Cyanobacteria in geothermal habitats, In: Whitton B., Ecology of Cyanobacteria II, Springer, 39-63, Dordrecht, (2012).
  • Ak, İ., Cirik, S., Mavi-yeşil algler (siyanobakteriler) ve termalizm, Ege Journal of Fisheries and Aquatic Sciences, 34, 2, 227-233, (2017).
  • Li, Z., Guo, M., Healthy efficacy of Nostoc commune vaucher, Oncotarget, 9, 18, 14669-14679, (2018).
  • Novis, P. M., Whitehead, D., Gregorich, E. G., Hunt, J. E., Sparrow, A. D., Hopkins, D. W., Elberling, B., Greenfield, L.G., Annual carbon fixation in terrestrial populations of Nostoc commune (Cyanobacteria) from an antarctic dry valley is driven by temperature regime, Global Change Biology, 13, 224-1237, (2007).
  • Holst, J., Butterbach‐Bahl, K., Liy, C. Y., Cheng, X. H., Kaiser, A.J., Schnitzler, J. P., Zechmeister-Boltenstern, S., Brüggemann, N., Dinitrogen fixation by biological soil crusts in inner mongolian steppe, Biology and Fertility of Soils, 45, 679–690, (2009).
  • Møller, C. L., Vangsøe, M. T., Sand‐Jensen, K., Comparative growth and metabolism of gelatinous colonies of three cyanobacteria, Nostoc commune, Nostoc pruniforme and Nostoc zetterstedtii, at different temperatures, Freshwater Biology, 59, 10, 2183-2193, (2014).
  • Schmidt, T., Cyanobacteria, in Soule, T., Garcia-Pichel, F., Encyclopedia of Microbiology, Elsevier, 799-817, (2019).
  • Wei, F., Liu, Y., Bi,, C., Chen, S., Wang Y., Zhang, B., Nostoc sphaeroids Kütz ameliorates hyperlipidemia and maintains the intestinal barrier and gut microbiota composition of high‐fat diet mice, Food science & nutrition, 8, 5, 2348-2359, (2020).
  • Rakhimzhanova, A., Kılınçarslan, Ö., Mammadov, R., Stellaria media ekstraktlarının antioksidan aktivitesinin belirlenmesi ve fenolik bileşenlerinin karakterizasyonu, Ordu Ünivertisesi Bilim ve Teknoloji Dergisi, 8(2), 165-173, (2018).
  • Ninomiya, M., Satoh, H., Yamaguchi, Y., Takenaka, H., Koketsu, M., Antioxidative activity and chemical constituents ofedible terrestrial alga nostoccommune vauch., Bioscience, Biotechnology, and Biochemistry,75:11, 2175-2177, (2011).
  • Wang, H. B., Wu, S. J., & Liu, D., Preparation of polysaccharides from cyanobacteria Nostoc commune and their antioxidant activities, Carbohydrate Polymers, 99, 553–555, (2014).
  • Mercan, N., Kivrak, I., Duru, M.E., Chemical composition effects onto antimicrobial and antioxidant activities of propolis collected from different regions of Turkey, Annals of Microbiology, 56, 373, (2006).
  • Ceylan, O., Karakus, H., Çiçek, H., Design and in vitro antibiofilm activity of propolis diffusion-controlled biopolymers. Biotechnology and Applied Biochemistry, 68(4), 789–800, (2021).
  • Zhi-Cheng, Y., Jin, L., Ahmad, Z., Huang, J., Chang, M., Li, J., Ganoderma lucidum polysaccharide loaded sodium alginate micro-particles prepared via electrospraying in controlled deposition environments, International Journal of Pharmaceutics, 524 148–158, (2017).
  • Karakuş, H., Propolis için uygun taşıyıcı sentezi ve ağız sindirim sistemindeki bazı biyolojik aktivitelerin tayini, Yüksek Lisans Tezi, Muğla Sıtkı Koçman Üniversitesi, Fen Bilimleri Enstitüsü, Muğla, (2017).
  • Saarai, A., Kasparkova, V., Sedlacek, T., Saha, P., A Comparative Study of Crosslinked Sodium Alginate/Gelatin Hydrogels for Wound Dressing, Gemesed'11: Proceedings of the 4th WSEAS, International conference on Energy and development, environment, biomedicine, 384–389, (2011).
  • Zhi-Cheng, Y., Jin, L., Ahmad, Z., Huang, J., Chang, M., Li, J., Ganoderma lucidum polysaccharide loaded sodium alginate micro-particles prepared via electrospraying in controlled deposition environments, International Journal of Pharmaceutics, 524 148–158, (2017).
  • Hameed, M. S. A., Hassan, S. H., Mohammed, R., Gamal, R., Isolation and characterization of antimicrobial active compounds from the cyanobacterium Nostoc commune Vauch, Journal of Pure and Applied Microbiology, (2013).
  • Afzal, S., Khan, S., Ranjha, N. M., Jalil, A., Riaz, A., Haider, M. S., Sarwar, S., Saher, F., Naeem, F., The Structural, Crystallinity, and Thermal Properties of pH-responsive Interpenetrating Gelatin/Sodium Alginate-based Polymeric Composites for the Controlled Delivery of Cetirizine HCl, Turkish Journal Of Pharmaceutical Sciences, 15, 1, 63-76, (2018).
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Cankız Gizem Delibalta 0000-0002-3199-3709

Ezgi Eren Belgin 0000-0002-1089-3741

Cansu Korkmaz 0000-0003-3027-7687

Hilal Gönen 0000-0002-4777-1713

Hüseyin Çiçek 0000-0001-9719-6481

Yayımlanma Tarihi 8 Temmuz 2022
Gönderilme Tarihi 27 Ağustos 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 24 Sayı: 2

Kaynak Göster

APA Delibalta, C. G., Eren Belgin, E., Korkmaz, C., Gönen, H., vd. (2022). Nostoc commune yüklü pH duyarlı taşıyıcı mikrokürelerin üretimi ve farklı pH değerlerindeki salım kinetiklerinin incelenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(2), 581-593.
AMA Delibalta CG, Eren Belgin E, Korkmaz C, Gönen H, Çiçek H. Nostoc commune yüklü pH duyarlı taşıyıcı mikrokürelerin üretimi ve farklı pH değerlerindeki salım kinetiklerinin incelenmesi. BAUN Fen. Bil. Enst. Dergisi. Temmuz 2022;24(2):581-593.
Chicago Delibalta, Cankız Gizem, Ezgi Eren Belgin, Cansu Korkmaz, Hilal Gönen, ve Hüseyin Çiçek. “Nostoc Commune yüklü PH Duyarlı taşıyıcı mikrokürelerin üretimi Ve Farklı PH değerlerindeki salım Kinetiklerinin Incelenmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, sy. 2 (Temmuz 2022): 581-93.
EndNote Delibalta CG, Eren Belgin E, Korkmaz C, Gönen H, Çiçek H (01 Temmuz 2022) Nostoc commune yüklü pH duyarlı taşıyıcı mikrokürelerin üretimi ve farklı pH değerlerindeki salım kinetiklerinin incelenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 2 581–593.
IEEE C. G. Delibalta, E. Eren Belgin, C. Korkmaz, H. Gönen, ve H. Çiçek, “Nostoc commune yüklü pH duyarlı taşıyıcı mikrokürelerin üretimi ve farklı pH değerlerindeki salım kinetiklerinin incelenmesi”, BAUN Fen. Bil. Enst. Dergisi, c. 24, sy. 2, ss. 581–593, 2022.
ISNAD Delibalta, Cankız Gizem vd. “Nostoc Commune yüklü PH Duyarlı taşıyıcı mikrokürelerin üretimi Ve Farklı PH değerlerindeki salım Kinetiklerinin Incelenmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24/2 (Temmuz 2022), 581-593.
JAMA Delibalta CG, Eren Belgin E, Korkmaz C, Gönen H, Çiçek H. Nostoc commune yüklü pH duyarlı taşıyıcı mikrokürelerin üretimi ve farklı pH değerlerindeki salım kinetiklerinin incelenmesi. BAUN Fen. Bil. Enst. Dergisi. 2022;24:581–593.
MLA Delibalta, Cankız Gizem vd. “Nostoc Commune yüklü PH Duyarlı taşıyıcı mikrokürelerin üretimi Ve Farklı PH değerlerindeki salım Kinetiklerinin Incelenmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 24, sy. 2, 2022, ss. 581-93.
Vancouver Delibalta CG, Eren Belgin E, Korkmaz C, Gönen H, Çiçek H. Nostoc commune yüklü pH duyarlı taşıyıcı mikrokürelerin üretimi ve farklı pH değerlerindeki salım kinetiklerinin incelenmesi. BAUN Fen. Bil. Enst. Dergisi. 2022;24(2):581-93.