Araştırma Makalesi
BibTex RIS Kaynak Göster

Image Plagiarism Control System in Academic Articles

Yıl 2022, Cilt: IDAP-2022 : International Artificial Intelligence and Data Processing Symposium , 7 - 11, 10.10.2022
https://doi.org/10.53070/bbd.1173436

Öz

Similarity (plagiarism) control in pictures has become important because the information content of the pictures increases day by day and the copyrights become widespread. Currently, there are software that detects text-based similarity in academic studies, and no similarity detection can be made regarding the pictures in these studies. In academic studies, when citing ideas and texts and citing a bibliography, it is necessary to cite pictures (tables, results, graphics, etc.) in the same way. In this study, image hashing method was used to determine similarity in pictures. There are many methods and methods for detecting similarity in pictures. It has been determined that the most suitable method for the system to be built is perceptual hashing. Traditional image processing methods have a high success rate at this point, and as a disadvantage, it is not preferred because it is thought to have a negative effect on the system speed.

Kaynakça

  • Ding K, Meng F., Liu Y., Xu N., Chen W. (2018) Perceptual Hashing Based Forensics Scheme for the Integrity Authentication of High Resolution Remote Sensing Image. MDPI 9(229):2-12.
  • Ding K., Liu Y., Xu Q., & Lu F. (2020). A subject-sensitive perceptual hash based on MUM-Net for the integrity authentication of high resolution remote sensing images. ISPRS International Journal of Geo-Information, 9(8), 485.
  • Ding K., Su S., Xu N., & Jiang T. (2021a). Semi-U-Net: A Lightweight Deep Neural Network for Subject-Sensitive Hashing of HRRS Images. IEEE Access, 9, 60280-60295.
  • Ding K., Chen S., Wang Y., Liu Y., Zeng Y., & Tian J. (2021b). AAU-Net: Attention-Based Asymmetric U-Net for Subject-Sensitive Hashing of Remote Sensing Images. Remote Sensing, 13(24), 5109.
  • Ding K., Chen S., Yu J., Liu Y., & Zhu J. (2022). A New Subject-Sensitive Hashing Algorithm Based on MultiRes-RCF for Blockchains of HRRS Images. Algorithms, 15(6), 213.
  • Motilal K, Arambam N, Tuithung T, Singh K (2019) Robust perceptual image hashing using SIFT and SVD. CURRENT SCIENCE, 117(8): 1341-1343.
  • Roy M., Thounaojam D. M., & Pal S. (2022). Perceptual hashing scheme using KAZE feature descriptors for combinatorial manipulations. Multimedia Tools and Applications, 1-29.

Akademik Yazılarda Resim İntihal Kontrolü Sistemi

Yıl 2022, Cilt: IDAP-2022 : International Artificial Intelligence and Data Processing Symposium , 7 - 11, 10.10.2022
https://doi.org/10.53070/bbd.1173436

Öz

Resimlerde benzerlik (intihal) kontrolü resimlerin her geçen gün bilgi içeriğinin daha fazla artması ve telif haklarının yaygınlaşmasından dolayı önemli bir hale gelmiştir. Hali hazırda yapılan akademik çalışmalarda metin tabanlı benzerlik tespiti yapan yazılımları bulunmakta olup bu çalışmalardaki resimler ile ilgili olarak bir benzerlik tespiti yapılamamaktadır. Akademik çalışmalarda ne kadar fikirler ve metinler alınırken atıf yapılıp kaynakça göstermek gerekir ise resimler (tablolar, sonuçlar, grafikler vb.) alınırken de aynı şekilde atıf yapılıp kaynak gösterilmelidir. Bu çalışmada resimlerde benzerlik tespiti için resim hashleme (image hashing) yöntemi kullanılmıştır. Resimlerde benzerlik tespiti için birçok yöntem ve metot bulunmaktadır. Yapılacak sistem için en uygun yöntemin Algısal Kıyım (Perceptual Hashing) olduğu tespit edilmiştir. Geleneksel görüntü işleme metotlarının bu noktada başarı oranının yüksek olmasının yanında dezavantaj olarak sistem hızına negatif yönde bir etki sunacağı düşünülüp gözlemlendiği için tercih edilmemiştir.

Kaynakça

  • Ding K, Meng F., Liu Y., Xu N., Chen W. (2018) Perceptual Hashing Based Forensics Scheme for the Integrity Authentication of High Resolution Remote Sensing Image. MDPI 9(229):2-12.
  • Ding K., Liu Y., Xu Q., & Lu F. (2020). A subject-sensitive perceptual hash based on MUM-Net for the integrity authentication of high resolution remote sensing images. ISPRS International Journal of Geo-Information, 9(8), 485.
  • Ding K., Su S., Xu N., & Jiang T. (2021a). Semi-U-Net: A Lightweight Deep Neural Network for Subject-Sensitive Hashing of HRRS Images. IEEE Access, 9, 60280-60295.
  • Ding K., Chen S., Wang Y., Liu Y., Zeng Y., & Tian J. (2021b). AAU-Net: Attention-Based Asymmetric U-Net for Subject-Sensitive Hashing of Remote Sensing Images. Remote Sensing, 13(24), 5109.
  • Ding K., Chen S., Yu J., Liu Y., & Zhu J. (2022). A New Subject-Sensitive Hashing Algorithm Based on MultiRes-RCF for Blockchains of HRRS Images. Algorithms, 15(6), 213.
  • Motilal K, Arambam N, Tuithung T, Singh K (2019) Robust perceptual image hashing using SIFT and SVD. CURRENT SCIENCE, 117(8): 1341-1343.
  • Roy M., Thounaojam D. M., & Pal S. (2022). Perceptual hashing scheme using KAZE feature descriptors for combinatorial manipulations. Multimedia Tools and Applications, 1-29.
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilgisayar Yazılımı
Bölüm PAPERS
Yazarlar

Sabahattin Oluk 0000-0001-7415-8490

Buket Kaya 0000-0001-9505-181X

Yayımlanma Tarihi 10 Ekim 2022
Gönderilme Tarihi 10 Eylül 2022
Kabul Tarihi 16 Eylül 2022
Yayımlandığı Sayı Yıl 2022 Cilt: IDAP-2022 : International Artificial Intelligence and Data Processing Symposium

Kaynak Göster

APA Oluk, S., & Kaya, B. (2022). Akademik Yazılarda Resim İntihal Kontrolü Sistemi. Computer Science, IDAP-2022 : International Artificial Intelligence and Data Processing Symposium, 7-11. https://doi.org/10.53070/bbd.1173436

The Creative Commons Attribution 4.0 International License 88x31.png  is applied to all research papers published by JCS and

a Digital Object Identifier (DOI)     Logo_TM.png  is assigned for each published paper.