Derleme
BibTex RIS Kaynak Göster

Odunsu türlerde tuz stresi ve dışlama mekanizmaları

Yıl 2024, Cilt: 26 Sayı: 2, 650 - 661, 15.07.2024
https://doi.org/10.25092/baunfbed.1384745

Öz

Dünya piyasasında yaygın olarak yer alan birçok meyve ağacı türü çevresel strese karşı mücadele içerisinde büyümeye ve meyve vermeye devam etmektedir. Tuz stresinin olumsuz etkisi, meyve ağaçlarının zayıflamasına, ürün ve kalitesinin azalmasına neden olmaktadır. Bununla birlikte, doğal koşullar altında birçok biyotik ve abiyotik strese maruz kalan çok yıllık meyve ağaçları, tek yıllık bitkilerden farklı olarak yaşamsal faaliyetlerini sürdürebilmek için karmaşık pek çok tolerans mekanizması geliştirmiştir. Tuz stresini tolere edebilen bazı meyve ağaçları, fizyolojik ve biyokimyasal faaliyetlerini sürdürerek tuzu dışlayabilmektedir. Bu derlemede, meyve ağaçlarında tuz etkileri ve toleransına ilişkin mevcut bilgiler paylaşılmakta ve çevresel faktörlerin etkileşimi yoluyla tuzun odunsu bitkilerin çeşitli kısımlarından fizyolojik olarak nasıl dışlandığı değerlendirilmektedir.

Kaynakça

  • FAO. Status of the World’s Soil Resources (SWSR) – Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, FAO and ITPS, Rome, Italy, (2015).
  • Ivushkin, K., Bartholomeus, H., Bregt, A.K., Pulatov, A., Kempen, B. & De Sousa, L. Global mapping of soil salinity change. Remote Sensing of Environment, 231, 111260, (2019).
  • Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. Abiotic and biotic stress combinations. New Phytologist, 203(1), 32-43, (2014).
  • Yadav, S., Irfan, M., Ahmad, A., & Hayat, S. Causes of salinity and plant manifestations to salt stress: a review. Journal of environmental biology, 32(5), 667, (2011).
  • Chen, M., Yang, Z., Liu, J., Zhu, T., Wei, X., Fan, H., & Wang, B. Adaptation mechanism of salt excluders under saline conditions and its applications. International Journal of Molecular Sciences, 19(11), 3668, (2018).
  • Levitt, J. Responses of Plants to Environmental Stresses. Vol.II, 2nd ed. Academic Press, 497-607, New York, USA, (1980).
  • Mehdi-Tounsi, H., Chelli-Chaabouni, A., Mahjoub-Boujnah, D. & Boukhris, M. Long-term field response of pistachio to irrigation water salinity. Agricultural Water Management, 185,1-12, (2017).
  • Kaçar, B., Katkat V., & Öztürk Ş. Bitki Fizyolojisi. Nobel yayınevi. 608,57, Ankara, (2017).
  • Wang, H., Zhang, M., Guo, R., Shi, D., Liu, B., Lin, X., & Yang, C. Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). BMC plant biology, 12, 1-11, (2012).
  • Hao, S., Wang, Y., Yan, Y., Liu, Y., Wang, J., & Chen, S. A review on plant responses to salt stress and their mechanisms of salt resistance. Horticulturae, 7(6), 132, (2021).
  • Allen, J. A., Chambers, J. L., & Stine, M. Prospects for increasing the salt tolerance of forest trees: a review. Tree physiology, 14(7-8-9), 843-853, (1994).
  • Godfrey, J.M., Ferguson, L., Sanden, B.L., Tixier, A., Sperling, O., Grattan, S.R. & Zwieniecki, M.A. Sodium interception by xylem parenchyma and chloride recirculation in phloem may augment exclusion in the salt tolerant Pistacia genus: context for salinity studies on tree crops. Tree Physiology, 39(8), 1484-1498, (2019).
  • Shannon, M.C., Grieve, C.M. & Francois, L.E. Whole-plant response to salinity. In: Wilkinson, R.E. (Ed.), Plant–Environment Interactions. Marcel Dekker, 199–244, New York, (1994).
  • Boland, A. M., Jerie, P., & Maas, E. Long-term effects of salinity on fruit trees. In II International Symposium on Irrigation of Horticultural Crops, 449 (pp. 599-606), (1996).
  • Sedaghat, S., Gaaliche, B., Rahemi, M., Zare, H., & Jafari, M. Enzymatic activity and physico-chemical changes of terminal bud in rain-fed fig (Ficus carica L.‘Sabz’) during dormant season. Horticultural Plant Journal, 8(2), 195-204, (2022).
  • Sanden, B. L., Ferguson L. and Corwin, D. L. Development and long-term salt tolerance of pistachios from planting to maturity using saline groundwater. In VI International Symposium on Almonds and Pistachios 1028, 327-332, (2013).
  • Abbaspour, H., Afshari, H. & Abdel-Wahhab, M. A. Influence of salt stress on growth, pigments, soluble sugars and ion accumulation in three pistachio cultivars. Journal of Medicinal Plants Research, 6(12), 2468-2473, (2012).
  • Soni, A., Dhakar, S., & Kumar, N. Mechanisms and strategies for improving salinity tolerance in fruit crops. International Journal of Current Microbiology and Applied Sciences, 6(8), 1917-1924, (2017).
  • Petridis, A., Therios, I., Samouris, G., & Tananaki, C. Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. Environmental and Experimental Botany, 79, 37-43, (2012).
  • Acosta-Motos, J.R., Ortuño, M.F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M.J. & Hernandez, J.A. Plant responses to salt stress: adaptive mechanisms. Agronomy, 7 (1), p.18, (2017).
  • Tan, J., Ben-Gal, A., Shtein, I., Bustan, A., Dag, A., & Erel, R. Root structural plasticity enhances salt tolerance in mature olives. Environmental and Experimental Botany, 179, 104224, (2020).
  • Trabelsi, L., Gargouri, K., Ayadi, M., Mbadra, C., Nasr, M. B., Mbarek, H. B., Ghrab M., Ahmed B.G., Kammoun Y., Loukil E., Maktouf S., Khlifı M., & Gargouri, R. Impact of drought and salinity on olive potential yield, oil and fruit qualities (cv. Chemlali) in an arid climate. Agricultural Water Management, 269, 107726, (2022).
  • Munns, R. & Termaat, A. Whole-plant responses to salinity. Functional Plant Biology, 13(1), 143-160, (1986).
  • Rahneshan, Z., Nasibi, F., Lakehal, A. & Bellini, C. Unravelling salt stress responses in two pistachio (Pistacia vera L.) genotypes. Acta Physiologiae Plantarum, 40(9), 1-13, (2018).
  • Zou, Y., Zhang, Y., & Testerink, C. Root dynamic growth strategies in response to salinity. Plant, Cell & Environment, 45(3), 695-704, (2022).
  • Byrt, C. S., Munns, R., Burton, R. A., Gilliham, M., & Wege, S. Root cell wall solutions for crop plants in saline soils. Plant science, 269, 47-55, (2018).
  • Ashraf, M. Breeding for salinity tolerance in plants. Critical Reviews in Plant Sciences 13 (1), 17-42, (1994).
  • Vivaldi, G. A., Camposeo, S., Romero-Trigueros, C., Pedrero, F., Caponio, G., Lopriore, G., & Álvarez, S. Physiological responses of almond trees under regulated deficit irrigation using saline and desalinated reclaimed water. Agricultural Water Management, 258, 107172, (2021).
  • Álvarez, S., Rodríguez, P., Broetto, F., & Sánchez-Blanco, M. J. Long term responses and adaptive strategies of Pistacia lentiscus under moderate and severe deficit irrigation and salinity: Osmotic and elastic adjustment, growth, ion uptake and photosynthetic activity. Agricultural Water Management, 202, 253-262, (2018).
  • Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64-77, (2020).
  • Bader, B., Aissaoui, F., Kmicha, I., Salem, A. B., Chehab, H., Gargouri, K., Dalenda B., & Chaieb, M. Effects of salinity stress on water desalination, olive tree (Olea europaea L. cvs ‘Picholine’,‘Meski’and ‘Ascolana’) growth and ion accumulation. Desalination, 364, 46-52, (2015).
  • Yeo, A.R., Lee, A.S., Izard, P., Boursier, P.J. and Flowers, T.J. Short-and long-term effects of salinity on leaf growth in rice (Oryza sativa L.). Journal of Experimental Botany, 42(7), 881-889, (1991).
  • Binzel, M. L., & Reuveni, M. Cellular mechanisms of salt tolerance in plant cells. Horticultural Reviews, 16, 33-69, (2010).
  • Boman, B. J. Salinity effects on Florida grapefruit in the Indian River region. HortTechnology, 15(1), 89-95, (2005).
  • Hajiboland, R., Norouzi, F. & Poschenrieder, C. Growth, physiological, biochemical and ionic responses of pistachio seedlings to mild and high salinity. Trees, 28(4), 1065-1078, (2014).
  • Parida, A.K. & Das, A.B. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324-349, (2005).
  • Shahriaripour, R., Tajabadi Pour, A. and Mozaffari, V. Effects of salinity and soil phosphorus application on growth and chemical composition of pistachio seedlings. Communications in Soil Science and Plant Analysis, 42(2), 144-158, (2011).
  • Karimi, H. R., & Maleki Kuhbanani, A. The evaluation of inter-specific hybrid of P. atlantica× P. vera cv.‘Badami Zarand’as a pistachio rootstock to salinity stress. Journal of Nuts, 6(02), 113-122, (2015).
  • Zhang, S., Quartararo, A., Betz, O., Madahhosseini, S., Heringer, A., Le, T., Shao, Y., Caruso, T., Ferguson, L., Jernstedt, J.& Wilkop, T. Root vacuolar sequestration and suberization contribute to salinity tolerance in Pistacia spp. rootstocks. Authorea Preprints, (2020).
  • Rossi, L., Francini, A., Minnocci, A., & Sebastiani, L. Salt stress modifies apoplastic barriers in olive (Olea europaea L.): a comparison between a salt-tolerant and a salt-sensitive cultivar. Scientia Horticulturae, 192, 38-46, (2015).
  • Wang, P., Wang, F., Li, L., Su, S., Han, N., & Yang, Z. Study on Effects of salt stress on the Suberin Lamella of grapevine roots. In BIO Web of Conferences (Vol. 61, p. 01027). EDP Sciences, (2023).
  • Kamiab, F., Talaie, A., Javanshah, A., Khezri, M., & Khalighi, A. Effect of long-term salinity on growth, chemical composition and mineral elements of pistachio (Pistacia vera cv. Badami-Zarand) rootstock seedlings. Annals of Biological Research, 3(12), 5545-5551, (2012).
  • Wang, G., Wang, L., Ma, F., Yang, D., & You, Y. Earthworm and arbuscular mycorrhiza interactions: Strategies to motivate antioxidant responses and improve soil functionality. Environmental Pollution, 272, 115980, (2021).
  • Sánchez-Ledesma, J. A., Arreola-Ávila, J. G., Ávila-Rodríguez, V., García-González, F., Carrasco-Hernández, V., & Borja de laRosa, A. Photosynthetic rate and biomass production by inoculation of Scleroderma sp. with different concentrations of NaCl in pecan tree. Revista mexicana de ciencias agrícolas, 13(7), 1209-1220, (2022).
  • Shahvali, R., Shiran, B., Ravash, R., Fallahi, H., & Đeri, B. B. Effect of symbiosis with arbuscular mycorrhizal fungi on salt stress tolerance in GF677 (peach× almond) rootstock. Scientia Horticulturae, 272, 109535, (2020).
  • Wang, G., Wang, L., Ma, F., Yang, D., & You, Y. Earthworm and arbuscular mycorrhiza interactions: Strategies to motivate antioxidant responses and improve soil functionality. Environmental Pollution, 272, 115980, (2021).
  • Paymaneh, Z., Sarcheshmehpour, M., Bukovská, P., & Jansa, J. Could indigenous arbuscular mycorrhizal communities be used to improve tolerance of pistachio to salinity and/or drought. Symbiosis, 79, 269-283, (2019).
  • Ribeiro-Barros, A. I., Pawlowski, K., & Ramalho, J. C. Mechanisms of salt stress tolerance in Casuarina: A review of recent research. Journal of Forest Research, 27(2), 113-116, (2022).
  • Surucu, A., Acar, I., Demirkiran, A. R., Farooq, S., & Gokmen, V. Variations in nutrient uptake, yield and nut quality of different pistachio cultivars grafted on Pistacia khinjuk rootstock. Scientia Horticulturae, 260, 108913, (2020).
  • Raveh, E. Assessing salinity tolerance in citrus: latest developments. Advances in Citrus Nutrition, 425-433, (2012).
  • Sodii, M., Astolfi, S., Francini, A., & Sebastiani, L. Multiple linear regression and linear mixed models identify novel traits of salinity tolerance in Olea europaea L. Tree Physiology, 42(5), 1029-1042, (2022).
  • Zrig, A., Mohamed, H. B., Tounekti, T., Khemira, H., Serrano, M., Valero, D., & Vadel, A. M. Effect of rootstock on salinity tolerance of sweet almond (cv. Mazzetto). South African Journal of Botany, 102, 50-59, (2016).
  • Alipour, H. Photosynthesis properties and ion homeostasis of different pistachio cultivar seedlings in response to salinity stress. International Journal of Horticultural Science and Technology, 5(1), 19-29, (2018).
  • Karimi, H.R. & Roosta, H.R. Evaluation of Inter-Specific Hybrid of P. atlantica and P. vera L. cv. ‘Badami-Riz-e-Zarand’as Pistachio rootstock to Salinity Stress According to Some Growth Indices and Eco-physiological and Biochemical Parameters. Journal of Stress Physiology and Biochemistry, 10(3), 5-17, (2014)
  • Mickelbart, M. V., & Arpaia, M. L. Rootstock Influences Changes in Ion Concentrations, Growth, and Photosynthesis ofHass' Avocado Trees in Response to Salinity. Journal-Amerıcan Socıety For Hortıcultural Scıence, 127 (4), 649-655, (2002).
  • Han, Y., Wang, W., Sun, J., Ding, M., Zhao, R., Deng, S., Wang F., Hu Y., Wang Y., Lu Y., Du L., Hu Z., Diekman H., Shen X., Polle A., & Chen, S. Populus euphratica XTH overexpression enhances salinity tolerance by the development of leaf succulence in transgenic tobacco plants. Journal of experimental botany, 64(14), 4225-4238, (2013).
  • Lupo, Y., Prashanth, K., Lazarovitch, N., Fait, A., & Rachmilevitch, S. Importance of Leaf Age in Grapevines Under Salt Stress. bioRxiv, 2023-04, (2023).
  • Pathania, S., Bajaj, A., Mavi, M. S., & Choudhary, O. P. Comprehensive evaluation, analysis of mechanisms and the prediction of salinity tolerance in pomegranate. Scientia Horticulturae, 313, 111918, (2023).
  • Hameed, M., Ashraf, M., Ahmad, M. S. A., & Naz, N. Structural and functional adaptations in plants for salinity tolerance. Plant adaptation and phytoremediation, 151-170, (2010).
  • Pandolfi, C., Bazihizina, N., Giordano, C., Mancuso, S., & Azzarello, E. Salt acclimation process: a comparison between a sensitive and a tolerant Olea europaea cultivar. Tree Physiology, 37(3), 380-388, (2017).
  • Barbosa, R. C. A., Brito, M. E. B., da Silva Sá, F. V., dos Santos Soares Filho, W., Fernandes, P. D., & de Andrade Silva, L. Gas exchange of citrus rootstocks in response to intensity and duration of saline stress. Semina: Ciências Agrárias, 38(2), 725-738, (2017).
  • Ottow, E. A., Brinker, M., Teichmann, T., Fritz, E., Kaiser, W., Brosché, M., Kangasjärvi. J., Jiang X., & Polle, A. Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress. Plant Physiology, 139(4), 1762-1772, (2005).
  • Scott, D. H. Breeding Salt Tolerant Grapevine Rootstocks. PhD Thesis. University of California, Davis, (2022).
  • Singh, A., & Sharma, P. C. Recent insights into physiological and molecular regulation of salt stress in fruit crops. Advances in Plants & Agriculture Research. 8(2), 171-183, (2018).
  • Sorkheh, K., Shiran, B., Rouhi, V., Khodambashi, M., & Sofo, A. Salt stress induction of some key antioxidant enzymes and metabolites in eight Iranian wild almond species. Acta Physiologiae Plantarum, 34, 203-213, (2012).
  • Jazi, M. M., Seyedi, S. M., Ebrahimie, E., Ebrahimi, M., De Moro, G. & Botanga, C. A. Genome-wide transcriptome map of pistachio (Pistacia vera L.) provides novel insights into salinity-related genes and marker discovery. BMC Genomics, 18(1), 1-21, (2017).
  • Ahmad, R., & Anjum, M. A. Physiological and molecular basis of salinity tolerance in fruit crops. In Fruit Crops (pp. 445-464). Elsevier, (2020).
  • Berens, M. L., Wolinska, K. W., Spaepen, S., Ziegler, J., Nobori, T., Nair, A., & Tsuda, K. Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk. Proceedings of the National Academy of Sciences, 116(6), 2364-2373, (2019).

Salt stress and exclusion mechanism in woody plants

Yıl 2024, Cilt: 26 Sayı: 2, 650 - 661, 15.07.2024
https://doi.org/10.25092/baunfbed.1384745

Öz

Many fruit tree species that are widely available in the world market continue to grow and bear fruit in the face of environmental stress. The negative impact of salt stress causes fruit trees to weaken and reduce their yield and quality. However, unlike annual plants, perennial fruit trees, which are exposed to many biotic and abiotic stresses under natural conditions, have developed many complex tolerance mechanisms to maintain their vital activities. Some fruit trees that can tolerate salt stress are able to exclude salt by maintaining their physiological and biochemical activities. In this review, we share the current knowledge on salt effects and tolerance in fruit trees and assess how salt is physiologically excluded from various parts of woody plants through the interaction of environmental factors.

Kaynakça

  • FAO. Status of the World’s Soil Resources (SWSR) – Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, FAO and ITPS, Rome, Italy, (2015).
  • Ivushkin, K., Bartholomeus, H., Bregt, A.K., Pulatov, A., Kempen, B. & De Sousa, L. Global mapping of soil salinity change. Remote Sensing of Environment, 231, 111260, (2019).
  • Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. Abiotic and biotic stress combinations. New Phytologist, 203(1), 32-43, (2014).
  • Yadav, S., Irfan, M., Ahmad, A., & Hayat, S. Causes of salinity and plant manifestations to salt stress: a review. Journal of environmental biology, 32(5), 667, (2011).
  • Chen, M., Yang, Z., Liu, J., Zhu, T., Wei, X., Fan, H., & Wang, B. Adaptation mechanism of salt excluders under saline conditions and its applications. International Journal of Molecular Sciences, 19(11), 3668, (2018).
  • Levitt, J. Responses of Plants to Environmental Stresses. Vol.II, 2nd ed. Academic Press, 497-607, New York, USA, (1980).
  • Mehdi-Tounsi, H., Chelli-Chaabouni, A., Mahjoub-Boujnah, D. & Boukhris, M. Long-term field response of pistachio to irrigation water salinity. Agricultural Water Management, 185,1-12, (2017).
  • Kaçar, B., Katkat V., & Öztürk Ş. Bitki Fizyolojisi. Nobel yayınevi. 608,57, Ankara, (2017).
  • Wang, H., Zhang, M., Guo, R., Shi, D., Liu, B., Lin, X., & Yang, C. Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). BMC plant biology, 12, 1-11, (2012).
  • Hao, S., Wang, Y., Yan, Y., Liu, Y., Wang, J., & Chen, S. A review on plant responses to salt stress and their mechanisms of salt resistance. Horticulturae, 7(6), 132, (2021).
  • Allen, J. A., Chambers, J. L., & Stine, M. Prospects for increasing the salt tolerance of forest trees: a review. Tree physiology, 14(7-8-9), 843-853, (1994).
  • Godfrey, J.M., Ferguson, L., Sanden, B.L., Tixier, A., Sperling, O., Grattan, S.R. & Zwieniecki, M.A. Sodium interception by xylem parenchyma and chloride recirculation in phloem may augment exclusion in the salt tolerant Pistacia genus: context for salinity studies on tree crops. Tree Physiology, 39(8), 1484-1498, (2019).
  • Shannon, M.C., Grieve, C.M. & Francois, L.E. Whole-plant response to salinity. In: Wilkinson, R.E. (Ed.), Plant–Environment Interactions. Marcel Dekker, 199–244, New York, (1994).
  • Boland, A. M., Jerie, P., & Maas, E. Long-term effects of salinity on fruit trees. In II International Symposium on Irrigation of Horticultural Crops, 449 (pp. 599-606), (1996).
  • Sedaghat, S., Gaaliche, B., Rahemi, M., Zare, H., & Jafari, M. Enzymatic activity and physico-chemical changes of terminal bud in rain-fed fig (Ficus carica L.‘Sabz’) during dormant season. Horticultural Plant Journal, 8(2), 195-204, (2022).
  • Sanden, B. L., Ferguson L. and Corwin, D. L. Development and long-term salt tolerance of pistachios from planting to maturity using saline groundwater. In VI International Symposium on Almonds and Pistachios 1028, 327-332, (2013).
  • Abbaspour, H., Afshari, H. & Abdel-Wahhab, M. A. Influence of salt stress on growth, pigments, soluble sugars and ion accumulation in three pistachio cultivars. Journal of Medicinal Plants Research, 6(12), 2468-2473, (2012).
  • Soni, A., Dhakar, S., & Kumar, N. Mechanisms and strategies for improving salinity tolerance in fruit crops. International Journal of Current Microbiology and Applied Sciences, 6(8), 1917-1924, (2017).
  • Petridis, A., Therios, I., Samouris, G., & Tananaki, C. Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. Environmental and Experimental Botany, 79, 37-43, (2012).
  • Acosta-Motos, J.R., Ortuño, M.F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M.J. & Hernandez, J.A. Plant responses to salt stress: adaptive mechanisms. Agronomy, 7 (1), p.18, (2017).
  • Tan, J., Ben-Gal, A., Shtein, I., Bustan, A., Dag, A., & Erel, R. Root structural plasticity enhances salt tolerance in mature olives. Environmental and Experimental Botany, 179, 104224, (2020).
  • Trabelsi, L., Gargouri, K., Ayadi, M., Mbadra, C., Nasr, M. B., Mbarek, H. B., Ghrab M., Ahmed B.G., Kammoun Y., Loukil E., Maktouf S., Khlifı M., & Gargouri, R. Impact of drought and salinity on olive potential yield, oil and fruit qualities (cv. Chemlali) in an arid climate. Agricultural Water Management, 269, 107726, (2022).
  • Munns, R. & Termaat, A. Whole-plant responses to salinity. Functional Plant Biology, 13(1), 143-160, (1986).
  • Rahneshan, Z., Nasibi, F., Lakehal, A. & Bellini, C. Unravelling salt stress responses in two pistachio (Pistacia vera L.) genotypes. Acta Physiologiae Plantarum, 40(9), 1-13, (2018).
  • Zou, Y., Zhang, Y., & Testerink, C. Root dynamic growth strategies in response to salinity. Plant, Cell & Environment, 45(3), 695-704, (2022).
  • Byrt, C. S., Munns, R., Burton, R. A., Gilliham, M., & Wege, S. Root cell wall solutions for crop plants in saline soils. Plant science, 269, 47-55, (2018).
  • Ashraf, M. Breeding for salinity tolerance in plants. Critical Reviews in Plant Sciences 13 (1), 17-42, (1994).
  • Vivaldi, G. A., Camposeo, S., Romero-Trigueros, C., Pedrero, F., Caponio, G., Lopriore, G., & Álvarez, S. Physiological responses of almond trees under regulated deficit irrigation using saline and desalinated reclaimed water. Agricultural Water Management, 258, 107172, (2021).
  • Álvarez, S., Rodríguez, P., Broetto, F., & Sánchez-Blanco, M. J. Long term responses and adaptive strategies of Pistacia lentiscus under moderate and severe deficit irrigation and salinity: Osmotic and elastic adjustment, growth, ion uptake and photosynthetic activity. Agricultural Water Management, 202, 253-262, (2018).
  • Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64-77, (2020).
  • Bader, B., Aissaoui, F., Kmicha, I., Salem, A. B., Chehab, H., Gargouri, K., Dalenda B., & Chaieb, M. Effects of salinity stress on water desalination, olive tree (Olea europaea L. cvs ‘Picholine’,‘Meski’and ‘Ascolana’) growth and ion accumulation. Desalination, 364, 46-52, (2015).
  • Yeo, A.R., Lee, A.S., Izard, P., Boursier, P.J. and Flowers, T.J. Short-and long-term effects of salinity on leaf growth in rice (Oryza sativa L.). Journal of Experimental Botany, 42(7), 881-889, (1991).
  • Binzel, M. L., & Reuveni, M. Cellular mechanisms of salt tolerance in plant cells. Horticultural Reviews, 16, 33-69, (2010).
  • Boman, B. J. Salinity effects on Florida grapefruit in the Indian River region. HortTechnology, 15(1), 89-95, (2005).
  • Hajiboland, R., Norouzi, F. & Poschenrieder, C. Growth, physiological, biochemical and ionic responses of pistachio seedlings to mild and high salinity. Trees, 28(4), 1065-1078, (2014).
  • Parida, A.K. & Das, A.B. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324-349, (2005).
  • Shahriaripour, R., Tajabadi Pour, A. and Mozaffari, V. Effects of salinity and soil phosphorus application on growth and chemical composition of pistachio seedlings. Communications in Soil Science and Plant Analysis, 42(2), 144-158, (2011).
  • Karimi, H. R., & Maleki Kuhbanani, A. The evaluation of inter-specific hybrid of P. atlantica× P. vera cv.‘Badami Zarand’as a pistachio rootstock to salinity stress. Journal of Nuts, 6(02), 113-122, (2015).
  • Zhang, S., Quartararo, A., Betz, O., Madahhosseini, S., Heringer, A., Le, T., Shao, Y., Caruso, T., Ferguson, L., Jernstedt, J.& Wilkop, T. Root vacuolar sequestration and suberization contribute to salinity tolerance in Pistacia spp. rootstocks. Authorea Preprints, (2020).
  • Rossi, L., Francini, A., Minnocci, A., & Sebastiani, L. Salt stress modifies apoplastic barriers in olive (Olea europaea L.): a comparison between a salt-tolerant and a salt-sensitive cultivar. Scientia Horticulturae, 192, 38-46, (2015).
  • Wang, P., Wang, F., Li, L., Su, S., Han, N., & Yang, Z. Study on Effects of salt stress on the Suberin Lamella of grapevine roots. In BIO Web of Conferences (Vol. 61, p. 01027). EDP Sciences, (2023).
  • Kamiab, F., Talaie, A., Javanshah, A., Khezri, M., & Khalighi, A. Effect of long-term salinity on growth, chemical composition and mineral elements of pistachio (Pistacia vera cv. Badami-Zarand) rootstock seedlings. Annals of Biological Research, 3(12), 5545-5551, (2012).
  • Wang, G., Wang, L., Ma, F., Yang, D., & You, Y. Earthworm and arbuscular mycorrhiza interactions: Strategies to motivate antioxidant responses and improve soil functionality. Environmental Pollution, 272, 115980, (2021).
  • Sánchez-Ledesma, J. A., Arreola-Ávila, J. G., Ávila-Rodríguez, V., García-González, F., Carrasco-Hernández, V., & Borja de laRosa, A. Photosynthetic rate and biomass production by inoculation of Scleroderma sp. with different concentrations of NaCl in pecan tree. Revista mexicana de ciencias agrícolas, 13(7), 1209-1220, (2022).
  • Shahvali, R., Shiran, B., Ravash, R., Fallahi, H., & Đeri, B. B. Effect of symbiosis with arbuscular mycorrhizal fungi on salt stress tolerance in GF677 (peach× almond) rootstock. Scientia Horticulturae, 272, 109535, (2020).
  • Wang, G., Wang, L., Ma, F., Yang, D., & You, Y. Earthworm and arbuscular mycorrhiza interactions: Strategies to motivate antioxidant responses and improve soil functionality. Environmental Pollution, 272, 115980, (2021).
  • Paymaneh, Z., Sarcheshmehpour, M., Bukovská, P., & Jansa, J. Could indigenous arbuscular mycorrhizal communities be used to improve tolerance of pistachio to salinity and/or drought. Symbiosis, 79, 269-283, (2019).
  • Ribeiro-Barros, A. I., Pawlowski, K., & Ramalho, J. C. Mechanisms of salt stress tolerance in Casuarina: A review of recent research. Journal of Forest Research, 27(2), 113-116, (2022).
  • Surucu, A., Acar, I., Demirkiran, A. R., Farooq, S., & Gokmen, V. Variations in nutrient uptake, yield and nut quality of different pistachio cultivars grafted on Pistacia khinjuk rootstock. Scientia Horticulturae, 260, 108913, (2020).
  • Raveh, E. Assessing salinity tolerance in citrus: latest developments. Advances in Citrus Nutrition, 425-433, (2012).
  • Sodii, M., Astolfi, S., Francini, A., & Sebastiani, L. Multiple linear regression and linear mixed models identify novel traits of salinity tolerance in Olea europaea L. Tree Physiology, 42(5), 1029-1042, (2022).
  • Zrig, A., Mohamed, H. B., Tounekti, T., Khemira, H., Serrano, M., Valero, D., & Vadel, A. M. Effect of rootstock on salinity tolerance of sweet almond (cv. Mazzetto). South African Journal of Botany, 102, 50-59, (2016).
  • Alipour, H. Photosynthesis properties and ion homeostasis of different pistachio cultivar seedlings in response to salinity stress. International Journal of Horticultural Science and Technology, 5(1), 19-29, (2018).
  • Karimi, H.R. & Roosta, H.R. Evaluation of Inter-Specific Hybrid of P. atlantica and P. vera L. cv. ‘Badami-Riz-e-Zarand’as Pistachio rootstock to Salinity Stress According to Some Growth Indices and Eco-physiological and Biochemical Parameters. Journal of Stress Physiology and Biochemistry, 10(3), 5-17, (2014)
  • Mickelbart, M. V., & Arpaia, M. L. Rootstock Influences Changes in Ion Concentrations, Growth, and Photosynthesis ofHass' Avocado Trees in Response to Salinity. Journal-Amerıcan Socıety For Hortıcultural Scıence, 127 (4), 649-655, (2002).
  • Han, Y., Wang, W., Sun, J., Ding, M., Zhao, R., Deng, S., Wang F., Hu Y., Wang Y., Lu Y., Du L., Hu Z., Diekman H., Shen X., Polle A., & Chen, S. Populus euphratica XTH overexpression enhances salinity tolerance by the development of leaf succulence in transgenic tobacco plants. Journal of experimental botany, 64(14), 4225-4238, (2013).
  • Lupo, Y., Prashanth, K., Lazarovitch, N., Fait, A., & Rachmilevitch, S. Importance of Leaf Age in Grapevines Under Salt Stress. bioRxiv, 2023-04, (2023).
  • Pathania, S., Bajaj, A., Mavi, M. S., & Choudhary, O. P. Comprehensive evaluation, analysis of mechanisms and the prediction of salinity tolerance in pomegranate. Scientia Horticulturae, 313, 111918, (2023).
  • Hameed, M., Ashraf, M., Ahmad, M. S. A., & Naz, N. Structural and functional adaptations in plants for salinity tolerance. Plant adaptation and phytoremediation, 151-170, (2010).
  • Pandolfi, C., Bazihizina, N., Giordano, C., Mancuso, S., & Azzarello, E. Salt acclimation process: a comparison between a sensitive and a tolerant Olea europaea cultivar. Tree Physiology, 37(3), 380-388, (2017).
  • Barbosa, R. C. A., Brito, M. E. B., da Silva Sá, F. V., dos Santos Soares Filho, W., Fernandes, P. D., & de Andrade Silva, L. Gas exchange of citrus rootstocks in response to intensity and duration of saline stress. Semina: Ciências Agrárias, 38(2), 725-738, (2017).
  • Ottow, E. A., Brinker, M., Teichmann, T., Fritz, E., Kaiser, W., Brosché, M., Kangasjärvi. J., Jiang X., & Polle, A. Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress. Plant Physiology, 139(4), 1762-1772, (2005).
  • Scott, D. H. Breeding Salt Tolerant Grapevine Rootstocks. PhD Thesis. University of California, Davis, (2022).
  • Singh, A., & Sharma, P. C. Recent insights into physiological and molecular regulation of salt stress in fruit crops. Advances in Plants & Agriculture Research. 8(2), 171-183, (2018).
  • Sorkheh, K., Shiran, B., Rouhi, V., Khodambashi, M., & Sofo, A. Salt stress induction of some key antioxidant enzymes and metabolites in eight Iranian wild almond species. Acta Physiologiae Plantarum, 34, 203-213, (2012).
  • Jazi, M. M., Seyedi, S. M., Ebrahimie, E., Ebrahimi, M., De Moro, G. & Botanga, C. A. Genome-wide transcriptome map of pistachio (Pistacia vera L.) provides novel insights into salinity-related genes and marker discovery. BMC Genomics, 18(1), 1-21, (2017).
  • Ahmad, R., & Anjum, M. A. Physiological and molecular basis of salinity tolerance in fruit crops. In Fruit Crops (pp. 445-464). Elsevier, (2020).
  • Berens, M. L., Wolinska, K. W., Spaepen, S., Ziegler, J., Nobori, T., Nair, A., & Tsuda, K. Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk. Proceedings of the National Academy of Sciences, 116(6), 2364-2373, (2019).
Toplam 68 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği (Diğer)
Bölüm Derleme Makalesi
Yazarlar

Banu Güngör 0000-0002-1728-7007

Sevinç Kıran 0000-0001-6808-8326

Yeşim Okay 0000-0003-1491-2564

Erken Görünüm Tarihi 14 Temmuz 2024
Yayımlanma Tarihi 15 Temmuz 2024
Gönderilme Tarihi 1 Kasım 2023
Kabul Tarihi 26 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 26 Sayı: 2

Kaynak Göster

APA Güngör, B., Kıran, S., & Okay, Y. (2024). Salt stress and exclusion mechanism in woody plants. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(2), 650-661. https://doi.org/10.25092/baunfbed.1384745
AMA Güngör B, Kıran S, Okay Y. Salt stress and exclusion mechanism in woody plants. BAUN Fen. Bil. Enst. Dergisi. Temmuz 2024;26(2):650-661. doi:10.25092/baunfbed.1384745
Chicago Güngör, Banu, Sevinç Kıran, ve Yeşim Okay. “Salt Stress and Exclusion Mechanism in Woody Plants”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26, sy. 2 (Temmuz 2024): 650-61. https://doi.org/10.25092/baunfbed.1384745.
EndNote Güngör B, Kıran S, Okay Y (01 Temmuz 2024) Salt stress and exclusion mechanism in woody plants. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26 2 650–661.
IEEE B. Güngör, S. Kıran, ve Y. Okay, “Salt stress and exclusion mechanism in woody plants”, BAUN Fen. Bil. Enst. Dergisi, c. 26, sy. 2, ss. 650–661, 2024, doi: 10.25092/baunfbed.1384745.
ISNAD Güngör, Banu vd. “Salt Stress and Exclusion Mechanism in Woody Plants”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26/2 (Temmuz 2024), 650-661. https://doi.org/10.25092/baunfbed.1384745.
JAMA Güngör B, Kıran S, Okay Y. Salt stress and exclusion mechanism in woody plants. BAUN Fen. Bil. Enst. Dergisi. 2024;26:650–661.
MLA Güngör, Banu vd. “Salt Stress and Exclusion Mechanism in Woody Plants”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 26, sy. 2, 2024, ss. 650-61, doi:10.25092/baunfbed.1384745.
Vancouver Güngör B, Kıran S, Okay Y. Salt stress and exclusion mechanism in woody plants. BAUN Fen. Bil. Enst. Dergisi. 2024;26(2):650-61.