Araştırma Makalesi
BibTex RIS Kaynak Göster

A Study on Dynamic Energy Pricing in Smart Grids

Yıl 2022, Cilt: IDAP-2022 : International Artificial Intelligence and Data Processing Symposium , 21 - 31, 10.10.2022
https://doi.org/10.53070/bbd.1174257

Öz

Demand-side load management (DSLM), load forecasting, and dynamic energy pricing are critical in smart grids (SG) where there is mutual communication between manufacturers and consumers today and in the future. The transmission of signals obtained with dynamic energy pricing via servers is a very important topic for demand management and the energy market. Despite the distributed generation conditions, the energy balance is maintained by the demand side management during dynamic studies based on energy prices. With the dynamic structure of energy price signals and load forecasting, uncertainties arising from distributed generation are responded to. This study details demand response (DR) methods and smart pricing plans such as time-of-use (ToU), critical peak price (CPP), and real-time price (RTP). Studies, advantages, and disadvantages of smart grids are examined, and smart tariff plans are compared.

Kaynakça

  • Akçin, M., Alagöz, B. B., Keleş, C., Karabiber, A., ve Kaygusuz, A. (2013). Dağıtık kontrol ile akıllı şebekelerde geniş-alan yönetimi ve geleceğe dönük projeksiyonlar Wide-area management of smart grid by distributed control and near future projections. Sakarya üniversitesi fen bilimleri dergisi, 17(3), 457–470.
  • Alagoz, B. B., ve Kaygusuz, A. (2016). Dynamic energy pricing by closed-loop fractional-order PI control system and energy balancing in smart grid energy markets. Transactions of the Institute of Measurement and Control, 38(5), 565–578. https://doi.org/10.1177/0142331215579949
  • Alagöz, B. B., ve Kaygusuz, A. (2014). Kapalı Çevrim Kesir Dereceli PI Kontrolör ile Dinamik Enerji Fiyatı Kontrolü ve Akıllı Şebekelerde Otomatik Enerji Arz- Talep Dengelemesi Uygulaması. TOK, Kocaeli, 535–539.
  • Alagoz, B. B., Kaygusuz, A., Akcin, M., ve Alagoz, S. (2013). A closed-loop energy price controlling method for real-time energy balancing in a smart grid energy market. Energy, 59, 95–104. https://doi.org/10.1016/j.energy.2013.06.074
  • Anand, H., ve Ramasubbu, R. (2018). A real time pricing strategy for remote micro-grid with economic emission dispatch and stochastic renewable energy sources. Renewable Energy, 127, 779–789. https://doi.org/10.1016/j.renene.2018.05.016
  • Anonim. (2022). Elektrik piyasası. Vikipedi. https://tr.wikipedia.org/wiki/Elektrik_piyasası#:~:text=Her elektrik piyasasının faaliyet alanı,pazarlar ulusal sınırların ötesine geçebilir
  • Arslan, B., ve Ertuğrul, İ. (2022). Çoklu regresyon, arıma ve yapay sinir ağı yöntemleri ile türkiye elektrik piyasasında fiyat tahmin ve analizi. Yönetim ve Ekonomi Araştırmaları Dergisi, 20(1), 331–353. https://doi.org/10.11611/yead.988146
  • Boom, A., ve Schwenen, S. (2021). Is real-time pricing smart for consumers ? Journal of Regulatory Economics, 60(2), 193–213. https://doi.org/10.1007/s11149-021-09440-5
  • Boonchuay, K., Optimization, B., ve Peak, C. (2017). Optimal Critical Peak Pricing Scheme with Consideration of Marginal Generation Cost. 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 226–229.
  • Çetintaş, H., ve Bicil, İ. M. (2015). Elektrik piyasalarında yeniden yapılanma ve türkiye elektrik piyasasında yapısal dönüşüm. Optimum Ekonomi ve Yönetim Bilimleri Dergisi, 2(2), 1–15.
  • Chakraborty, S., Ito, T., ve Senjyu, T. (2014). Smart pricing scheme: A multi-layered scoring rule application. Expert Systems With Applications, 41(8), 3726–3735. https://doi.org/10.1016/j.eswa.2013.12.002
  • Cui, Q., Wang, X., Liu, C., ve Hou, F. (2015). Decision model of critical peak pricing coordinating wind power generation. International Conference on Clean Electrical Power (ICCEP), 775–779.
  • Danxi, L., Bo, Z., Yan, Q., ve Yu-jie, X. (2017). Optimal Control Model of Electric Vehicle Demand Response Based on Real - time Electricity Price. EEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 1815–1818.
  • Datta, A. R., ve Datta, S. (2016). Electricity Market Price-spike Classification in the Smart Grid. IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), 1–5.
  • Duan, Q. (2016). A Price-Based Demand Response Scheduling Model in Day-Ahead Electricity Market. IEEE Power and Energy Society General Meeting (PESGM), 1–5.
  • Dutta, G., ve Mitra, K. (2017). A literature review on dynamic pricing of electricity. Journal of the Operational Research Society, 68(10), 1131–1145. https://doi.org/10.1057/s41274-016-0149-4
  • Gellings, C. W. (1985). The concept of demand-side management for electric utilities. Proceedings of the IEEE, 73(10), 1468–1470.
  • Gyamfi, S., Krumdieck, S., ve Urmee, T. (2013). Residential peak electricity demand response—Highlights of some behavioural issues. Renewable and Sustainable Energy Reviews, 25, 71–77. https://doi.org/10.1016/j.rser.2013.04.006
  • Herter, K., ve Wayland, S. (2010). Residential response to critical-peak pricing of electricity : California evidence. Energy, 35(4), 1561–1567. https://doi.org/10.1016/j.energy.2009.07.022
  • Huang, W., Zhang, N., Kang, C., Li, M., ve Huo, M. (2019). From demand response to integrated demand response : review and prospect of research and application. Protection and Control of Modern Power Systems, 4(1), 1–13.
  • Jose, A. A., ve Pahwa, A. (2010). Economic evaluation of small wind generation ownership under different electricity pricing scenarios. North American Power Symposium 2010, 1–4. https://doi.org/10.1109/NAPS.2010.5618946
  • Kaygusuz, A. (2019). Closed loop elastic demand control by dynamic energy pricing in smart grids. Energy, 176, 596–603. https://doi.org/10.1016/j.energy.2019.04.036
  • Keleş, C. (2017). Akıllı Şebekelerde Yenilenebilir Enerji Üretimine Sahip Akıllı Evlerin Enerji Ve Yük Yönetimi. (Doktora Tezi) , İnönü Üniversitesi, Fen Bilimleri Enstitüsü, Malatya.
  • Khan, A. R., Mahmood, A., Safdar, A., Khan, Z. A., ve Khan, N. A. (2016). Load forecasting, dynamic pricing and DSM in smart grid: A review. Renewable and Sustainable Energy Reviews, 54, 1311–1322. https://doi.org/10.1016/j.rser.2015.10.117
  • Khattak, H. A., Tehreem, K., Almogren, A., Ameer, Z., Din, I. U., ve Adnan, M. (2020). Dynamic pricing in industrial internet of things : Blockchain application for energy management in smart cities. Journal of Information Security and Applications, 55, 1–8. https://doi.org/10.1016/j.jisa.2020.102615
  • Kii, M., Sakamoto, K., Hangai, Y., ve Doi, K. (2014). The effects of critical peak pricing for electricity demand management on home-based trip generation. IATSS Research, 37(2), 89–97. https://doi.org/10.1016/j.iatssr.2013.12.001
  • Mehta, V. K., ve Mehta, R. (2005). Principles of Power System: Including Generation, Transmission, Distribution, Switchgear and Protection: for BE/B. Tech. S. Chand Publishing.
  • Nazar, N. S. M., Abdullah, M. . P., Hassan, M. Y., ve Hussin, F. (2012). Time-based electricity pricing for Demand Response implementation in monopolized electricity market. IEEE Student Conference on Research and Development, 178–181.
  • Onaiwu, E. (2010). How Does Bilateral Trading Differ From Electricity Pooling? University of Dundee, 3–6.
  • Pahle, M., Schill, W., Gambardella, C., ve Tietjen, O. (2016). Renewable Energy Support , Negative Prices , and Real-time. Energy, 37, 147–170.
  • Palensky, P., ve Dietrich, D. (2011). Demand Side Management : Demand Response , Intelligent Energy Systems , and Smart Loads. IEEE Transactions on Industrial Informatics, 7(3), 381–388.
  • Pallonetto, F., Oxizidis, S., Milano, F., ve Finn, D. (2016). The effect of time-of-use tariffs on the demand response flexibility of an all-electric smart-grid-ready dwelling. Energy & Buildings, 128, 56–67. https://doi.org/10.1016/j.enbuild.2016.06.041
  • Park, S. C., Jin, Y. G., Song, H. Y., ve Yoon, Y. T. (2015). Designing a critical peak pricing scheme for the pro fi t maximization objective considering price responsiveness of customers. Energy, 83, 521–531. https://doi.org/10.1016/j.energy.2015.02.057
  • Roozbehani, M., Dahleh, M. A., ve Mitter, S. K. (2012). Volatility of Power Grids Under Real-Time Pricing. IEEE Transactions on Power Systems, 27(4), 1926–1940.
  • Shao, S., ve Zhang, T. (2010). Impact of TOU rates on distribution load shapes in a smart grid with PHEV penetration. IEEE PES T&D 2010, 1–6. https://doi.org/10.1109/TDC.2010.5484336
  • Song, X., ve Qu, J. (2014). An improved real-time pricing algorithm based on utility maximization for smart grid. Proceeding of the 11th World Congress on Intelligent Control and Automation, 2509–2513.
  • Sun, Q., Ge, X., Liu, L., Xu, X., Zhang, Y., Niu, R., ve Zeng, Y. (2011). Review of smart grid comprehensive assessment systems. Energy Procedia, 12, 219–229. https://doi.org/10.1016/j.egypro.2011.10.031
  • Tanrıöven, K., Yararbaş, S., ve Cengiz, H. (2011). Geleceğin Elektrik Dağıtım Şebekesi Smart Grid. Elektrik-Elektronik ve Bilgisayar Sempozyumu 2011, 52–55.
  • Wang, J., Bloyd, C. N., Hu, Z., ve Tan, Z. (2010). Demand response in China. Energy, 35(4), 1592–1597. https://doi.org/10.1016/j.energy.2009.06.020
  • Xu, F. Y., Zhang, T., Lai, L. L., ve Zhou, H. (2015). Shifting Boundary for price-based residential demand response and applications. Applied Energy, 146, 353–370. https://doi.org/10.1016/j.apenergy.2015.02.001
  • Yalçınöz, Z., ve Kaygusuz, A. (2021). Dynamic price control using pole placement method in smart grids. Computer Science, 411–421. https://doi.org/10.53070/bbd.982884
  • Yan, X., Ozturk, Y., Hu, Z., ve Song, Y. (2018). A review on price-driven residential demand response. Renewable and Sustainable Energy Reviews, 96, 411–419. https://doi.org/10.1016/j.rser.2018.08.003
  • Yan, X., Wright, D., Kumar, S., Lee, G., ve Ozturk, Y. (2015). Real-Time Residential Time-of-Use Pricing: A Closed-Loop Consumers Feedback Approach. Seventh Annual IEEE Green Technologies Conference, 132–138. https://doi.org/10.1109/GREENTECH.2015.19
  • Zehir, M. A., ve Bağrıyanık, M. (2013). Akıllı şebekelerde gelişmiş yerel talep yönetimi. V. Enerji verimliliği ve kalitesi sempozyumu, 14–18.
  • Zeng, S., Li, J., ve Ren, Y. (2008). Research of Time-of-Use Electricity Pricing Models in China : A Survey. IEEE International Conference on Industrial Engineering and Engineering Management, 2191–2195. https://doi.org/10.1109/IEEM.2008.4738260
  • Zhang, Q., Wang, X., ve Fu, M. (2009). Optimal Implementation Strategies for Critical Peak Pricing. International Conference on the European Energy Market, 1–6.

Akıllı Şebekelerde Dinamik Enerji Fiyatlandırılması Üzerine Bir Çalışma

Yıl 2022, Cilt: IDAP-2022 : International Artificial Intelligence and Data Processing Symposium , 21 - 31, 10.10.2022
https://doi.org/10.53070/bbd.1174257

Öz

Üreticiler ve tüketiciler arasında karşılıklı haberleşmenin sağlandığı akıllı şebekelerde (SG) talep tarafı yük yönetimi (DSLM), yük tahmini ve bunlarla bağlantılı olan dinamik enerji fiyatlandırması günümüzde ve gelecekte büyük önem arz etmektedir. Dinamik enerji fiyatlandırması ile elde edilen sinyallerin sunucular aracılığıyla yayınlanması talep tarafı yönetim ve enerji piyasası için çok önemli bir başlıktır. Dinamik enerji fiyatlandırması tabanlı çalışmaların genelinde dağıtık üretim koşullarına rağmen enerji dengesi talep tarafı yönetim ile korunmaktadır. Enerji fiyat sinyallerinin dinamik yapıda olmasıyla ve yük tahmini ile dağıtık üretimden kaynaklanan belirsizliklere yanıt verilmektedir. Bu çalışmada talep yanıtı (DR) yöntemleri ve akıllı fiyatlandırma planları olan kullanım süresi (ToU), kritik tepe fiyatlandırması (CPP) ve gerçek zamanlı fiyatlandırma (RTP) ayrıntılı olarak incelenmiştir. Akıllı şebekelerde yapılan çalışmalar, avantajları, dezavantajları incelenmiş ve akıllı fiyat planları karşılaştırılmıştır.

Kaynakça

  • Akçin, M., Alagöz, B. B., Keleş, C., Karabiber, A., ve Kaygusuz, A. (2013). Dağıtık kontrol ile akıllı şebekelerde geniş-alan yönetimi ve geleceğe dönük projeksiyonlar Wide-area management of smart grid by distributed control and near future projections. Sakarya üniversitesi fen bilimleri dergisi, 17(3), 457–470.
  • Alagoz, B. B., ve Kaygusuz, A. (2016). Dynamic energy pricing by closed-loop fractional-order PI control system and energy balancing in smart grid energy markets. Transactions of the Institute of Measurement and Control, 38(5), 565–578. https://doi.org/10.1177/0142331215579949
  • Alagöz, B. B., ve Kaygusuz, A. (2014). Kapalı Çevrim Kesir Dereceli PI Kontrolör ile Dinamik Enerji Fiyatı Kontrolü ve Akıllı Şebekelerde Otomatik Enerji Arz- Talep Dengelemesi Uygulaması. TOK, Kocaeli, 535–539.
  • Alagoz, B. B., Kaygusuz, A., Akcin, M., ve Alagoz, S. (2013). A closed-loop energy price controlling method for real-time energy balancing in a smart grid energy market. Energy, 59, 95–104. https://doi.org/10.1016/j.energy.2013.06.074
  • Anand, H., ve Ramasubbu, R. (2018). A real time pricing strategy for remote micro-grid with economic emission dispatch and stochastic renewable energy sources. Renewable Energy, 127, 779–789. https://doi.org/10.1016/j.renene.2018.05.016
  • Anonim. (2022). Elektrik piyasası. Vikipedi. https://tr.wikipedia.org/wiki/Elektrik_piyasası#:~:text=Her elektrik piyasasının faaliyet alanı,pazarlar ulusal sınırların ötesine geçebilir
  • Arslan, B., ve Ertuğrul, İ. (2022). Çoklu regresyon, arıma ve yapay sinir ağı yöntemleri ile türkiye elektrik piyasasında fiyat tahmin ve analizi. Yönetim ve Ekonomi Araştırmaları Dergisi, 20(1), 331–353. https://doi.org/10.11611/yead.988146
  • Boom, A., ve Schwenen, S. (2021). Is real-time pricing smart for consumers ? Journal of Regulatory Economics, 60(2), 193–213. https://doi.org/10.1007/s11149-021-09440-5
  • Boonchuay, K., Optimization, B., ve Peak, C. (2017). Optimal Critical Peak Pricing Scheme with Consideration of Marginal Generation Cost. 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 226–229.
  • Çetintaş, H., ve Bicil, İ. M. (2015). Elektrik piyasalarında yeniden yapılanma ve türkiye elektrik piyasasında yapısal dönüşüm. Optimum Ekonomi ve Yönetim Bilimleri Dergisi, 2(2), 1–15.
  • Chakraborty, S., Ito, T., ve Senjyu, T. (2014). Smart pricing scheme: A multi-layered scoring rule application. Expert Systems With Applications, 41(8), 3726–3735. https://doi.org/10.1016/j.eswa.2013.12.002
  • Cui, Q., Wang, X., Liu, C., ve Hou, F. (2015). Decision model of critical peak pricing coordinating wind power generation. International Conference on Clean Electrical Power (ICCEP), 775–779.
  • Danxi, L., Bo, Z., Yan, Q., ve Yu-jie, X. (2017). Optimal Control Model of Electric Vehicle Demand Response Based on Real - time Electricity Price. EEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 1815–1818.
  • Datta, A. R., ve Datta, S. (2016). Electricity Market Price-spike Classification in the Smart Grid. IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), 1–5.
  • Duan, Q. (2016). A Price-Based Demand Response Scheduling Model in Day-Ahead Electricity Market. IEEE Power and Energy Society General Meeting (PESGM), 1–5.
  • Dutta, G., ve Mitra, K. (2017). A literature review on dynamic pricing of electricity. Journal of the Operational Research Society, 68(10), 1131–1145. https://doi.org/10.1057/s41274-016-0149-4
  • Gellings, C. W. (1985). The concept of demand-side management for electric utilities. Proceedings of the IEEE, 73(10), 1468–1470.
  • Gyamfi, S., Krumdieck, S., ve Urmee, T. (2013). Residential peak electricity demand response—Highlights of some behavioural issues. Renewable and Sustainable Energy Reviews, 25, 71–77. https://doi.org/10.1016/j.rser.2013.04.006
  • Herter, K., ve Wayland, S. (2010). Residential response to critical-peak pricing of electricity : California evidence. Energy, 35(4), 1561–1567. https://doi.org/10.1016/j.energy.2009.07.022
  • Huang, W., Zhang, N., Kang, C., Li, M., ve Huo, M. (2019). From demand response to integrated demand response : review and prospect of research and application. Protection and Control of Modern Power Systems, 4(1), 1–13.
  • Jose, A. A., ve Pahwa, A. (2010). Economic evaluation of small wind generation ownership under different electricity pricing scenarios. North American Power Symposium 2010, 1–4. https://doi.org/10.1109/NAPS.2010.5618946
  • Kaygusuz, A. (2019). Closed loop elastic demand control by dynamic energy pricing in smart grids. Energy, 176, 596–603. https://doi.org/10.1016/j.energy.2019.04.036
  • Keleş, C. (2017). Akıllı Şebekelerde Yenilenebilir Enerji Üretimine Sahip Akıllı Evlerin Enerji Ve Yük Yönetimi. (Doktora Tezi) , İnönü Üniversitesi, Fen Bilimleri Enstitüsü, Malatya.
  • Khan, A. R., Mahmood, A., Safdar, A., Khan, Z. A., ve Khan, N. A. (2016). Load forecasting, dynamic pricing and DSM in smart grid: A review. Renewable and Sustainable Energy Reviews, 54, 1311–1322. https://doi.org/10.1016/j.rser.2015.10.117
  • Khattak, H. A., Tehreem, K., Almogren, A., Ameer, Z., Din, I. U., ve Adnan, M. (2020). Dynamic pricing in industrial internet of things : Blockchain application for energy management in smart cities. Journal of Information Security and Applications, 55, 1–8. https://doi.org/10.1016/j.jisa.2020.102615
  • Kii, M., Sakamoto, K., Hangai, Y., ve Doi, K. (2014). The effects of critical peak pricing for electricity demand management on home-based trip generation. IATSS Research, 37(2), 89–97. https://doi.org/10.1016/j.iatssr.2013.12.001
  • Mehta, V. K., ve Mehta, R. (2005). Principles of Power System: Including Generation, Transmission, Distribution, Switchgear and Protection: for BE/B. Tech. S. Chand Publishing.
  • Nazar, N. S. M., Abdullah, M. . P., Hassan, M. Y., ve Hussin, F. (2012). Time-based electricity pricing for Demand Response implementation in monopolized electricity market. IEEE Student Conference on Research and Development, 178–181.
  • Onaiwu, E. (2010). How Does Bilateral Trading Differ From Electricity Pooling? University of Dundee, 3–6.
  • Pahle, M., Schill, W., Gambardella, C., ve Tietjen, O. (2016). Renewable Energy Support , Negative Prices , and Real-time. Energy, 37, 147–170.
  • Palensky, P., ve Dietrich, D. (2011). Demand Side Management : Demand Response , Intelligent Energy Systems , and Smart Loads. IEEE Transactions on Industrial Informatics, 7(3), 381–388.
  • Pallonetto, F., Oxizidis, S., Milano, F., ve Finn, D. (2016). The effect of time-of-use tariffs on the demand response flexibility of an all-electric smart-grid-ready dwelling. Energy & Buildings, 128, 56–67. https://doi.org/10.1016/j.enbuild.2016.06.041
  • Park, S. C., Jin, Y. G., Song, H. Y., ve Yoon, Y. T. (2015). Designing a critical peak pricing scheme for the pro fi t maximization objective considering price responsiveness of customers. Energy, 83, 521–531. https://doi.org/10.1016/j.energy.2015.02.057
  • Roozbehani, M., Dahleh, M. A., ve Mitter, S. K. (2012). Volatility of Power Grids Under Real-Time Pricing. IEEE Transactions on Power Systems, 27(4), 1926–1940.
  • Shao, S., ve Zhang, T. (2010). Impact of TOU rates on distribution load shapes in a smart grid with PHEV penetration. IEEE PES T&D 2010, 1–6. https://doi.org/10.1109/TDC.2010.5484336
  • Song, X., ve Qu, J. (2014). An improved real-time pricing algorithm based on utility maximization for smart grid. Proceeding of the 11th World Congress on Intelligent Control and Automation, 2509–2513.
  • Sun, Q., Ge, X., Liu, L., Xu, X., Zhang, Y., Niu, R., ve Zeng, Y. (2011). Review of smart grid comprehensive assessment systems. Energy Procedia, 12, 219–229. https://doi.org/10.1016/j.egypro.2011.10.031
  • Tanrıöven, K., Yararbaş, S., ve Cengiz, H. (2011). Geleceğin Elektrik Dağıtım Şebekesi Smart Grid. Elektrik-Elektronik ve Bilgisayar Sempozyumu 2011, 52–55.
  • Wang, J., Bloyd, C. N., Hu, Z., ve Tan, Z. (2010). Demand response in China. Energy, 35(4), 1592–1597. https://doi.org/10.1016/j.energy.2009.06.020
  • Xu, F. Y., Zhang, T., Lai, L. L., ve Zhou, H. (2015). Shifting Boundary for price-based residential demand response and applications. Applied Energy, 146, 353–370. https://doi.org/10.1016/j.apenergy.2015.02.001
  • Yalçınöz, Z., ve Kaygusuz, A. (2021). Dynamic price control using pole placement method in smart grids. Computer Science, 411–421. https://doi.org/10.53070/bbd.982884
  • Yan, X., Ozturk, Y., Hu, Z., ve Song, Y. (2018). A review on price-driven residential demand response. Renewable and Sustainable Energy Reviews, 96, 411–419. https://doi.org/10.1016/j.rser.2018.08.003
  • Yan, X., Wright, D., Kumar, S., Lee, G., ve Ozturk, Y. (2015). Real-Time Residential Time-of-Use Pricing: A Closed-Loop Consumers Feedback Approach. Seventh Annual IEEE Green Technologies Conference, 132–138. https://doi.org/10.1109/GREENTECH.2015.19
  • Zehir, M. A., ve Bağrıyanık, M. (2013). Akıllı şebekelerde gelişmiş yerel talep yönetimi. V. Enerji verimliliği ve kalitesi sempozyumu, 14–18.
  • Zeng, S., Li, J., ve Ren, Y. (2008). Research of Time-of-Use Electricity Pricing Models in China : A Survey. IEEE International Conference on Industrial Engineering and Engineering Management, 2191–2195. https://doi.org/10.1109/IEEM.2008.4738260
  • Zhang, Q., Wang, X., ve Fu, M. (2009). Optimal Implementation Strategies for Critical Peak Pricing. International Conference on the European Energy Market, 1–6.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilgisayar Yazılımı
Bölüm PAPERS
Yazarlar

Zehva Yalçınöz 0000-0003-1574-7556

Asım Kaygusuz 0000-0003-2905-1816

Yayımlanma Tarihi 10 Ekim 2022
Gönderilme Tarihi 12 Eylül 2022
Kabul Tarihi 16 Eylül 2022
Yayımlandığı Sayı Yıl 2022 Cilt: IDAP-2022 : International Artificial Intelligence and Data Processing Symposium

Kaynak Göster

APA Yalçınöz, Z., & Kaygusuz, A. (2022). Akıllı Şebekelerde Dinamik Enerji Fiyatlandırılması Üzerine Bir Çalışma. Computer Science, IDAP-2022 : International Artificial Intelligence and Data Processing Symposium, 21-31. https://doi.org/10.53070/bbd.1174257

The Creative Commons Attribution 4.0 International License 88x31.png  is applied to all research papers published by JCS and

a Digital Object Identifier (DOI)     Logo_TM.png  is assigned for each published paper.