Providing machine learning (ML) based security in heterogeneous IoT networks including resource-constrained devices is a challenge because of the fact that conventional ML algorithms require heavy computations. Therefore, in this paper, lightweight ProtoNN, CMSIS-NN, and Bonsai tree ML algorithms were evaluated by using performance metrics such as testing accuracy, precision, F1 score and recall to test their classification ability on the IPv6 network dataset generated on resource-scarce embedded devices. The Bonsai tree algorithm provided the best performance results in all metrics (98.8 in accuracy, 98.9% in F1 score, 99.2% in precision, and 98.8% in recall) compared to the ProtoNN, and CMSIS-NN algorithms.
Embedded systems machine learning lightweight ML algorithms IPv6 Network cyber attack
Recep Tayyip Erdogan University
Providing machine learning (ML) based security in heterogeneous IoT networks including resource-constrained devices is a challenge because of the fact that conventional ML algorithms require heavy computations. Therefore, in this paper, lightweight ProtoNN, CMSIS-NN, and Bonsai tree ML algorithms were evaluated by using performance metrics such as testing accuracy, precision, F1 score and recall to test their classification ability on the IPv6 network dataset generated on resource-scarce embedded devices. The Bonsai tree algorithm provided the best performance results in all metrics (98.8 in accuracy, 98.9% in F1 score, 99.2% in precision, and 98.8% in recall) compared to the ProtoNN, and CMSIS-NN algorithms.
Embedded systems machine learning lightweight ML algorithms IPv6 Network cyber attack
Birincil Dil | İngilizce |
---|---|
Konular | Yapay Zeka |
Bölüm | PAPERS |
Yazarlar | |
Yayımlanma Tarihi | 10 Ekim 2022 |
Gönderilme Tarihi | 8 Eylül 2022 |
Kabul Tarihi | 16 Eylül 2022 |
Yayımlandığı Sayı | Yıl 2022 |
The Creative Commons Attribution 4.0 International License is applied to all research papers published by JCS and
a Digital Object Identifier (DOI) is assigned for each published paper.