Derleme
BibTex RIS Kaynak Göster

Biyonanokompozit filmler ve kaplamalar: gelişen teknolojideki mevcut uygulamaları

Yıl 2025, Cilt: 27 Sayı: 2, 411 - 424
https://doi.org/10.25092/baunfbed.1473620

Öz

Çeşitli amaçlarla kullanıma uygun, dekoratif, kimyasal olarak inert ve korozyona uğramayan, doğada uzun süre yok olan ve genel olarak kimyasal olarak üretilen maddeler olarak bilinen polimerler, yeşil kimya ve yeşil üretimde önem kazanmıştır. Kompozit malzemeler, doğal biyopolimerler veya sentetik biyobozunur polimerler, inorganik veya organik nanomalzemeler, nano ölçekli mineraller gibi malzemelerin farklı malzemelerle birleştirilmesiyle elde edilir. Bu derlemenin amacı, kompozit malzemelerin üretiminde kullanılan biyopolimerleri ve bu malzemelerle ilgili film kaplama tekniklerini kısaca araştırmak, geleceğe yönelik neler yapılabileceğini belirlemek ve biyopolimer kullanımının çevresel önemini ortaya koymaktır.

Kaynakça

  • Bharadwaj, A. An Overview on Biomaterials and Its Applications in Medical Science. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1116, 012178, doi:10.1088/1757-899X/1116/1/012178.
  • Bahrpaima, K.; Fatehi, P. Preparation and Coagulation Performance of Carboxypropylated and Carboxypentylated Lignosulfonates for Dye Removal. Biomolecules 2019, 9, doi:10.3390/biom9080383.
  • Alashrah, S.; El-Ghoul, Y.; Omer, M.A.A. Synthesis and Characterization of a New Nanocomposite Film Based on Polyvinyl Alcohol Polymer and Nitro Blue Tetrazolium Dye as a Low Radiation Dosimeter in Medical Diagnostics Application. Polymers (Basel). 2021, 13, doi:10.3390/polym13111815.
  • Miroshnichenko, S.; Timofeeva, V.; Permykova, E.; Ershov, S.; Kiryukhantsev-Korneev, P.; Dvořaková, E.; Shtansky, D. V.; Zajíčková, L.; Solovieva, A.; Manakhov, A. Plasma-Coated Polycaprolactone Nanofibers with Covalently Bonded Platelet-Rich Plasma Enhance Adhesion and Growth of Human Fibroblasts. Nanomaterials 2019, 9, doi:10.3390/nano9040637.
  • Ammar, C.; Alminderej, F.M.; El-Ghoul, Y.; Jabli, M.; Shafiquzzaman, M. Preparation and Characterization of a New Polymeric Multi-Layered Material Based K-Carrageenan and Alginate for Efficient Bio-Sorption of Methylene Blue Dye. Polymers (Basel). 2021, 13, doi:10.3390/polym13030411.
  • Mekuye, B.; Abera, B. Nanomaterials: An Overview of Synthesis, Classification, Characterization, and Applications. Nano Sel. 2023, 4, 486–501, doi:10.1002/nano.202300038.
  • Jaya, B.; Brajesh, B.; Antonella, F.; Giovanna, L.D.; Amit, K. Biopolymer: A Sustainable Material for Food and Medical Applications. Polymers (Basel). 2022, 14, 983.
  • Musa, Y.; Bwatanglang, I.B. Current Role and Future Developments of Biopolymers in Green and Sustainable Chemistry and Catalysis; INC, 2020; ISBN 9780128167892.
  • Abe, M.M.; Martins, J.R.; Sanvezzo, P.B.; Macedo, J.V.; Branciforti, M.C.; Halley, P.; Botaro, V.R.; Brienzo, M. Advantages and Disadvantages of Bioplastics Production from Starch and Lignocellulosic Components. Polymers (Basel). 2021, 13, doi:10.3390/polym13152484.
  • Simões, S. Modular Hydrogels for Drug Delivery. J. Biomater. Nanobiotechnol. 2012, 03, 185–199, doi:10.4236/jbnb.2012.32025.
  • Liu, Y.; Tas, S.; Zhang, K.; De Vos, W.M.; Ma, J.; Vancso, G.J. Thermoresponsive Membranes from Electrospun Mats with Switchable Wettability for Efficient Oil/Water Separations. Macromolecules 2018, 51, 8435–8442, doi:10.1021/acs.macromol.8b01853.
  • Bronzino, J.D. Medical Devices and Systems; Bronzino, J.D., Ed.; CRC Press, 2006; ISBN 9780429123047.
  • Bajpai, A.K.; Shukla, S.K.; Bhanu, S.; Kankane, S. Responsive Polymers in Controlled Drug Delivery. Prog. Polym. Sci. 2008, 33, 1088–1118, doi:10.1016/j.progpolymsci.2008.07.005.
  • Applications, T. Review of Bionanocomposite Coating Films And. 1–33, doi:10.3390/polym8070246.
  • Black AE, Coward WA, Cole TJ, P.A. Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes; 2005; ISBN 1864962372.
  • Litman, G.W.; Cannon, J.P.; Dishaw, L.J. Reconstructing Immune Phylogeny: New Perspectives. Nat. Rev. Immunol. 2005, 5, 866–879, doi:10.1038/nri1712.
  • Silva, A.C.Q.; Silvestre, A.J.D.; Vilela, C.; Freire, C.S.R. Natural Polymers-Based Materials: A Contribution to a Greener Future. Molecules 2022, 27, doi:10.3390/molecules27010094.
  • Sinha Ray, S.; Okamoto, M. Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing. Prog. Polym. Sci. 2003, 28, 1539–1641, doi:10.1016/j.progpolymsci.2003.08.002.
  • Unalan, I.U.; Cerri, G.; Marcuzzo, E.; Cozzolino, C.A.; Farris, S. Nanocomposite Films and Coatings Using Inorganic Nanobuilding Blocks (NBB): Current Applications and Future Opportunities in the Food Packaging Sector. RSC Adv. 2014, 4, 29393–29428, doi:10.1039/c4ra01778a.
  • Peelman, N.; Ragaert, P.; Ragaert, K.; De Meulenaer, B.; Devlieghere, F.; Cardon, L. Heat Resistance of New Biobased Polymeric Materials, Focusing on Starch, Cellulose, PLA, and PHA. J. Appl. Polym. Sci. 2015, 132, doi:10.1002/app.42305.
  • Swain, S.K.; Dash, S.; Behera, C.; Kisku, S.K.; Behera, L. Cellulose Nanobiocomposites with Reinforcement of Boron Nitride: Study of Thermal, Oxygen Barrier and Chemical Resistant Properties. Carbohydr. Polym. 2013, 95, 728–732, doi:10.1016/j.carbpol.2013.02.080.
  • Czaja, W.; Romanovicz, D.; Brown, R.M. Structural Investigations of Microbial Cellulose Produced in Stationary and Agitated Culture. 2004, 403–411.
  • Shi, Z.; Zhang, Y.; Phillips, G.O.; Yang, G. Food Hydrocolloids Utilization of Bacterial Cellulose in Food. Food Hydrocoll. 2014, 35, 539–545, doi:10.1016/j.foodhyd.2013.07.012.
  • Fortunati, E.; Puglia, D.; Luzi, F.; Santulli, C.; Kenny, J.M.; Torre, L. Binary PVA Bio-Nanocomposites Containing Cellulose Nanocrystals Extracted from Different Natural Sources: Part I. Carbohydr. Polym. 2013, 97, 825–836, doi:10.1016/j.carbpol.2013.03.075.
  • Wu, H.; Liu, C.; Chen, J.; Chang, P.R.; Chen, Y.; Anderson, D.P. Structure and Properties of Starch/α-Zirconium Phosphate Nanocomposite Films. Carbohydr. Polym. 2009, 77, 358–364, doi:10.1016/j.carbpol.2009.01.002.
  • Wang, S.F.; Shen, L.; Tong, Y.J.; Chen, L.; Phang, I.Y.; Lim, P.Q.; Liu, T.X. Biopolymer Chitosan/Montmorillonite Nanocomposites: Preparation and Characterization. Polym. Degrad. Stab. 2005, 90, 123–131, doi:10.1016/j.polymdegradstab.2005.03.001.
  • Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem. Rev. 2010, 110, 3479–3500, doi:10.1021/cr900339w.
  • Tan, B.K.; Ching, Y.C.; Gan, S.N.; Rozali, S. Biodegradable Mulches Based on Poly(Vinyl Alcohol), Kenaf Fiber, and Urea. BioResources 2015, 10, 5515–5531, doi:10.15376/biores.10.3.5515-5531.
  • Ali, M.E.; Yong, C.K.; Ching, Y.C.; Chuah, C.H.; Liou, N.S. Effect of Single and Double Stage Chemically Treated Kenaf Fibers on Mechanical Properties of Polyvinyl Alcohol Film. BioResources 2015, 10, 822–838, doi:10.15376/biores.10.1.822-838.
  • Chee, Y.; Ershad, C.; Luqman, A.; Abdullah, C.; Hock, C.; Liou, C.N. Rheological Properties of Cellulose Nanocrystal-Embedded Polymer Composites: A Review. Cellulose 2016, 23, 1011–1030, doi:10.1007/s10570-016-0868-3.
  • Yin, K.; Yern, G.; Ching, C.; Hock, C. Erratum to: Individualization of Microfibrillated Celluloses from Oil Palm Empty Fruit Bunch: Comparative Studies between Acid Hydrolysis and Ammonium Persulfate Oxidation. Cellulose 2016, 23, 2245–2246, doi:10.1007/s10570-016-0921-2.
  • Thakur, V.K.; Thakur, M.K. Recent Trends in Hydrogels Based on Psyllium Polysaccharide: A Review. J. Clean. Prod. 2014, 82, 1–15, doi:10.1016/j.jclepro.2014.06.066.
  • Erry, P.K.W.N.G. Preparation and Characterization of Chitosan-Based Nanocomposite Films with Antimicrobial Activity. 2006, 21–23.
  • Badawy, M.E.I.; Rabea, E.I. A Biopolymer Chitosan and Its Derivatives as Promising Antimicrobial Agents against Plant Pathogens and Their Applications in Crop Protection. 2011, 2011, doi:10.1155/2011/460381.
  • Quintavalla, S.; Vicini, L. Antimicrobial Food Packaging in Meat Industry. 2002, 62, 373–380.
  • Sozer, N.; Kokini, J.L. Nanotechnology and Its Applications in the Food Sector. 2009, doi:10.1016/j.tibtech.2008.10.010.
  • Kristo, E.; Biliaderis, C.G. Physical Properties of Starch Nanocrystal-Reinforced Pullulan Films. 2007, 68, 146–158, doi:10.1016/j.carbpol.2006.07.021.
  • Gopi, S.; Amalraj, A.; Jude, S.; Thomas, S.; Guo, Q. Journal of the Taiwan Institute of Chemical Engineers Bionanocomposite Films Based on Potato, Tapioca Starch and Chitosan Reinforced with Cellulose Nanofiber Isolated from Turmeric Spent. J. Taiwan Inst. Chem. Eng. 2019, 96, 664–671, doi:10.1016/j.jtice.2019.01.003.
  • Sorrentino, A.; Vittoria, V. Potential Perspectives of for Food Packaging Applications. 2007, 18, 84–95, doi:10.1016/j.tifs.2006.09.004.
  • Osuna, Y.; Gregorio-Jauregui, K.M.; Gaona-Lozano, J.G.; De La Garza-Rodríguez, I.M.; Ilyna, A.; Barriga-Castro, E.D.; Saade, H.; López, R.G. Chitosan-Coated Magnetic Nanoparticles with Low Chitosan Content Prepared in One-Step. J. Nanomater. 2012, 2012, doi:10.1155/2012/327562.
  • Liu, Z.; Erhan, S.Z.; Xu, J. Preparation, Characterization and Mechanical Properties of Epoxidized Soybean Oil / Clay Nanocomposites *. 2005, 46, 10119–10127, doi:10.1016/j.polymer.2005.08.065.
  • Sriupayo, J.; Supaphol, P.; Blackwell, J.; Rujiravanit, R. Preparation and Characterization of a -Chitin Whisker-Reinforced Chitosan Nanocomposite Films with or without Heat Treatment. 2005, 62, 130–136, doi:10.1016/j.carbpol.2005.07.013.
  • Xu, Y.; Ren, X.; Hanna, M.A. Chitosan / Clay Nanocomposite Film Preparation and Characterization. 2022, doi:10.1002/app.22664.
  • Moura, M.R. De; Aouada, F.A.; Avena-bustillos, R.J.; Mchugh, T.H. Improved Barrier and Mechanical Properties of Novel Hydroxypropyl Methylcellulose Edible Films with Chitosan / Tripolyphosphate Nanoparticles Improved Barrier and Mechanical Properties of Novel Hydroxypropyl Methylcellulose Edible Films with Chitosan / Tr. J. Food Eng. 2009, 92, 448–453, doi:10.1016/j.jfoodeng.2008.12.015.
  • Liu, W.; Fei, M.; Ban, Y.; Jia, A.; Qiu, R. Preparation and Evaluation of Green Composites from Microcrystalline Cellulose and a Soybean-Oil Derivative. 2017, doi:10.3390/polym9100541.
  • Eksik, O.; Yagci, Y. In Situ Synthesis of Oil Based Polymer Composites Containing. 2008, doi:10.1080/10601320802218887.
  • Akbari, Z.; Faculty, C.E. Improvement in Food Packaging Industry with Biobased Nanocomposites Improvement in Food Packaging Industry with Biobased Nanocomposites. 2007, 3, doi:10.2202/1556-3758.1120.
  • Tunc, S.; Angellier, H.; Cahyana, Y.; Chalier, P.; Gontard, N.; Gastaldi, E. Functional Properties of Wheat Gluten / Montmorillonite Nanocomposite Films Processed by Casting. 2007, 289, 159–168, doi:10.1016/j.memsci.2006.11.050.
  • Wang, B.; Sain, M. SCIENCE AND Isolation of Nanofibers from Soybean Source and Their Reinforcing Capability on Synthetic Polymers. 2007, 67, 2521–2527, doi:10.1016/j.compscitech.2006.12.015.
  • Lee, J.; Son, S.; Hong, S. Characterization of Protein-Coated Polypropylene Films as a Novel Composite Structure for Active Food Packaging Application. 2008, 86, 484–493, doi:10.1016/j.jfoodeng.2007.10.025.
  • Yi, D.; Low, S.; Supramaniam, J.; Soottitantawat, A.; Charinpanitkul, T.; Tanthapanichakoon, W.; Tan, K.W.; Tang, S.Y. Recent Developments in Nanocellulose-Reinforced Rubber Matrix Composites : A Review. 2021, 1–35.

Bionanocomposite films and coatings: current applications in advanced technology

Yıl 2025, Cilt: 27 Sayı: 2, 411 - 424
https://doi.org/10.25092/baunfbed.1473620

Öz

Polymers, which are suitable for use for various purposes, are decorative, chemically inert and corrosion-free, have long periods of destruction in nature and are generally known as chemically produced substances, have gained importance in green chemistry and green production. Composite materials are obtained by combining materials such as natural biopolymers or synthetic biodegradable polymers, inorganic or organic nanomaterials, nanoscale minerals with different materials. The aim of this review is to briefly investigate the biopolymers used in the production of composite materials and the film coating techniques related to these materials, to determine what can be done for the future, and to reveal the environmental importance of the use of biopolymers as binders of composite materials that can be produced in the future.

Kaynakça

  • Bharadwaj, A. An Overview on Biomaterials and Its Applications in Medical Science. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1116, 012178, doi:10.1088/1757-899X/1116/1/012178.
  • Bahrpaima, K.; Fatehi, P. Preparation and Coagulation Performance of Carboxypropylated and Carboxypentylated Lignosulfonates for Dye Removal. Biomolecules 2019, 9, doi:10.3390/biom9080383.
  • Alashrah, S.; El-Ghoul, Y.; Omer, M.A.A. Synthesis and Characterization of a New Nanocomposite Film Based on Polyvinyl Alcohol Polymer and Nitro Blue Tetrazolium Dye as a Low Radiation Dosimeter in Medical Diagnostics Application. Polymers (Basel). 2021, 13, doi:10.3390/polym13111815.
  • Miroshnichenko, S.; Timofeeva, V.; Permykova, E.; Ershov, S.; Kiryukhantsev-Korneev, P.; Dvořaková, E.; Shtansky, D. V.; Zajíčková, L.; Solovieva, A.; Manakhov, A. Plasma-Coated Polycaprolactone Nanofibers with Covalently Bonded Platelet-Rich Plasma Enhance Adhesion and Growth of Human Fibroblasts. Nanomaterials 2019, 9, doi:10.3390/nano9040637.
  • Ammar, C.; Alminderej, F.M.; El-Ghoul, Y.; Jabli, M.; Shafiquzzaman, M. Preparation and Characterization of a New Polymeric Multi-Layered Material Based K-Carrageenan and Alginate for Efficient Bio-Sorption of Methylene Blue Dye. Polymers (Basel). 2021, 13, doi:10.3390/polym13030411.
  • Mekuye, B.; Abera, B. Nanomaterials: An Overview of Synthesis, Classification, Characterization, and Applications. Nano Sel. 2023, 4, 486–501, doi:10.1002/nano.202300038.
  • Jaya, B.; Brajesh, B.; Antonella, F.; Giovanna, L.D.; Amit, K. Biopolymer: A Sustainable Material for Food and Medical Applications. Polymers (Basel). 2022, 14, 983.
  • Musa, Y.; Bwatanglang, I.B. Current Role and Future Developments of Biopolymers in Green and Sustainable Chemistry and Catalysis; INC, 2020; ISBN 9780128167892.
  • Abe, M.M.; Martins, J.R.; Sanvezzo, P.B.; Macedo, J.V.; Branciforti, M.C.; Halley, P.; Botaro, V.R.; Brienzo, M. Advantages and Disadvantages of Bioplastics Production from Starch and Lignocellulosic Components. Polymers (Basel). 2021, 13, doi:10.3390/polym13152484.
  • Simões, S. Modular Hydrogels for Drug Delivery. J. Biomater. Nanobiotechnol. 2012, 03, 185–199, doi:10.4236/jbnb.2012.32025.
  • Liu, Y.; Tas, S.; Zhang, K.; De Vos, W.M.; Ma, J.; Vancso, G.J. Thermoresponsive Membranes from Electrospun Mats with Switchable Wettability for Efficient Oil/Water Separations. Macromolecules 2018, 51, 8435–8442, doi:10.1021/acs.macromol.8b01853.
  • Bronzino, J.D. Medical Devices and Systems; Bronzino, J.D., Ed.; CRC Press, 2006; ISBN 9780429123047.
  • Bajpai, A.K.; Shukla, S.K.; Bhanu, S.; Kankane, S. Responsive Polymers in Controlled Drug Delivery. Prog. Polym. Sci. 2008, 33, 1088–1118, doi:10.1016/j.progpolymsci.2008.07.005.
  • Applications, T. Review of Bionanocomposite Coating Films And. 1–33, doi:10.3390/polym8070246.
  • Black AE, Coward WA, Cole TJ, P.A. Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes; 2005; ISBN 1864962372.
  • Litman, G.W.; Cannon, J.P.; Dishaw, L.J. Reconstructing Immune Phylogeny: New Perspectives. Nat. Rev. Immunol. 2005, 5, 866–879, doi:10.1038/nri1712.
  • Silva, A.C.Q.; Silvestre, A.J.D.; Vilela, C.; Freire, C.S.R. Natural Polymers-Based Materials: A Contribution to a Greener Future. Molecules 2022, 27, doi:10.3390/molecules27010094.
  • Sinha Ray, S.; Okamoto, M. Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing. Prog. Polym. Sci. 2003, 28, 1539–1641, doi:10.1016/j.progpolymsci.2003.08.002.
  • Unalan, I.U.; Cerri, G.; Marcuzzo, E.; Cozzolino, C.A.; Farris, S. Nanocomposite Films and Coatings Using Inorganic Nanobuilding Blocks (NBB): Current Applications and Future Opportunities in the Food Packaging Sector. RSC Adv. 2014, 4, 29393–29428, doi:10.1039/c4ra01778a.
  • Peelman, N.; Ragaert, P.; Ragaert, K.; De Meulenaer, B.; Devlieghere, F.; Cardon, L. Heat Resistance of New Biobased Polymeric Materials, Focusing on Starch, Cellulose, PLA, and PHA. J. Appl. Polym. Sci. 2015, 132, doi:10.1002/app.42305.
  • Swain, S.K.; Dash, S.; Behera, C.; Kisku, S.K.; Behera, L. Cellulose Nanobiocomposites with Reinforcement of Boron Nitride: Study of Thermal, Oxygen Barrier and Chemical Resistant Properties. Carbohydr. Polym. 2013, 95, 728–732, doi:10.1016/j.carbpol.2013.02.080.
  • Czaja, W.; Romanovicz, D.; Brown, R.M. Structural Investigations of Microbial Cellulose Produced in Stationary and Agitated Culture. 2004, 403–411.
  • Shi, Z.; Zhang, Y.; Phillips, G.O.; Yang, G. Food Hydrocolloids Utilization of Bacterial Cellulose in Food. Food Hydrocoll. 2014, 35, 539–545, doi:10.1016/j.foodhyd.2013.07.012.
  • Fortunati, E.; Puglia, D.; Luzi, F.; Santulli, C.; Kenny, J.M.; Torre, L. Binary PVA Bio-Nanocomposites Containing Cellulose Nanocrystals Extracted from Different Natural Sources: Part I. Carbohydr. Polym. 2013, 97, 825–836, doi:10.1016/j.carbpol.2013.03.075.
  • Wu, H.; Liu, C.; Chen, J.; Chang, P.R.; Chen, Y.; Anderson, D.P. Structure and Properties of Starch/α-Zirconium Phosphate Nanocomposite Films. Carbohydr. Polym. 2009, 77, 358–364, doi:10.1016/j.carbpol.2009.01.002.
  • Wang, S.F.; Shen, L.; Tong, Y.J.; Chen, L.; Phang, I.Y.; Lim, P.Q.; Liu, T.X. Biopolymer Chitosan/Montmorillonite Nanocomposites: Preparation and Characterization. Polym. Degrad. Stab. 2005, 90, 123–131, doi:10.1016/j.polymdegradstab.2005.03.001.
  • Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem. Rev. 2010, 110, 3479–3500, doi:10.1021/cr900339w.
  • Tan, B.K.; Ching, Y.C.; Gan, S.N.; Rozali, S. Biodegradable Mulches Based on Poly(Vinyl Alcohol), Kenaf Fiber, and Urea. BioResources 2015, 10, 5515–5531, doi:10.15376/biores.10.3.5515-5531.
  • Ali, M.E.; Yong, C.K.; Ching, Y.C.; Chuah, C.H.; Liou, N.S. Effect of Single and Double Stage Chemically Treated Kenaf Fibers on Mechanical Properties of Polyvinyl Alcohol Film. BioResources 2015, 10, 822–838, doi:10.15376/biores.10.1.822-838.
  • Chee, Y.; Ershad, C.; Luqman, A.; Abdullah, C.; Hock, C.; Liou, C.N. Rheological Properties of Cellulose Nanocrystal-Embedded Polymer Composites: A Review. Cellulose 2016, 23, 1011–1030, doi:10.1007/s10570-016-0868-3.
  • Yin, K.; Yern, G.; Ching, C.; Hock, C. Erratum to: Individualization of Microfibrillated Celluloses from Oil Palm Empty Fruit Bunch: Comparative Studies between Acid Hydrolysis and Ammonium Persulfate Oxidation. Cellulose 2016, 23, 2245–2246, doi:10.1007/s10570-016-0921-2.
  • Thakur, V.K.; Thakur, M.K. Recent Trends in Hydrogels Based on Psyllium Polysaccharide: A Review. J. Clean. Prod. 2014, 82, 1–15, doi:10.1016/j.jclepro.2014.06.066.
  • Erry, P.K.W.N.G. Preparation and Characterization of Chitosan-Based Nanocomposite Films with Antimicrobial Activity. 2006, 21–23.
  • Badawy, M.E.I.; Rabea, E.I. A Biopolymer Chitosan and Its Derivatives as Promising Antimicrobial Agents against Plant Pathogens and Their Applications in Crop Protection. 2011, 2011, doi:10.1155/2011/460381.
  • Quintavalla, S.; Vicini, L. Antimicrobial Food Packaging in Meat Industry. 2002, 62, 373–380.
  • Sozer, N.; Kokini, J.L. Nanotechnology and Its Applications in the Food Sector. 2009, doi:10.1016/j.tibtech.2008.10.010.
  • Kristo, E.; Biliaderis, C.G. Physical Properties of Starch Nanocrystal-Reinforced Pullulan Films. 2007, 68, 146–158, doi:10.1016/j.carbpol.2006.07.021.
  • Gopi, S.; Amalraj, A.; Jude, S.; Thomas, S.; Guo, Q. Journal of the Taiwan Institute of Chemical Engineers Bionanocomposite Films Based on Potato, Tapioca Starch and Chitosan Reinforced with Cellulose Nanofiber Isolated from Turmeric Spent. J. Taiwan Inst. Chem. Eng. 2019, 96, 664–671, doi:10.1016/j.jtice.2019.01.003.
  • Sorrentino, A.; Vittoria, V. Potential Perspectives of for Food Packaging Applications. 2007, 18, 84–95, doi:10.1016/j.tifs.2006.09.004.
  • Osuna, Y.; Gregorio-Jauregui, K.M.; Gaona-Lozano, J.G.; De La Garza-Rodríguez, I.M.; Ilyna, A.; Barriga-Castro, E.D.; Saade, H.; López, R.G. Chitosan-Coated Magnetic Nanoparticles with Low Chitosan Content Prepared in One-Step. J. Nanomater. 2012, 2012, doi:10.1155/2012/327562.
  • Liu, Z.; Erhan, S.Z.; Xu, J. Preparation, Characterization and Mechanical Properties of Epoxidized Soybean Oil / Clay Nanocomposites *. 2005, 46, 10119–10127, doi:10.1016/j.polymer.2005.08.065.
  • Sriupayo, J.; Supaphol, P.; Blackwell, J.; Rujiravanit, R. Preparation and Characterization of a -Chitin Whisker-Reinforced Chitosan Nanocomposite Films with or without Heat Treatment. 2005, 62, 130–136, doi:10.1016/j.carbpol.2005.07.013.
  • Xu, Y.; Ren, X.; Hanna, M.A. Chitosan / Clay Nanocomposite Film Preparation and Characterization. 2022, doi:10.1002/app.22664.
  • Moura, M.R. De; Aouada, F.A.; Avena-bustillos, R.J.; Mchugh, T.H. Improved Barrier and Mechanical Properties of Novel Hydroxypropyl Methylcellulose Edible Films with Chitosan / Tripolyphosphate Nanoparticles Improved Barrier and Mechanical Properties of Novel Hydroxypropyl Methylcellulose Edible Films with Chitosan / Tr. J. Food Eng. 2009, 92, 448–453, doi:10.1016/j.jfoodeng.2008.12.015.
  • Liu, W.; Fei, M.; Ban, Y.; Jia, A.; Qiu, R. Preparation and Evaluation of Green Composites from Microcrystalline Cellulose and a Soybean-Oil Derivative. 2017, doi:10.3390/polym9100541.
  • Eksik, O.; Yagci, Y. In Situ Synthesis of Oil Based Polymer Composites Containing. 2008, doi:10.1080/10601320802218887.
  • Akbari, Z.; Faculty, C.E. Improvement in Food Packaging Industry with Biobased Nanocomposites Improvement in Food Packaging Industry with Biobased Nanocomposites. 2007, 3, doi:10.2202/1556-3758.1120.
  • Tunc, S.; Angellier, H.; Cahyana, Y.; Chalier, P.; Gontard, N.; Gastaldi, E. Functional Properties of Wheat Gluten / Montmorillonite Nanocomposite Films Processed by Casting. 2007, 289, 159–168, doi:10.1016/j.memsci.2006.11.050.
  • Wang, B.; Sain, M. SCIENCE AND Isolation of Nanofibers from Soybean Source and Their Reinforcing Capability on Synthetic Polymers. 2007, 67, 2521–2527, doi:10.1016/j.compscitech.2006.12.015.
  • Lee, J.; Son, S.; Hong, S. Characterization of Protein-Coated Polypropylene Films as a Novel Composite Structure for Active Food Packaging Application. 2008, 86, 484–493, doi:10.1016/j.jfoodeng.2007.10.025.
  • Yi, D.; Low, S.; Supramaniam, J.; Soottitantawat, A.; Charinpanitkul, T.; Tanthapanichakoon, W.; Tan, K.W.; Tang, S.Y. Recent Developments in Nanocellulose-Reinforced Rubber Matrix Composites : A Review. 2021, 1–35.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fiziksel Kimya (Diğer), Malzemelerin Fiziksel Özellikleri
Bölüm Derleme Makalesi
Yazarlar

Yasemin Torlak 0000-0001-5964-2532

Erken Görünüm Tarihi 21 Mart 2025
Yayımlanma Tarihi
Gönderilme Tarihi 25 Nisan 2024
Kabul Tarihi 10 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 27 Sayı: 2

Kaynak Göster

APA Torlak, Y. (2025). Bionanocomposite films and coatings: current applications in advanced technology. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(2), 411-424. https://doi.org/10.25092/baunfbed.1473620
AMA Torlak Y. Bionanocomposite films and coatings: current applications in advanced technology. BAUN Fen. Bil. Enst. Dergisi. Mart 2025;27(2):411-424. doi:10.25092/baunfbed.1473620
Chicago Torlak, Yasemin. “Bionanocomposite Films and Coatings: Current Applications in Advanced Technology”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27, sy. 2 (Mart 2025): 411-24. https://doi.org/10.25092/baunfbed.1473620.
EndNote Torlak Y (01 Mart 2025) Bionanocomposite films and coatings: current applications in advanced technology. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27 2 411–424.
IEEE Y. Torlak, “Bionanocomposite films and coatings: current applications in advanced technology”, BAUN Fen. Bil. Enst. Dergisi, c. 27, sy. 2, ss. 411–424, 2025, doi: 10.25092/baunfbed.1473620.
ISNAD Torlak, Yasemin. “Bionanocomposite Films and Coatings: Current Applications in Advanced Technology”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27/2 (Mart 2025), 411-424. https://doi.org/10.25092/baunfbed.1473620.
JAMA Torlak Y. Bionanocomposite films and coatings: current applications in advanced technology. BAUN Fen. Bil. Enst. Dergisi. 2025;27:411–424.
MLA Torlak, Yasemin. “Bionanocomposite Films and Coatings: Current Applications in Advanced Technology”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 27, sy. 2, 2025, ss. 411-24, doi:10.25092/baunfbed.1473620.
Vancouver Torlak Y. Bionanocomposite films and coatings: current applications in advanced technology. BAUN Fen. Bil. Enst. Dergisi. 2025;27(2):411-24.