Araştırma Makalesi
BibTex RIS Kaynak Göster

Kumaş yapısal parametrelerinin kaplanmış kumaşların pürüzlülüğü üzerindeki etkilerinin araştırılması

Yıl 2025, Cilt: 27 Sayı: 1, 324 - 341

Öz

Bu çalışmada kaplamalı polyester kumaşların yüzey pürüzlülük parametreleri üzerine zemin kumaşta kullanılan dokuma yapısının etkisi incelenmiştir. Panama, dimi ve saten örgü yapılarında farklı atkı ipliği sıklıkları ile dokunan %100 polyester kumaşlar tekstil kaplamacılığında yaygın olarak kullanılan ve ekonomik bir dolgu maddesi olan kalsit (CaCO3) ile kaplanmıştır. Kumaşların yüzey özellikleri, aritmetik ortalama yükseklik (Ra), ortalama tepe yüksekliği (Rpm) ve ortalama vadi derinliği (Rvm) gibi çeşitli yüzey pürüzlülük parametreleri değerlendirilerek incelenmiştir. Örgü deseni ve atkı ipliği sıklığındaki değişimin etkisini incelemek amacıyla çözgü ipliği özellikleri sabit tutulmuştur. Deneysel sonuçlar, yüzey pürüzlülük değerlerinin zemin kumaşının desenine, çözgü ve atkı yönlerine ve atkı ipliği sıklığına bağlı olarak değiştiğini ve genel olarak kaplama işleminden sonra Ra, Rpm ve Rvm değerlerinin hem atkı hem de çözgü yönünde azaldığını göstermiştir.

Kaynakça

  • Fung, W., Coated and laminated textiles, 416, Woodhead Publishing, Cambridge, (2002).
  • Shim, E., Bonding requirements in coating and laminating of textiles in Jones, I. and Stylios G. K., Joining Textiles, Woodhead Publishing, 309-351, Cambridge, (2013).
  • Billah, S. M. R., Textile coatings in Mazumder, M. A., Sheardown, H., Al-Ahmed, A., Functional Polymers. Polymers and Polymeric Composites: A Reference Series, Springer, 825-882, (2019).
  • https://www.mta.gov.tr/v3.0/bilgi-merkezi/kalsit, (14.05.2022).
  • Mining Specialization Commission, General industrial minerals-1 (Asbestos Graphite- Calcite- Fluorite- Titanium), Technical Report, State Planning Organisation, Ankara, (2001).
  • Wypych, G., Handbook of fillers, 1905, ChemTec Publishing, Toronto, (2016).
  • Mattila, H. P. and Zevenhoven, R., Production of precipitated calcium carbonate from steel converter slag and other calcium-containing industrial wastes and residues in Aresta, M. and Eldik, R. V., Advances in Inorganic Chemistry, Academic Press, 347-384, Cambridge, (2014).
  • Chandran, A. J., Rangappa, S. M., Suyambulingam, I. and Siengchin, S., Micro/nano fillers for value‐added polymer composites: A comprehensive review, Journal of Vinyl and Additive Technology, 30, 1083-1123, (2024).
  • Sarkar, A., Ghosh, A. K. and Mahapatra, S., Lauric acid triggered in situ surface modification and phase selectivity of calcium carbonate: its application as an oil sorbent, Journal of Materials Chemistry, 22, 11113-11120, (2012).
  • Fadia, P., Tyagi, S., Bhagat, S., Nair, A., Panchal, P., Dave, H., Dang, S. and Singh, S., Calcium carbonate nano-and microparticles: synthesis methods and biological applications, 3 Biotech, 11, 1-30, (2021).
  • Mallick, P. K., Particulate and short fiber reinforced polymer composites in Kelly, A. and Zweben, C., Comprehensive Composite Materials, Pergamon, 291-331, Oxford, (2000).
  • Sun, S., Ding, H., Hou, X., Chen, D., Yu, S., Zhou, H. and Chen, Y., Effects of organic modifiers on the properties of TiO2-coated CaCO3 composite pigments prepared by the hydrophobic aggregation of particles, Applied Surface Science, 456, 923-931, (2018).
  • Webb, C., Qi, K., Anguilano, L. and Rivera, X. S., Mechanical and environmental evaluation of ground calcium carbonate (CaCO3) filled polypropylene composites as a sustainable alternative to virgin polypropylene, Results in Materials, 22, 100562, (2024).
  • Syafiq, A., Vengadaesvaran, B., Ahmed, U., Abd Rahim, N., Pandey, A. K., Bushroa, A. R., Ramesh, K. and Ramesh, S., Facile synthesize of transparent hydrophobic nano-CaCO3 based coatings for self-cleaning and anti-fogging, Materials Chemistry and Physics, 239, 121913, (2020).
  • Mahmood, N. Q. and Hikmat, M., The effect of calcium carbonate-nanoparticle on the mechanical and thermal properties of polymers utilizing different types of mixing and surface pre-treatment: A review paper, Engineering and Technology Journal, 41, 1497-1515, (2023).
  • Yang, G., Heo, Y. J. and Park, S. J., Effect of morphology of calcium carbonate on toughness behavior and thermal stability of epoxy-based composites. Processes, 7, 178, (2019).
  • Wu, Y., Dai, M., Han, Z., Wang, Y., and Xu, W., Effect of in-situ deposition of nano-calcium carbonate on the properties of anti-creasing cotton fabrics, Industrial Crops and Products, 218, 118931, (2024).
  • Stamboulı, M., Chaouch, W., Gargoubı, S., Zouarı, R. and Msahlı, S., Effect of calcium carbonate particle size and content on the thermal properties of PVC foamed layer used for coated textiles, Turkish Journal of Chemistry, 47, 40-46, (2023).
  • Abeywardena, M. R., Yashomala, M. A. D. H., Elkaduwe, R. K. W. H. M. K., Karunaratne, D. G. G. P., Pitawala, H. M. T. G. A., Rajapakse, R. M. G., Manipura, A. and Mantilaka, M. M. M. G. P. G., Fabrication of water-repellent polyester textile via dip-coating of in-situ surface-modified superhydrophobic calcium carbonate from dolomite, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 629, 127397, (2021).
  • Hou, D., Dai, G., Fan, H., Wang, J., Zhao, C. and Huang, H, Effects of calcium carbonate nano-particles on the properties of PVDF/nonwoven fabric flat-sheet composite membranes for direct contact membrane distillation. Desalination, 347, 25-33, (2014).
  • ISO 21920-2:2021, Geometrical product specifications (GPS)-Surface texture: Profile, Part 2: Terms, definitions and surface texture parameters. International Organization for Standardization, (2021).
  • Thomas, T. R., Rough surfaces 2nd ed., 296, Imperial College Press, London, (1998).
  • Ajayi, J. O., An attachment to the constant rate of elongation tester for estimating surface irregularities of fabrics, Textile Research Journal, 64, 8, 475-479, (1994).
  • Gabrijelčič, H., Colour and optical phenomena on fabric, Tekstilec, 50, 4-6, 93-132, (2007).
  • Zupin, Ž. and Dimitrovski, K., Mechanical properties of fabrics from cotton and biodegradable yarns bamboo, SPF, PLA in weft in Dubrovski, P. D., Woven Fabric Engineering, IntechOpen, 25-46, Rijeka, (2010).
  • Ajayi, J. O. and Elder, H. M., Effects of surface geometry on fabric friction, Journal of Testing and Evaluation, 25, 2, 182-188, (1997).
  • Akgun, M., Effect of yarn filament fineness on the surface roughness of polyester woven fabrics, Journal of Engineered Fibers and Fabrics, 10, 2, 155892501501000214, (2015).
  • Akgun, M., The effect of fabric balance and fabric cover on surface roughness of polyester fabrics, Fibers and Polymers, 14, 8, 1372-1377, (2013).
  • Akgun, M., (2014) Surface roughness properties of polyester woven fabrics after abrasion, The Journal of The Textile Institute, 105, 4, 383-391, (2014).
  • Peirce, F. T., 5-The geometry of cloth structure, Journal of the Textile Institute Transactions, 28, T45-T96, (1937).
  • ASTM D3776, Standard test methods for mass per unit area (weight) of fabric, American Society for Testing and Materials, (2011).
  • ASTM D1777-96, Test method for thickness of textile materials, American Society for Testing and Materials, (2007).
  • Gadelmawla, E. S., Koura, M. M., Maksoud, T. M., Elewa, I. M. and Soliman, H. H., Roughness parameters, Journal of Materials Processing Technology, 123, 1, 133-145, (2002).
  • Gupta, K. K., Abbas, S. M. and Abhyankar, A. C., Carbon black/polyurethane nanocomposite-coated fabric for microwave attenuation in X & Ku-band (8-18 GHz) frequency range, Journal of Industrial Textiles, 46,2, 510-529, (2016).
  • Celen, R., Manasoglu, G., Ulcay, Y. and Kanik, M., Usage of barium titanate in fabric coating and investigation of some properties, Fibers and Polymers, 22, 1296-1303, (2021).
  • Manasoglu, G., Celen, R., Akgun, M. and Kanik, M., The effect of graphene coating on surface roughness and friction properties of polyester fabrics, Materials Science, 27, 4, 470-476, (2021).
  • Manasoglu, G., Celen, R. and Kanmaz, D., Improvement of thermal stability, flame retardancy, hydrophobicity, tear and wear performance of polyester fabrics with graphene nanoplatelet coating, Journal of Applied Polymer Science, e55765, (2024).

Investigation of the effects of fabric structural parameters on the roughness of coated fabrics

Yıl 2025, Cilt: 27 Sayı: 1, 324 - 341

Öz

In this study, the effects of the weave structures used in the base fabric on the surface roughness parameters of coated polyester fabrics were investigated. 100% polyester fabrics woven with different weft yarn densities in the basket, twill, and sateen weave patterns were coated with calcite (CaCO3), a widely used and economical filler in the textile coating. The surface properties of the fabrics were examined by evaluating various surface roughness parameters such as arithmetic average height (Ra), mean height of peaks (Rpm), and mean depth of valleys (Rvm). Warp yarn properties were kept constant to investigate the effect of changes in weave pattern and weft yarn density. Experimental results indicated that surface roughness values changed depending on the weave pattern of the base fabric, warp and weft directions, and weft yarn density. Overall, after the coating process, the Ra, Rpm, and Rvm values decreased in both the weft and warp directions.

Kaynakça

  • Fung, W., Coated and laminated textiles, 416, Woodhead Publishing, Cambridge, (2002).
  • Shim, E., Bonding requirements in coating and laminating of textiles in Jones, I. and Stylios G. K., Joining Textiles, Woodhead Publishing, 309-351, Cambridge, (2013).
  • Billah, S. M. R., Textile coatings in Mazumder, M. A., Sheardown, H., Al-Ahmed, A., Functional Polymers. Polymers and Polymeric Composites: A Reference Series, Springer, 825-882, (2019).
  • https://www.mta.gov.tr/v3.0/bilgi-merkezi/kalsit, (14.05.2022).
  • Mining Specialization Commission, General industrial minerals-1 (Asbestos Graphite- Calcite- Fluorite- Titanium), Technical Report, State Planning Organisation, Ankara, (2001).
  • Wypych, G., Handbook of fillers, 1905, ChemTec Publishing, Toronto, (2016).
  • Mattila, H. P. and Zevenhoven, R., Production of precipitated calcium carbonate from steel converter slag and other calcium-containing industrial wastes and residues in Aresta, M. and Eldik, R. V., Advances in Inorganic Chemistry, Academic Press, 347-384, Cambridge, (2014).
  • Chandran, A. J., Rangappa, S. M., Suyambulingam, I. and Siengchin, S., Micro/nano fillers for value‐added polymer composites: A comprehensive review, Journal of Vinyl and Additive Technology, 30, 1083-1123, (2024).
  • Sarkar, A., Ghosh, A. K. and Mahapatra, S., Lauric acid triggered in situ surface modification and phase selectivity of calcium carbonate: its application as an oil sorbent, Journal of Materials Chemistry, 22, 11113-11120, (2012).
  • Fadia, P., Tyagi, S., Bhagat, S., Nair, A., Panchal, P., Dave, H., Dang, S. and Singh, S., Calcium carbonate nano-and microparticles: synthesis methods and biological applications, 3 Biotech, 11, 1-30, (2021).
  • Mallick, P. K., Particulate and short fiber reinforced polymer composites in Kelly, A. and Zweben, C., Comprehensive Composite Materials, Pergamon, 291-331, Oxford, (2000).
  • Sun, S., Ding, H., Hou, X., Chen, D., Yu, S., Zhou, H. and Chen, Y., Effects of organic modifiers on the properties of TiO2-coated CaCO3 composite pigments prepared by the hydrophobic aggregation of particles, Applied Surface Science, 456, 923-931, (2018).
  • Webb, C., Qi, K., Anguilano, L. and Rivera, X. S., Mechanical and environmental evaluation of ground calcium carbonate (CaCO3) filled polypropylene composites as a sustainable alternative to virgin polypropylene, Results in Materials, 22, 100562, (2024).
  • Syafiq, A., Vengadaesvaran, B., Ahmed, U., Abd Rahim, N., Pandey, A. K., Bushroa, A. R., Ramesh, K. and Ramesh, S., Facile synthesize of transparent hydrophobic nano-CaCO3 based coatings for self-cleaning and anti-fogging, Materials Chemistry and Physics, 239, 121913, (2020).
  • Mahmood, N. Q. and Hikmat, M., The effect of calcium carbonate-nanoparticle on the mechanical and thermal properties of polymers utilizing different types of mixing and surface pre-treatment: A review paper, Engineering and Technology Journal, 41, 1497-1515, (2023).
  • Yang, G., Heo, Y. J. and Park, S. J., Effect of morphology of calcium carbonate on toughness behavior and thermal stability of epoxy-based composites. Processes, 7, 178, (2019).
  • Wu, Y., Dai, M., Han, Z., Wang, Y., and Xu, W., Effect of in-situ deposition of nano-calcium carbonate on the properties of anti-creasing cotton fabrics, Industrial Crops and Products, 218, 118931, (2024).
  • Stamboulı, M., Chaouch, W., Gargoubı, S., Zouarı, R. and Msahlı, S., Effect of calcium carbonate particle size and content on the thermal properties of PVC foamed layer used for coated textiles, Turkish Journal of Chemistry, 47, 40-46, (2023).
  • Abeywardena, M. R., Yashomala, M. A. D. H., Elkaduwe, R. K. W. H. M. K., Karunaratne, D. G. G. P., Pitawala, H. M. T. G. A., Rajapakse, R. M. G., Manipura, A. and Mantilaka, M. M. M. G. P. G., Fabrication of water-repellent polyester textile via dip-coating of in-situ surface-modified superhydrophobic calcium carbonate from dolomite, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 629, 127397, (2021).
  • Hou, D., Dai, G., Fan, H., Wang, J., Zhao, C. and Huang, H, Effects of calcium carbonate nano-particles on the properties of PVDF/nonwoven fabric flat-sheet composite membranes for direct contact membrane distillation. Desalination, 347, 25-33, (2014).
  • ISO 21920-2:2021, Geometrical product specifications (GPS)-Surface texture: Profile, Part 2: Terms, definitions and surface texture parameters. International Organization for Standardization, (2021).
  • Thomas, T. R., Rough surfaces 2nd ed., 296, Imperial College Press, London, (1998).
  • Ajayi, J. O., An attachment to the constant rate of elongation tester for estimating surface irregularities of fabrics, Textile Research Journal, 64, 8, 475-479, (1994).
  • Gabrijelčič, H., Colour and optical phenomena on fabric, Tekstilec, 50, 4-6, 93-132, (2007).
  • Zupin, Ž. and Dimitrovski, K., Mechanical properties of fabrics from cotton and biodegradable yarns bamboo, SPF, PLA in weft in Dubrovski, P. D., Woven Fabric Engineering, IntechOpen, 25-46, Rijeka, (2010).
  • Ajayi, J. O. and Elder, H. M., Effects of surface geometry on fabric friction, Journal of Testing and Evaluation, 25, 2, 182-188, (1997).
  • Akgun, M., Effect of yarn filament fineness on the surface roughness of polyester woven fabrics, Journal of Engineered Fibers and Fabrics, 10, 2, 155892501501000214, (2015).
  • Akgun, M., The effect of fabric balance and fabric cover on surface roughness of polyester fabrics, Fibers and Polymers, 14, 8, 1372-1377, (2013).
  • Akgun, M., (2014) Surface roughness properties of polyester woven fabrics after abrasion, The Journal of The Textile Institute, 105, 4, 383-391, (2014).
  • Peirce, F. T., 5-The geometry of cloth structure, Journal of the Textile Institute Transactions, 28, T45-T96, (1937).
  • ASTM D3776, Standard test methods for mass per unit area (weight) of fabric, American Society for Testing and Materials, (2011).
  • ASTM D1777-96, Test method for thickness of textile materials, American Society for Testing and Materials, (2007).
  • Gadelmawla, E. S., Koura, M. M., Maksoud, T. M., Elewa, I. M. and Soliman, H. H., Roughness parameters, Journal of Materials Processing Technology, 123, 1, 133-145, (2002).
  • Gupta, K. K., Abbas, S. M. and Abhyankar, A. C., Carbon black/polyurethane nanocomposite-coated fabric for microwave attenuation in X & Ku-band (8-18 GHz) frequency range, Journal of Industrial Textiles, 46,2, 510-529, (2016).
  • Celen, R., Manasoglu, G., Ulcay, Y. and Kanik, M., Usage of barium titanate in fabric coating and investigation of some properties, Fibers and Polymers, 22, 1296-1303, (2021).
  • Manasoglu, G., Celen, R., Akgun, M. and Kanik, M., The effect of graphene coating on surface roughness and friction properties of polyester fabrics, Materials Science, 27, 4, 470-476, (2021).
  • Manasoglu, G., Celen, R. and Kanmaz, D., Improvement of thermal stability, flame retardancy, hydrophobicity, tear and wear performance of polyester fabrics with graphene nanoplatelet coating, Journal of Applied Polymer Science, e55765, (2024).
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tekstil Teknolojisi
Bölüm Araştırma Makalesi
Yazarlar

Mine Akgün 0000-0002-6415-7782

Gizem Manasoğlu 0000-0002-1504-8694

Mehmet Kanık 0000-0003-2317-7282

Erken Görünüm Tarihi 16 Ocak 2025
Yayımlanma Tarihi
Gönderilme Tarihi 6 Aralık 2024
Kabul Tarihi 31 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 27 Sayı: 1

Kaynak Göster

APA Akgün, M., Manasoğlu, G., & Kanık, M. (2025). Investigation of the effects of fabric structural parameters on the roughness of coated fabrics. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(1), 324-341.
AMA Akgün M, Manasoğlu G, Kanık M. Investigation of the effects of fabric structural parameters on the roughness of coated fabrics. BAUN Fen. Bil. Enst. Dergisi. Ocak 2025;27(1):324-341.
Chicago Akgün, Mine, Gizem Manasoğlu, ve Mehmet Kanık. “Investigation of the Effects of Fabric Structural Parameters on the Roughness of Coated Fabrics”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27, sy. 1 (Ocak 2025): 324-41.
EndNote Akgün M, Manasoğlu G, Kanık M (01 Ocak 2025) Investigation of the effects of fabric structural parameters on the roughness of coated fabrics. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27 1 324–341.
IEEE M. Akgün, G. Manasoğlu, ve M. Kanık, “Investigation of the effects of fabric structural parameters on the roughness of coated fabrics”, BAUN Fen. Bil. Enst. Dergisi, c. 27, sy. 1, ss. 324–341, 2025.
ISNAD Akgün, Mine vd. “Investigation of the Effects of Fabric Structural Parameters on the Roughness of Coated Fabrics”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27/1 (Ocak 2025), 324-341.
JAMA Akgün M, Manasoğlu G, Kanık M. Investigation of the effects of fabric structural parameters on the roughness of coated fabrics. BAUN Fen. Bil. Enst. Dergisi. 2025;27:324–341.
MLA Akgün, Mine vd. “Investigation of the Effects of Fabric Structural Parameters on the Roughness of Coated Fabrics”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 27, sy. 1, 2025, ss. 324-41.
Vancouver Akgün M, Manasoğlu G, Kanık M. Investigation of the effects of fabric structural parameters on the roughness of coated fabrics. BAUN Fen. Bil. Enst. Dergisi. 2025;27(1):324-41.