Araştırma Makalesi
BibTex RIS Kaynak Göster

Sinoviyal sıvı kaynaklı mezenkimal kök hücrelerden farklılaşan kondrositlerin izolasyonu için yeni bir yöntem

Yıl 2025, Cilt: 27 Sayı: 1, 397 - 410

Öz

Sinovyal sıvıdaki (SS) mezenkimal kök hücreler (MKH’ler), sağlıklı eklemlerin rejenerasyon sürecine aktif olarak katılır ve in vitro farklılaşma yoluyla elde edilebilen kondrosit hücrelerinin iyi bir kaynağı olarak tanımlanmıştır. SS'dan elde edilen bu hücre popülasyonu, kemik iliği ve sinovyal membran MKH'leriyle benzer şekilde farklılaşma potansiyeli açısından hücresel özellikler paylaşmaktadır. Mevcut hücre izolasyon protokolleri, genellikle biyolojik örneklerden kondrosit veya MKH izolasyonuna odaklanmaktadır. Ancak, MKH'lerden in vitro farklılaştırma yoluyla elde edilen kondrositlerin izolasyonu literatürde henüz tanımlanmamıştır. Bu bağlamda, hücre etiketleme gerektirmeksizin Ficoll-Paque yoğunluk gradyanı santrifüjleme temelli yeni bir yöntem tanımladık. Bu yöntem, insan SS-MKH'lerinden farklılaşmış kondrositlerin yüksek verimli izolasyonunu sağlamaktadır.

Bu çalışmada, iSS-MKH'lerinden 21 günlük kondrojenik farklılaşma sürecinin ardından terminal farklılaşmış kondrositler bu yeni protokol kullanılarak elde edilmiştir. İzole edilen kondrositler, Alcian Blue boyaması ile hücre canlılığı ve fonksiyonelliği açısından incelenmiş ve kondrositlere özgü gen ekspresyonu analizi yapılmıştır.
Sonuç olarak, burada tanımlanan yeni kondrosit izolasyon yöntemi düşük maliyetli ve verimli bir çözüm sunmaktadır. Minimal işlem ilkelerine uygun olarak bu protokolün, hem translasyonel araştırmalar hem de in vitro kondrosit farklılaşması ve izolasyonuna yönelik rutin klinik uygulamalarda kullanılması beklenmektedir.

Proje Numarası

This reseach was supported by the Kocaeli University Scientific Research Project Department [grant no. BAP-2022-TDK-2948] and The Scientific and Technological Research Council of Türkiye (TÜBİTAK) [grant no. 123S367]

Kaynakça

  • Kangari P, Talaei-Khozani T, Razeghian-Jahromi I and Razmkhah M (2020) Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther 11:492. doi: 10.1186/s13287-020-02001-1
  • Ghaneialvar H, Soltani L, Rahmani HR, Lotfi AS and Soleimani M (2018) Characterization and Classification of Mesenchymal Stem Cells in Several Species Using Surface Markers for Cell Therapy Purposes. Indian J Clin Biochem 33:46-52. doi: 10.1007/s12291-017-0641-x
  • Han Y, Li X, Zhang Y, Han Y, Chang F and Ding J (2019) Mesenchymal Stem Cells for Regenerative Medicine. Cells 8. doi: 10.3390/cells8080886
  • Atashi F, Modarressi A and Pepper MS (2015) The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev 24:1150-63. doi: 10.1089/scd.2014.0484
  • Nam Y, Rim YA, Lee J and Ju JH (2018) Current Therapeutic Strategies for Stem Cell-Based Cartilage Regeneration. Stem Cells Int 2018:8490489. doi: 10.1155/2018/8490489
  • Jang S, Lee K and Ju JH (2021) Recent Updates of Diagnosis, Pathophysiology, and Treatment on Osteoarthritis of the Knee. Int J Mol Sci 22. doi: 10.3390/ijms22052619
  • Caron MM, Emans PJ, Coolsen MM, Voss L, Surtel DA, Cremers A, van Rhijn LW and Welting TJ (2012) Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures. Osteoarthritis Cartilage 20:1170-8. doi: 10.1016/j.joca.2012.06.016
  • Posel C, Moller K, Frohlich W, Schulz I, Boltze J and Wagner DC (2012) Density gradient centrifugation compromises bone marrow mononuclear cell yield. PLoS One 7:e50293. doi: 10.1371/journal.pone.0050293
  • Grievink HW, Luisman T, Kluft C, Moerland M and Malone KE (2016) Comparison of Three Isolation Techniques for Human Peripheral Blood Mononuclear Cells: Cell Recovery and Viability, Population Composition, and Cell Functionality. Biopreserv Biobank 14:410-415. doi: 10.1089/bio.2015.0104
  • Yamamoto Y, Itoh S, Yamauchi Y, Matsushita K, Ikeda S, Naruse H and Hayashi M (2015) Density Gradient Centrifugation for the Isolation of Cells of Multiple Lineages. J Cell Biochem 116:2709-14. doi: 10.1002/jcb.25270
  • Sharifian Gh M and Norouzi F (2023) Guidelines for an optimized differential centrifugation of cells. Biochem Biophys Rep 36:101585. doi: 10.1016/j.bbrep.2023.101585
  • Jia Z, Liang Y, Xu X, Li X, Liu Q, Ou Y, Duan L, Zhu W, Lu W, Xiong J and Wang D (2018) Isolation and characterization of human mesenchymal stem cells derived from synovial fluid by magnetic-activated cell sorting (MACS). Cell Biol Int 42:262-271. doi: 10.1002/cbin.10903
  • Hsu C-H, Chen C, Irimia D and Toner M (2010) Isolating cells from blood using buoyancy activated cell sorting (BACS) with glass microbubbles. 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, pp. 3-7
  • Frauchiger DA, Tekari A, May RD, Džafo E, Chan SC, Stoyanov J, Bertolo A, Zhang X, Guerrero J and Sakai D (2019) Fluorescence-activated cell sorting is more potent to fish intervertebral disk progenitor cells than magnetic and beads-based methods. Tissue Engineering Part C: Methods 25:571-580.
  • Karaoz E, Aksoy A, Ayhan S, Sariboyaci AE, Kaymaz F and Kasap M (2009) Characterization of mesenchymal stem cells from rat bone marrow: ultrastructural properties, differentiation potential and immunophenotypic markers. Histochem Cell Biol 132:533-46. doi: 10.1007/s00418-009-0629-6
  • Hassan G, Bahjat M, Kasem I, Soukkarieh C and Aljamali M (2018) Platelet lysate induces chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells. Cell Mol Biol Lett 23:11. doi: 10.1186/s11658-018-0080-6
  • Rencber SF, Yazir Y, Sarihan M, Sezer Z, Korun ZEU, Ozturk A, Duruksu G, Guzel E, Akpinar G and Corakci A (2024) Endoplasmic reticulum stress of endometrial mesenchymal stem cells in endometriosis. Tissue Cell 91:102544. doi: 10.1016/j.tice.2024.102544
  • Karaoz E, Dogan BN, Aksoy A, Gacar G, Akyuz S, Ayhan S, Genc ZS, Yuruker S, Duruksu G, Demircan PC and Sariboyaci AE (2010) Isolation and in vitro characterisation of dental pulp stem cells from natal teeth. Histochem Cell Biol 133:95-112. doi: 10.1007/s00418-009-0646-5
  • Altuntas C, Alper M, Keles Y, Sav FN and Kockar F (2023) Hypoxic regulation of ADAMTS-2 and -3 (a disintegrin and matrix metalloproteinase with thrombospondin motifs 2 and 3) procollagen N proteinases by HIF-1alpha in endothelial cells. Mol Cell Biochem 478:1151-1160. doi: 10.1007/s11010-022-04549-3
  • Livak KJ and Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-8. doi: 10.1006/meth.2001.1262
  • Andrade C (2019) The P Value and Statistical Significance: Misunderstandings, Explanations, Challenges, and Alternatives. Indian J Psychol Med 41:210-215. doi: 10.4103/IJPSYM.IJPSYM_193_19
  • Lee DH, Sonn CH, Han SB, Oh Y, Lee KM and Lee SH (2012) Synovial fluid CD34(-) CD44(+) CD90(+) mesenchymal stem cell levels are associated with the severity of primary knee osteoarthritis. Osteoarthritis Cartilage 20:106-9. doi: 10.1016/j.joca.2011.11.010
  • Lindahl A (2015) From gristle to chondrocyte transplantation: treatment of cartilage injuries. Philos Trans R Soc Lond B Biol Sci 370:20140369. doi: 10.1098/rstb.2014.0369
  • Gaynor J, Adams DC and Sams AE (2008) Effect of intraarticular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs. Veterinary therapeutics: research in applied veterinary medicine 9:192-200.
  • Lee SO, Pinder E, Chun JY, Lou W, Sun M and Gao AC (2008) Interleukin-4 stimulates androgen-independent growth in LNCaP human prostate cancer cells. Prostate 68:85-91. doi: 10.1002/pros.20691
  • Murphy JM, Fink DJ, Hunziker EB and Barry FP (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48:3464-74. doi: 10.1002/art.11365
  • Centeno CJ, Busse D, Kisiday J, Keohan C, Freeman M and Karli D (2008) Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician 11:343-53.
  • Centeno CJ, Schultz JR, Cheever M, Robinson B, Freeman M and Marasco W (2010) Safety and complications reporting on the re-implantation of culture-expanded mesenchymal stem cells using autologous platelet lysate technique. Curr Stem Cell Res Ther 5:81-93. doi: 10.2174/157488810790442796
  • Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, Kim JE, Shim H, Shin JS, Shin IS, Ra JC, Oh S and Yoon KS (2014) Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells 32:1254-66. doi: 10.1002/stem.1634
  • Vega A, Martin-Ferrero MA, Del Canto F, Alberca M, Garcia V, Munar A, Orozco L, Soler R, Fuertes JJ, Huguet M, Sanchez A and Garcia-Sancho J (2015) Treatment of Knee Osteoarthritis With Allogeneic Bone Marrow Mesenchymal Stem Cells: A Randomized Controlled Trial. Transplantation 99:1681-90. doi: 10.1097/TP.0000000000000678
  • Charlier E, Deroyer C, Ciregia F, Malaise O, Neuville S, Plener Z, Malaise M and de Seny D (2019) Chondrocyte dedifferentiation and osteoarthritis (OA). Biochem Pharmacol 165:49-65. doi: 10.1016/j.bcp.2019.02.036
  • Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, Bierma-Zeinstra S, Brandt KD, Croft P, Doherty M, Dougados M, Hochberg M, Hunter DJ, Kwoh K, Lohmander LS and Tugwell P (2008) OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis Cartilage 16:137-62. doi: 10.1016/j.joca.2007.12.013
  • Yue L, Lim R and Owens BD (2024) Latest Advances in Chondrocyte-Based Cartilage Repair. Biomedicines 12. doi: 10.3390/biomedicines12061367
  • Harrison P, Hopkins T, Hulme C, McCarthy H and Wright K (2023) Chondrocyte Isolation and Expansion. Methods Mol Biol 2598:9-19. doi: 10.1007/978-1-0716-2839-3_2
  • Lau TT, Peck Y, Huang W and Wang DA (2015) Optimization of chondrocyte isolation and phenotype characterization for cartilage tissue engineering. Tissue Eng Part C Methods 21:105-11. doi: 10.1089/ten.TEC.2014.0159
  • Shen P, Wu P, Maleitzke T, Reisener MJ, Heinz GA, Heinrich F, Durek P, Gwinner C, Winkler T, Pumberger M, Perka C, Mashreghi MF and Lohning M (2022) Optimization of chondrocyte isolation from human articular cartilage to preserve the chondrocyte transcriptome. Front Bioeng Biotechnol 10:1046127. doi: 10.3389/fbioe.2022.1046127
  • Yan Y, Fu R, Liu C, Yang J, Li Q and Huang RL (2021) Sequential Enzymatic Digestion of Different Cartilage Tissues: A Rapid and High-Efficiency Protocol for Chondrocyte Isolation, and Its Application in Cartilage Tissue Engineering. Cartilage 13:1064s-1076s. doi: 10.1177/19476035211057242
  • Korpershoek JV, Rikkers M and Vonk LA (2023) Isolation of Chondrons from Hyaline Cartilage. Methods Mol Biol 2598:21-27. doi: 10.1007/978-1-0716-2839-3_3
  • Wang W, Jing X, Du T, Ren J, Liu X, Chen F, Shao Y, Sun S, Yang G and Cui X (2022) Iron overload promotes intervertebral disc degeneration via inducing oxidative stress and ferroptosis in endplate chondrocytes. Free Radic Biol Med 190:234-246. doi: 10.1016/j.freeradbiomed.2022.08.018
  • Ramser A, Greene E, Rath N and Dridi S (2023) Primary growth plate chondrocyte isolation, culture, and characterization from the modern broiler. Poult Sci 102:102254. doi: 10.1016/j.psj.2022.102254
  • Friedman B, Larranaga-Vera A, Castro CM, Corciulo C, Rabbani P and Cronstein BN (2023) Adenosine A2A receptor activation reduces chondrocyte senescence. Faseb j 37:e22838. doi: 10.1096/fj.202201212RR
  • Ripmeester EGJ, Caron MMJ, van den Akker GGH, Steijns J, Surtel DAM, Cremers A, Peeters LCW, van Rhijn LW and Welting TJM (2021) BMP7 reduces the fibrocartilage chondrocyte phenotype. Sci Rep 11:19663. doi: 10.1038/s41598-021-99096-0
  • Caron MM, Emans PJ, Surtel DA, van der Kraan PM, van Rhijn LW and Welting TJ (2015) BAPX-1/NKX-3.2 acts as a chondrocyte hypertrophy molecular switch in osteoarthritis. Arthritis Rheumatol 67:2944-56. doi: 10.1002/art.39293
  • Muhammad SA, Nordin N, Hussin P, Mehat MZ, Tan SW and Fakurazi S (2021) Optimization of Protocol for Isolation of Chondrocytes from Human Articular Cartilage. Cartilage 13:872s-884s. doi: 10.1177/1947603519876333
  • Naranda J, Gradišnik L, Gorenjak M, Vogrin M and Maver U (2017) Isolation and characterization of human articular chondrocytes from surgical waste after total knee arthroplasty (TKA). PeerJ 5:e3079. doi: 10.7717/peerj.3079

A novel isolation method for chondrocytes differentiated from synovial fluid-derived mesenchymal stem cell

Yıl 2025, Cilt: 27 Sayı: 1, 397 - 410

Öz

Mesenchymal stem cells (MSCs) in synovial fluid (SF) actively participate in the regeneration process of healthy joints and have been defined as a good source of chondrocyte cells, which can be obtained by in vitro differentiation of stem cells. This cell population derived from synovial fluid shares cellular characteristics with bone marrow and synovial membrane MSCs with respect to their differentiation potency. Current cell isolation protocols for cartilage therapy mainly focus on the isolation of chondrocytes or MSCs from biological samples. However, the isolation of chondrocytes after the in vitro differentiation from MSCs has not been described in the literature. In this context, we defined a novel method based on Ficoll-Paque density gradient centrifugation for high-throughput isolation of differentiated chondrocytes from human synovial fluid mesenchymal stem cells (hSF-MSCs) without the requirement for cell labeling.
In this study, terminally differentiated chondrocytes were obtained after 21 days of chondrogenic differentiation from hSF-MSCs and were isolated using this novel protocol. The isolated chondrocytes were later analyzed for cell viability and functionality by staining with Alcian Blue and by gene expression analysis for chondrocyte markers.
In conclusion, the novel chondrocyte isolation method described here is capable of achieving low-cost efficiency. According to the minimal process principles, we hope that this protocol will find use in both translational research and routine clinical applications involving the differentiation and isolation of chondrocytes in vitro.

Etik Beyan

Ethical approval for this thesis study was obtained from the Non-Interventional Clinical Research Ethics Committee of Kocaeli University under the reference number GOKAEK-2021/22.17 on December 21, 2021.

Destekleyen Kurum

KOCAELİ ÜNİVERSİTY

Proje Numarası

This reseach was supported by the Kocaeli University Scientific Research Project Department [grant no. BAP-2022-TDK-2948] and The Scientific and Technological Research Council of Türkiye (TÜBİTAK) [grant no. 123S367]

Kaynakça

  • Kangari P, Talaei-Khozani T, Razeghian-Jahromi I and Razmkhah M (2020) Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther 11:492. doi: 10.1186/s13287-020-02001-1
  • Ghaneialvar H, Soltani L, Rahmani HR, Lotfi AS and Soleimani M (2018) Characterization and Classification of Mesenchymal Stem Cells in Several Species Using Surface Markers for Cell Therapy Purposes. Indian J Clin Biochem 33:46-52. doi: 10.1007/s12291-017-0641-x
  • Han Y, Li X, Zhang Y, Han Y, Chang F and Ding J (2019) Mesenchymal Stem Cells for Regenerative Medicine. Cells 8. doi: 10.3390/cells8080886
  • Atashi F, Modarressi A and Pepper MS (2015) The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev 24:1150-63. doi: 10.1089/scd.2014.0484
  • Nam Y, Rim YA, Lee J and Ju JH (2018) Current Therapeutic Strategies for Stem Cell-Based Cartilage Regeneration. Stem Cells Int 2018:8490489. doi: 10.1155/2018/8490489
  • Jang S, Lee K and Ju JH (2021) Recent Updates of Diagnosis, Pathophysiology, and Treatment on Osteoarthritis of the Knee. Int J Mol Sci 22. doi: 10.3390/ijms22052619
  • Caron MM, Emans PJ, Coolsen MM, Voss L, Surtel DA, Cremers A, van Rhijn LW and Welting TJ (2012) Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures. Osteoarthritis Cartilage 20:1170-8. doi: 10.1016/j.joca.2012.06.016
  • Posel C, Moller K, Frohlich W, Schulz I, Boltze J and Wagner DC (2012) Density gradient centrifugation compromises bone marrow mononuclear cell yield. PLoS One 7:e50293. doi: 10.1371/journal.pone.0050293
  • Grievink HW, Luisman T, Kluft C, Moerland M and Malone KE (2016) Comparison of Three Isolation Techniques for Human Peripheral Blood Mononuclear Cells: Cell Recovery and Viability, Population Composition, and Cell Functionality. Biopreserv Biobank 14:410-415. doi: 10.1089/bio.2015.0104
  • Yamamoto Y, Itoh S, Yamauchi Y, Matsushita K, Ikeda S, Naruse H and Hayashi M (2015) Density Gradient Centrifugation for the Isolation of Cells of Multiple Lineages. J Cell Biochem 116:2709-14. doi: 10.1002/jcb.25270
  • Sharifian Gh M and Norouzi F (2023) Guidelines for an optimized differential centrifugation of cells. Biochem Biophys Rep 36:101585. doi: 10.1016/j.bbrep.2023.101585
  • Jia Z, Liang Y, Xu X, Li X, Liu Q, Ou Y, Duan L, Zhu W, Lu W, Xiong J and Wang D (2018) Isolation and characterization of human mesenchymal stem cells derived from synovial fluid by magnetic-activated cell sorting (MACS). Cell Biol Int 42:262-271. doi: 10.1002/cbin.10903
  • Hsu C-H, Chen C, Irimia D and Toner M (2010) Isolating cells from blood using buoyancy activated cell sorting (BACS) with glass microbubbles. 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, pp. 3-7
  • Frauchiger DA, Tekari A, May RD, Džafo E, Chan SC, Stoyanov J, Bertolo A, Zhang X, Guerrero J and Sakai D (2019) Fluorescence-activated cell sorting is more potent to fish intervertebral disk progenitor cells than magnetic and beads-based methods. Tissue Engineering Part C: Methods 25:571-580.
  • Karaoz E, Aksoy A, Ayhan S, Sariboyaci AE, Kaymaz F and Kasap M (2009) Characterization of mesenchymal stem cells from rat bone marrow: ultrastructural properties, differentiation potential and immunophenotypic markers. Histochem Cell Biol 132:533-46. doi: 10.1007/s00418-009-0629-6
  • Hassan G, Bahjat M, Kasem I, Soukkarieh C and Aljamali M (2018) Platelet lysate induces chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells. Cell Mol Biol Lett 23:11. doi: 10.1186/s11658-018-0080-6
  • Rencber SF, Yazir Y, Sarihan M, Sezer Z, Korun ZEU, Ozturk A, Duruksu G, Guzel E, Akpinar G and Corakci A (2024) Endoplasmic reticulum stress of endometrial mesenchymal stem cells in endometriosis. Tissue Cell 91:102544. doi: 10.1016/j.tice.2024.102544
  • Karaoz E, Dogan BN, Aksoy A, Gacar G, Akyuz S, Ayhan S, Genc ZS, Yuruker S, Duruksu G, Demircan PC and Sariboyaci AE (2010) Isolation and in vitro characterisation of dental pulp stem cells from natal teeth. Histochem Cell Biol 133:95-112. doi: 10.1007/s00418-009-0646-5
  • Altuntas C, Alper M, Keles Y, Sav FN and Kockar F (2023) Hypoxic regulation of ADAMTS-2 and -3 (a disintegrin and matrix metalloproteinase with thrombospondin motifs 2 and 3) procollagen N proteinases by HIF-1alpha in endothelial cells. Mol Cell Biochem 478:1151-1160. doi: 10.1007/s11010-022-04549-3
  • Livak KJ and Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-8. doi: 10.1006/meth.2001.1262
  • Andrade C (2019) The P Value and Statistical Significance: Misunderstandings, Explanations, Challenges, and Alternatives. Indian J Psychol Med 41:210-215. doi: 10.4103/IJPSYM.IJPSYM_193_19
  • Lee DH, Sonn CH, Han SB, Oh Y, Lee KM and Lee SH (2012) Synovial fluid CD34(-) CD44(+) CD90(+) mesenchymal stem cell levels are associated with the severity of primary knee osteoarthritis. Osteoarthritis Cartilage 20:106-9. doi: 10.1016/j.joca.2011.11.010
  • Lindahl A (2015) From gristle to chondrocyte transplantation: treatment of cartilage injuries. Philos Trans R Soc Lond B Biol Sci 370:20140369. doi: 10.1098/rstb.2014.0369
  • Gaynor J, Adams DC and Sams AE (2008) Effect of intraarticular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs. Veterinary therapeutics: research in applied veterinary medicine 9:192-200.
  • Lee SO, Pinder E, Chun JY, Lou W, Sun M and Gao AC (2008) Interleukin-4 stimulates androgen-independent growth in LNCaP human prostate cancer cells. Prostate 68:85-91. doi: 10.1002/pros.20691
  • Murphy JM, Fink DJ, Hunziker EB and Barry FP (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48:3464-74. doi: 10.1002/art.11365
  • Centeno CJ, Busse D, Kisiday J, Keohan C, Freeman M and Karli D (2008) Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician 11:343-53.
  • Centeno CJ, Schultz JR, Cheever M, Robinson B, Freeman M and Marasco W (2010) Safety and complications reporting on the re-implantation of culture-expanded mesenchymal stem cells using autologous platelet lysate technique. Curr Stem Cell Res Ther 5:81-93. doi: 10.2174/157488810790442796
  • Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, Kim JE, Shim H, Shin JS, Shin IS, Ra JC, Oh S and Yoon KS (2014) Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells 32:1254-66. doi: 10.1002/stem.1634
  • Vega A, Martin-Ferrero MA, Del Canto F, Alberca M, Garcia V, Munar A, Orozco L, Soler R, Fuertes JJ, Huguet M, Sanchez A and Garcia-Sancho J (2015) Treatment of Knee Osteoarthritis With Allogeneic Bone Marrow Mesenchymal Stem Cells: A Randomized Controlled Trial. Transplantation 99:1681-90. doi: 10.1097/TP.0000000000000678
  • Charlier E, Deroyer C, Ciregia F, Malaise O, Neuville S, Plener Z, Malaise M and de Seny D (2019) Chondrocyte dedifferentiation and osteoarthritis (OA). Biochem Pharmacol 165:49-65. doi: 10.1016/j.bcp.2019.02.036
  • Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, Bierma-Zeinstra S, Brandt KD, Croft P, Doherty M, Dougados M, Hochberg M, Hunter DJ, Kwoh K, Lohmander LS and Tugwell P (2008) OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis Cartilage 16:137-62. doi: 10.1016/j.joca.2007.12.013
  • Yue L, Lim R and Owens BD (2024) Latest Advances in Chondrocyte-Based Cartilage Repair. Biomedicines 12. doi: 10.3390/biomedicines12061367
  • Harrison P, Hopkins T, Hulme C, McCarthy H and Wright K (2023) Chondrocyte Isolation and Expansion. Methods Mol Biol 2598:9-19. doi: 10.1007/978-1-0716-2839-3_2
  • Lau TT, Peck Y, Huang W and Wang DA (2015) Optimization of chondrocyte isolation and phenotype characterization for cartilage tissue engineering. Tissue Eng Part C Methods 21:105-11. doi: 10.1089/ten.TEC.2014.0159
  • Shen P, Wu P, Maleitzke T, Reisener MJ, Heinz GA, Heinrich F, Durek P, Gwinner C, Winkler T, Pumberger M, Perka C, Mashreghi MF and Lohning M (2022) Optimization of chondrocyte isolation from human articular cartilage to preserve the chondrocyte transcriptome. Front Bioeng Biotechnol 10:1046127. doi: 10.3389/fbioe.2022.1046127
  • Yan Y, Fu R, Liu C, Yang J, Li Q and Huang RL (2021) Sequential Enzymatic Digestion of Different Cartilage Tissues: A Rapid and High-Efficiency Protocol for Chondrocyte Isolation, and Its Application in Cartilage Tissue Engineering. Cartilage 13:1064s-1076s. doi: 10.1177/19476035211057242
  • Korpershoek JV, Rikkers M and Vonk LA (2023) Isolation of Chondrons from Hyaline Cartilage. Methods Mol Biol 2598:21-27. doi: 10.1007/978-1-0716-2839-3_3
  • Wang W, Jing X, Du T, Ren J, Liu X, Chen F, Shao Y, Sun S, Yang G and Cui X (2022) Iron overload promotes intervertebral disc degeneration via inducing oxidative stress and ferroptosis in endplate chondrocytes. Free Radic Biol Med 190:234-246. doi: 10.1016/j.freeradbiomed.2022.08.018
  • Ramser A, Greene E, Rath N and Dridi S (2023) Primary growth plate chondrocyte isolation, culture, and characterization from the modern broiler. Poult Sci 102:102254. doi: 10.1016/j.psj.2022.102254
  • Friedman B, Larranaga-Vera A, Castro CM, Corciulo C, Rabbani P and Cronstein BN (2023) Adenosine A2A receptor activation reduces chondrocyte senescence. Faseb j 37:e22838. doi: 10.1096/fj.202201212RR
  • Ripmeester EGJ, Caron MMJ, van den Akker GGH, Steijns J, Surtel DAM, Cremers A, Peeters LCW, van Rhijn LW and Welting TJM (2021) BMP7 reduces the fibrocartilage chondrocyte phenotype. Sci Rep 11:19663. doi: 10.1038/s41598-021-99096-0
  • Caron MM, Emans PJ, Surtel DA, van der Kraan PM, van Rhijn LW and Welting TJ (2015) BAPX-1/NKX-3.2 acts as a chondrocyte hypertrophy molecular switch in osteoarthritis. Arthritis Rheumatol 67:2944-56. doi: 10.1002/art.39293
  • Muhammad SA, Nordin N, Hussin P, Mehat MZ, Tan SW and Fakurazi S (2021) Optimization of Protocol for Isolation of Chondrocytes from Human Articular Cartilage. Cartilage 13:872s-884s. doi: 10.1177/1947603519876333
  • Naranda J, Gradišnik L, Gorenjak M, Vogrin M and Maver U (2017) Isolation and characterization of human articular chondrocytes from surgical waste after total knee arthroplasty (TKA). PeerJ 5:e3079. doi: 10.7717/peerj.3079
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyokimya ve Hücre Biyolojisi (Diğer), Hayvan Hücre Kültürü ve Doku Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Candan Altuntaş 0000-0002-2551-1849

Gökhan Duruksu 0000-0002-3830-2384

Fatih Hunç 0000-0001-6484-2432

Yusufhan Yazır 0000-0002-8472-0261

Proje Numarası This reseach was supported by the Kocaeli University Scientific Research Project Department [grant no. BAP-2022-TDK-2948] and The Scientific and Technological Research Council of Türkiye (TÜBİTAK) [grant no. 123S367]
Erken Görünüm Tarihi 17 Ocak 2025
Yayımlanma Tarihi
Gönderilme Tarihi 12 Aralık 2024
Kabul Tarihi 15 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 27 Sayı: 1

Kaynak Göster

APA Altuntaş, C., Duruksu, G., Hunç, F., Yazır, Y. (2025). A novel isolation method for chondrocytes differentiated from synovial fluid-derived mesenchymal stem cell. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(1), 397-410.
AMA Altuntaş C, Duruksu G, Hunç F, Yazır Y. A novel isolation method for chondrocytes differentiated from synovial fluid-derived mesenchymal stem cell. BAUN Fen. Bil. Enst. Dergisi. Ocak 2025;27(1):397-410.
Chicago Altuntaş, Candan, Gökhan Duruksu, Fatih Hunç, ve Yusufhan Yazır. “A Novel Isolation Method for Chondrocytes Differentiated from Synovial Fluid-Derived Mesenchymal Stem Cell”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27, sy. 1 (Ocak 2025): 397-410.
EndNote Altuntaş C, Duruksu G, Hunç F, Yazır Y (01 Ocak 2025) A novel isolation method for chondrocytes differentiated from synovial fluid-derived mesenchymal stem cell. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27 1 397–410.
IEEE C. Altuntaş, G. Duruksu, F. Hunç, ve Y. Yazır, “A novel isolation method for chondrocytes differentiated from synovial fluid-derived mesenchymal stem cell”, BAUN Fen. Bil. Enst. Dergisi, c. 27, sy. 1, ss. 397–410, 2025.
ISNAD Altuntaş, Candan vd. “A Novel Isolation Method for Chondrocytes Differentiated from Synovial Fluid-Derived Mesenchymal Stem Cell”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27/1 (Ocak 2025), 397-410.
JAMA Altuntaş C, Duruksu G, Hunç F, Yazır Y. A novel isolation method for chondrocytes differentiated from synovial fluid-derived mesenchymal stem cell. BAUN Fen. Bil. Enst. Dergisi. 2025;27:397–410.
MLA Altuntaş, Candan vd. “A Novel Isolation Method for Chondrocytes Differentiated from Synovial Fluid-Derived Mesenchymal Stem Cell”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 27, sy. 1, 2025, ss. 397-10.
Vancouver Altuntaş C, Duruksu G, Hunç F, Yazır Y. A novel isolation method for chondrocytes differentiated from synovial fluid-derived mesenchymal stem cell. BAUN Fen. Bil. Enst. Dergisi. 2025;27(1):397-410.