Araştırma Makalesi
BibTex RIS Kaynak Göster

Bir dalga kanalında FPGA tabanlı kontrolör ile düzenli dalgaların üretimi

Yıl 2025, Cilt: 27 Sayı: 2, 519 - 536, 15.07.2025
https://doi.org/10.25092/baunfbed.1618673

Öz

Dalga kanalı sistemleri, dalga enerjisi dönüştürücülerinin geliştirilmesi ve optimizasyonu için kritik deneysel platformlar sunar. Gerçek okyanus koşullarının güvenli ve tekrarlanabilir şekilde simüle edilmesini sağlayan bu sistemler, dalga davranışının anlaşılmasında ve tasarım risklerinin azaltılmasında önemli rol oynamaktadır. Dalga kanalı sistemleri belirli bir dalga modelinin üretilmesini sağlayarak su dalgalarının kıyı yapıları, kıyı ekosistemleri ve açık deniz platformları üzerindeki etkilerinin anlaşılması için çalışmalarda kullanılmaktadır. Bu çalışmada toplam uzunluğu 24 metre, genişlik ve yüksekliği ise 1’er metre olan dalga kanalında düzenli dalgaların üretimi için hidrolik kontrollü ve piston tip dalga üretici kullanılmıştır. Dalga kanalında bulunan dalga üretici sisteminde 400mm stroka sahip hidrolik bir silindir ile oransal yön kontrol valfi tarafından kontrol edilmektedir. Dalga üretimi için oransal yön kontrol valfinin kontrolü için NI-CRIO 9074 paket kontrolcüsü (PAC), Field Programmable Gate Array (FPGA) donanımı yapısında ve NI-9263 analog çıkış modülü 15bit çözünürlükte kullanılmıştır. Silindirin konum bilgisi NI-9215 analog giriş modülü ile 15bit çözünürlükte ölçülmüştür. NI-CRIO 9074 donanımında kontrolör olarak oransal integral kontrol (PI) tekniği uygulanmıştır. Kontrolör katsayıların bulunmasında deneysel yöntem kullanılarak, üretilen dalgaların gerçek zamanlı olarak ölçüm ve kayıt edilmesinde bir bilgisayar kullanılmıştır. Tüm sistem NI-CRIO 9074 tarafından kontrol edilmektedir ve bilgisayarda LabVIEW tabanlı olarak geliştirilen kullanıcı ara yüz programları ile dalga kanalında düzenli dalga üretimi gerçekleştirilmiştir.

Destekleyen Kurum

Balıkesir University

Proje Numarası

2024/042

Kaynakça

  • M. A. Zullah, D. Prasad, M. R. Ahmed, and Y. H. Lee, Performance analysis of a wave energy converter using numerical simulation technique, Science China Technological Sciences, vol. 53, no. 1, pp. 13–18, Jan. 2010. doi: 10.1007/S11431-010-0026-3.
  • Q. Du and D. Y. C. Leung, 2D Numerical Simulation of Ocean Waves, Proceedings of the World Renewable Energy Congress, 8–13 May 2011, Linköping, Sweden, vol. 57, pp. 2183–2189, Nov. 2011. doi: 10.3384/ECP110572183.
  • H. Gao and B. Li, Establishment of Motion Model for Wave Capture Buoy and Research on Hydrodynamic Performance of Floating-Type Wave Energy Converter, Polish Maritime Research, vol. 22, no. s1, pp. 106–111, Sep. 2015. doi: 10.1515/POMR-2015-0041.
  • G. Rajapakse, S. Jayasinghe, and A. Fleming, Power Smoothing and Energy Storage Sizing of Vented Oscillating Water Column Wave Energy Converter Arrays, Energies, vol. 13, no. 5, p. 1278, Mar. 2020. doi: 10.3390/EN13051278.
  • G. Giannini, P. Rosa-Santos, V. Ramos, and F. Taveira-Pinto, On the Development of an Offshore Version of the CECO Wave Energy Converter, Energies, vol. 13, no. 5, p. 1036, Feb. 2020. doi: 10.3390/EN13051036.
  • M. A. Jusoh, M. Z. Ibrahim, M. Z. Daud, A. Albani, and Z. M. Yusop, Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review, Energies, vol. 12, no. 23, p. 4510, Nov. 2019. doi: 10.3390/EN12234510.
  • A. Maria-Arenas, A. J. Garrido, E. Rusu, and I. Garrido, Control Strategies Applied to Wave Energy Converters: State of the Art, Energies, vol. 12, no. 16, p. 3115, Aug. 2019. doi: 10.3390/EN12163115.
  • H. Carreno-Luengo and A. Camps, Empirical Results of a Surface-Level GNSS-R Experiment in a Wave Channel, Remote Sensing, vol. 7, no. 6, pp. 7471–7493, Jun. 2015. doi: 10.3390/RS70607471.
  • I. Gyongy, J.-B. Richon, T. Vruce, and I. Bryden, Synteza i aktywność biologiczna nowych analogów tiosemikarbazonowych chelatorów żelaza, Physical Processes, Technomics Press, pp. 343–354, 2013. doi: 10.2/JQUERY.MIN.JS.
  • T. Kawaguchi, K. Nakano, S. Miyajima, and T. Arikawa, A Theory for Wave Energy Conversion by Bottom-Mounted Oscillating Bodies, (2024). https://www.researchgate.net/publication/334031823_A_Theory_for_Wave_Energy_Conversion_by_Bottom-Mounted_Oscillating_Bodies, (07.01.2025).
  • B. Chenari, S. S. Saadatian, and A. D. Ferreira, Numerical Modelling of Regular Waves Propagation and Breaking Using Waves2Foam, Journal of Clean Energy Technologies, vol. 3, no. 4, pp. 276–281, 2015. doi: 10.7763/JOCET.2015.V3.208.
  • M. Renganathan and M. Hossain, Numerical Analysis of a Horizontal Pressure Differential Wave Energy Converter, Energies, vol. 15, no. 20, p. 7513, Oct. 2022. doi: 10.3390/EN15207513.
  • X. Tian, Q. Wang, G. Liu, W. Deng, and Z. Gao, Numerical and experimental studies on a three-dimensional numerical wave tank, IEEE Access, vol. 6, pp. 6585–6593, Jan. 2018. doi: 10.1109/access.2018.2794064.
  • M. Y. Khalid, Laboratory Experiments on Water Wave Generation, PhD Thesis, University of Dundee, United Kingdom, (2020).
  • M. Beneduce, Design of a Wavemaker for the Water Tank at the Politecnico di Torino, Maser Thesis, Politecnico Di Torino, Italy, (2018).
  • L. F. Su, A. F. Zhang, and X. Liang, Research of the Servo Motion Control of Wave Maker, Applied Mechanics and Materials, vol. 541–542, pp. 1243–1247, 2014. doi: 10.4028/www.scientific.net/amm.541-542.1243. (07.01.2025).
  • Y. Jian-jun, D. Duo-tao, J. Gui-lin, and L. Sheng, High Precision Position Control of Electro-Hydraulic Servo System Based on Feed-Forward Compensation, (2024). https://www.researchgate.net/publication/289452217_High_Precision_Position_Control_of_Electro-Hydraulic_Servo_System_Based_on_Feed-Forward_Compensation, (07.01.2025).
  • T. G. Ling, M. F. Rahmat, and A. R. Husain, System identification and control of an Electro-Hydraulic Actuator system, Proceedings - 2012 IEEE 8th International Colloquium on Signal Processing and Its Applications, pp. 85–88, 2012. doi: 10.1109/CSPA.2012.6194696.
  • M. S. Mahdi, Controlling a Nonlinear Servo Hydraulic System Using PID Controller with a Genetic Algorithm Tool, (2024). https://www.researchgate.net/publication/311536154_Controlling_a_Nonlinear_Servo_Hydraulic_System_Using_PID_Controller_with_a_Genetic_Algorithm_Tool, (07.01.2025).
  • Emerson, LabVIEW for CompactRIO Developer’s Guide - NI., (2024). https://www.ni.com, (07.01.2025).

Generation of regular waves with FPGA based controller in a wave channel

Yıl 2025, Cilt: 27 Sayı: 2, 519 - 536, 15.07.2025
https://doi.org/10.25092/baunfbed.1618673

Öz

Wave channel systems provide crucial experimental platforms for the development and optimization of wave energy converters. By enabling the safe and repeatable simulation of real ocean conditions, these systems play a key role in understanding wave behavior and reducing design risks. They allow the generation of a specific wave model to investigate the effects of water waves on coastal structures, coastal ecosystems, and offshore platforms. In this study, a hydraulically controlled piston-type wave generator was utilized in a 24-meter-long wave channel, which measures 1 meter in width and 1 meter in height, to produce regular waves. The wave generation system in the channel is operated by a hydraulic cylinder with a 400 mm stroke, controlled by a proportional directional control valve. An NI-CRIO 9074 programmable automation controller (PAC), featuring Field Programmable Gate Array (FPGA) technology and an NI-9263 analog output module with 15-bit resolution, was used for controlling the proportional directional control valve. The cylinder position was measured at 15-bit resolution using an NI-9215 analog input module. A proportional-integral control (PI) technique was implemented on the NI-CRIO 9074 hardware. The controller gains were determined experimentally, with a computer employed to perform real-time measurement and data logging of the generated waves. The entire system is managed by the NI-CRIO 9074 and regular wave production is achieved through LabVIEW-based user interface programs running on the computer.

Destekleyen Kurum

Balıkesir University

Proje Numarası

2024/042

Kaynakça

  • M. A. Zullah, D. Prasad, M. R. Ahmed, and Y. H. Lee, Performance analysis of a wave energy converter using numerical simulation technique, Science China Technological Sciences, vol. 53, no. 1, pp. 13–18, Jan. 2010. doi: 10.1007/S11431-010-0026-3.
  • Q. Du and D. Y. C. Leung, 2D Numerical Simulation of Ocean Waves, Proceedings of the World Renewable Energy Congress, 8–13 May 2011, Linköping, Sweden, vol. 57, pp. 2183–2189, Nov. 2011. doi: 10.3384/ECP110572183.
  • H. Gao and B. Li, Establishment of Motion Model for Wave Capture Buoy and Research on Hydrodynamic Performance of Floating-Type Wave Energy Converter, Polish Maritime Research, vol. 22, no. s1, pp. 106–111, Sep. 2015. doi: 10.1515/POMR-2015-0041.
  • G. Rajapakse, S. Jayasinghe, and A. Fleming, Power Smoothing and Energy Storage Sizing of Vented Oscillating Water Column Wave Energy Converter Arrays, Energies, vol. 13, no. 5, p. 1278, Mar. 2020. doi: 10.3390/EN13051278.
  • G. Giannini, P. Rosa-Santos, V. Ramos, and F. Taveira-Pinto, On the Development of an Offshore Version of the CECO Wave Energy Converter, Energies, vol. 13, no. 5, p. 1036, Feb. 2020. doi: 10.3390/EN13051036.
  • M. A. Jusoh, M. Z. Ibrahim, M. Z. Daud, A. Albani, and Z. M. Yusop, Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review, Energies, vol. 12, no. 23, p. 4510, Nov. 2019. doi: 10.3390/EN12234510.
  • A. Maria-Arenas, A. J. Garrido, E. Rusu, and I. Garrido, Control Strategies Applied to Wave Energy Converters: State of the Art, Energies, vol. 12, no. 16, p. 3115, Aug. 2019. doi: 10.3390/EN12163115.
  • H. Carreno-Luengo and A. Camps, Empirical Results of a Surface-Level GNSS-R Experiment in a Wave Channel, Remote Sensing, vol. 7, no. 6, pp. 7471–7493, Jun. 2015. doi: 10.3390/RS70607471.
  • I. Gyongy, J.-B. Richon, T. Vruce, and I. Bryden, Synteza i aktywność biologiczna nowych analogów tiosemikarbazonowych chelatorów żelaza, Physical Processes, Technomics Press, pp. 343–354, 2013. doi: 10.2/JQUERY.MIN.JS.
  • T. Kawaguchi, K. Nakano, S. Miyajima, and T. Arikawa, A Theory for Wave Energy Conversion by Bottom-Mounted Oscillating Bodies, (2024). https://www.researchgate.net/publication/334031823_A_Theory_for_Wave_Energy_Conversion_by_Bottom-Mounted_Oscillating_Bodies, (07.01.2025).
  • B. Chenari, S. S. Saadatian, and A. D. Ferreira, Numerical Modelling of Regular Waves Propagation and Breaking Using Waves2Foam, Journal of Clean Energy Technologies, vol. 3, no. 4, pp. 276–281, 2015. doi: 10.7763/JOCET.2015.V3.208.
  • M. Renganathan and M. Hossain, Numerical Analysis of a Horizontal Pressure Differential Wave Energy Converter, Energies, vol. 15, no. 20, p. 7513, Oct. 2022. doi: 10.3390/EN15207513.
  • X. Tian, Q. Wang, G. Liu, W. Deng, and Z. Gao, Numerical and experimental studies on a three-dimensional numerical wave tank, IEEE Access, vol. 6, pp. 6585–6593, Jan. 2018. doi: 10.1109/access.2018.2794064.
  • M. Y. Khalid, Laboratory Experiments on Water Wave Generation, PhD Thesis, University of Dundee, United Kingdom, (2020).
  • M. Beneduce, Design of a Wavemaker for the Water Tank at the Politecnico di Torino, Maser Thesis, Politecnico Di Torino, Italy, (2018).
  • L. F. Su, A. F. Zhang, and X. Liang, Research of the Servo Motion Control of Wave Maker, Applied Mechanics and Materials, vol. 541–542, pp. 1243–1247, 2014. doi: 10.4028/www.scientific.net/amm.541-542.1243. (07.01.2025).
  • Y. Jian-jun, D. Duo-tao, J. Gui-lin, and L. Sheng, High Precision Position Control of Electro-Hydraulic Servo System Based on Feed-Forward Compensation, (2024). https://www.researchgate.net/publication/289452217_High_Precision_Position_Control_of_Electro-Hydraulic_Servo_System_Based_on_Feed-Forward_Compensation, (07.01.2025).
  • T. G. Ling, M. F. Rahmat, and A. R. Husain, System identification and control of an Electro-Hydraulic Actuator system, Proceedings - 2012 IEEE 8th International Colloquium on Signal Processing and Its Applications, pp. 85–88, 2012. doi: 10.1109/CSPA.2012.6194696.
  • M. S. Mahdi, Controlling a Nonlinear Servo Hydraulic System Using PID Controller with a Genetic Algorithm Tool, (2024). https://www.researchgate.net/publication/311536154_Controlling_a_Nonlinear_Servo_Hydraulic_System_Using_PID_Controller_with_a_Genetic_Algorithm_Tool, (07.01.2025).
  • Emerson, LabVIEW for CompactRIO Developer’s Guide - NI., (2024). https://www.ni.com, (07.01.2025).
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kontrol Teorisi ve Uygulamaları
Bölüm Araştırma Makalesi
Yazarlar

Batın Demircan 0000-0002-0765-458X

Sabri Bıçakçı 0000-0002-2334-8515

Proje Numarası 2024/042
Erken Görünüm Tarihi 10 Temmuz 2025
Yayımlanma Tarihi 15 Temmuz 2025
Gönderilme Tarihi 14 Ocak 2025
Kabul Tarihi 25 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 27 Sayı: 2

Kaynak Göster

APA Demircan, B., & Bıçakçı, S. (2025). Generation of regular waves with FPGA based controller in a wave channel. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(2), 519-536. https://doi.org/10.25092/baunfbed.1618673
AMA Demircan B, Bıçakçı S. Generation of regular waves with FPGA based controller in a wave channel. BAUN Fen. Bil. Enst. Dergisi. Temmuz 2025;27(2):519-536. doi:10.25092/baunfbed.1618673
Chicago Demircan, Batın, ve Sabri Bıçakçı. “Generation of regular waves with FPGA based controller in a wave channel”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27, sy. 2 (Temmuz 2025): 519-36. https://doi.org/10.25092/baunfbed.1618673.
EndNote Demircan B, Bıçakçı S (01 Temmuz 2025) Generation of regular waves with FPGA based controller in a wave channel. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27 2 519–536.
IEEE B. Demircan ve S. Bıçakçı, “Generation of regular waves with FPGA based controller in a wave channel”, BAUN Fen. Bil. Enst. Dergisi, c. 27, sy. 2, ss. 519–536, 2025, doi: 10.25092/baunfbed.1618673.
ISNAD Demircan, Batın - Bıçakçı, Sabri. “Generation of regular waves with FPGA based controller in a wave channel”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27/2 (Temmuz2025), 519-536. https://doi.org/10.25092/baunfbed.1618673.
JAMA Demircan B, Bıçakçı S. Generation of regular waves with FPGA based controller in a wave channel. BAUN Fen. Bil. Enst. Dergisi. 2025;27:519–536.
MLA Demircan, Batın ve Sabri Bıçakçı. “Generation of regular waves with FPGA based controller in a wave channel”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 27, sy. 2, 2025, ss. 519-36, doi:10.25092/baunfbed.1618673.
Vancouver Demircan B, Bıçakçı S. Generation of regular waves with FPGA based controller in a wave channel. BAUN Fen. Bil. Enst. Dergisi. 2025;27(2):519-36.