BibTex RIS Kaynak Göster

Heat Shock Protein 70 extraction from human tooth for ELISA

Yıl 2010, , 25 - 30, 05.04.2013
https://doi.org/10.12808/bcs.v1i2.6

Öz

Abstract

Protein extraction from bone is extremely difficult task because the bone tissue is hard to dissolve. Special care must be taken during extraction to prevent protein degradation and/or unfolding. Boiling is a traditional method for extracting protein from bones, but heat denaturation during this process destroys tertiary structure of some proteins irreversibly.  Dental sciences employ tooth based research and extraction of proteins or other macromolecules from tooth are required most of the time. A new method was developed in our laboratory to extract proteins from tooth. This method overcomes heat or chemical denaturation of proteins and requires couple days. Although the method extract relatively less protein, the total amount of protein is sufficient for ELISA and proteomics.

Keywords: Heat Shock Protein 70, tooth, ELISA

Özet

ELISA için insan dişinden ısı şok protein 70 ekstraksyonu

Kemikten protein ekstraksyonu kemik dokusunun çözülmesi oldukça kısıtlı olduğundan zor bir işlemdir. Ekstraksyon sırasında protein yıkımı ve/veya katlanmasını engellemek için özel önlem alınmalıdır. Kaynatmak kemiklerden protein çıkartmak için geleneksel bir yöntemdir fakat bu işlem süresince ısı kaynaklı denatürasyon bazı proteinleri geri dönüşümsüz üçüncül yapılarını bozarlar. Diş bilimleri çoğu kez diş ile ilgili çalışmalar,  dişten protein veya diğer moleküllerin ekstraksiyonunu gerektirir. Laboratuarımızda dişten protein ekstraksyonu için yeni bir metot geliştirildi.  Bu metot ısı ve kimyasal denaturasyonun önüne geçer ve bir kaç gün gerektirir. Yeni metot göreceli az protein ekstrakte etsede, elde edilen toplam protein ELISA ve proteomik çalışmaları için yeterlidir.

Anahtar Sözcükler: Isı şok protein 70, diş, ELISA

Kaynakça

  • Jiang X, Ye M, Jiang X, Liu G, Feng S, Cui L, Zou H. Method development of efficient protein extraction in bone tissue for proteome analysis. J Proteome Res. 2007 Jun;6(6):2287-94. Epub 2007 May 8. 2007 Nov;6(11):4528.
  • Sens DA, McGuirt JP, Khan W, Howell RM, Todd JH. Expression of hsc 70, but not hsp 70, in human third molar dental pulp. Eur J Oral Sci. 1997 Jun;105(3):271-7.
  • Sharma D, Masison DC. Protein Pept Lett. 2009;16(6):571-81. Review. Hsp70 structure, function, regulation and influence on yeast prions.
  • Tutar Y, Song Y, Masison DC. Genetics. 2006 Feb;172(2):851-61. Epub 2005 Nov 19. Primate chaperones Hsc70 (constitutive) and Hsp70 (induced) differ functionally in supporting growth and prion propagation in Saccharomyces cerevisiae.
  • Sharma D, Martineau CN, Le Dall MT, Reidy M, Masison DC, Kabani M. Function of SSA subfamily of Hsp70 within and across species varies widely in complementing Saccharomyces cerevisiae cell growth and prion propagation. PLoS One. 2009 Aug 14;4(8):e6644.
  • Song Y, Wu YX, Jung G, Tutar Y, Eisenberg E, Greene LE, Masison DC. Role for Hsp70 chaperone in Saccharomyces cerevisiae prion seed replication. Eukaryot Cell. 2005 Feb;4(2):289-97.
  • Tutar L, Tutar Y. Heat Shock Proteins; An Overview. Curr Pharm Biotechnol. 2010 Feb 16.
  • Bukau B., Deuerling E., Pfund C. and Craig E. A. Getting newly synthesized proteins into shape. Cell. 2000 101:119–122
  • Aufricht C. Heat shock protein 70: Molecular supertool. Pediatr Nephrol 2005; 20: 707-713.
  • Hartl F. U. and Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science. 2002 295: 1852–1858.
  • Goloubinoff P., Mogk A., Peres Ben Zvi A., Tomoyasu T. and Bukau B. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl. Acad. Sci. USA 1999 96: 13732–13737
  • Mayer MP, Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 2005;62(6):670–684.
  • Tutar L, Tutar Y. Ydj1 but not Sis1 stabilizes Hsp70 protein under prolonged stress in vitro. Biopolymers. 2008 Mar;89(3):171-4.
  • Genevaux P, Georgopoulos C, Kelley WL. The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Mol Microbiol 2007;66(4):840–857.
  • Ben-Zvi A. P. and Goloubinoff P. Review: mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones. J. Struct. Biol. 2001 135: 84–93
  • Ben-Zvi A., De Los Rios P., Dietler G. and Goloubinoff P. Active solubilization and refolding of stable protein aggregates by cooperative unfolding action of individual Hsp70 chaperones. J. Biol. Chem. 2004 279: 37298–37303
  • Diamant S., Peres Ben-Zvi A., Bukau B. and Goloubinoff P. Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery. J. Biol. Chem. 2000275: 21107–21113
  • Glover J. R. and Lindquist S. Hsp104, Hsp70 and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 1998 94: 73–82
  • Liberek K, Lewandowska A, Zietkiewicz S. Chaperones in control of protein disaggregation. Embo J 2008;27(2):328–335.
  • Frydman J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 2001;70:603–647.
  • Hohfeld J, Cyr DM, Patterson C. From the cradle to the grave: molecular chaperones that may choose between folding and degradation. EMBO Rep 2001;2(10):885–890.
  • Kramer G, et al. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat Struct Mol Biol 2009;16(6):589–597.
  • Young JC, Barral JM, Ulrich Hartl F. More than folding: localized functions of cytosolic chaperones. Trends Biochem Sci 2003;28(10):541–547.
Yıl 2010, , 25 - 30, 05.04.2013
https://doi.org/10.12808/bcs.v1i2.6

Öz

Kaynakça

  • Jiang X, Ye M, Jiang X, Liu G, Feng S, Cui L, Zou H. Method development of efficient protein extraction in bone tissue for proteome analysis. J Proteome Res. 2007 Jun;6(6):2287-94. Epub 2007 May 8. 2007 Nov;6(11):4528.
  • Sens DA, McGuirt JP, Khan W, Howell RM, Todd JH. Expression of hsc 70, but not hsp 70, in human third molar dental pulp. Eur J Oral Sci. 1997 Jun;105(3):271-7.
  • Sharma D, Masison DC. Protein Pept Lett. 2009;16(6):571-81. Review. Hsp70 structure, function, regulation and influence on yeast prions.
  • Tutar Y, Song Y, Masison DC. Genetics. 2006 Feb;172(2):851-61. Epub 2005 Nov 19. Primate chaperones Hsc70 (constitutive) and Hsp70 (induced) differ functionally in supporting growth and prion propagation in Saccharomyces cerevisiae.
  • Sharma D, Martineau CN, Le Dall MT, Reidy M, Masison DC, Kabani M. Function of SSA subfamily of Hsp70 within and across species varies widely in complementing Saccharomyces cerevisiae cell growth and prion propagation. PLoS One. 2009 Aug 14;4(8):e6644.
  • Song Y, Wu YX, Jung G, Tutar Y, Eisenberg E, Greene LE, Masison DC. Role for Hsp70 chaperone in Saccharomyces cerevisiae prion seed replication. Eukaryot Cell. 2005 Feb;4(2):289-97.
  • Tutar L, Tutar Y. Heat Shock Proteins; An Overview. Curr Pharm Biotechnol. 2010 Feb 16.
  • Bukau B., Deuerling E., Pfund C. and Craig E. A. Getting newly synthesized proteins into shape. Cell. 2000 101:119–122
  • Aufricht C. Heat shock protein 70: Molecular supertool. Pediatr Nephrol 2005; 20: 707-713.
  • Hartl F. U. and Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science. 2002 295: 1852–1858.
  • Goloubinoff P., Mogk A., Peres Ben Zvi A., Tomoyasu T. and Bukau B. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl. Acad. Sci. USA 1999 96: 13732–13737
  • Mayer MP, Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 2005;62(6):670–684.
  • Tutar L, Tutar Y. Ydj1 but not Sis1 stabilizes Hsp70 protein under prolonged stress in vitro. Biopolymers. 2008 Mar;89(3):171-4.
  • Genevaux P, Georgopoulos C, Kelley WL. The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Mol Microbiol 2007;66(4):840–857.
  • Ben-Zvi A. P. and Goloubinoff P. Review: mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones. J. Struct. Biol. 2001 135: 84–93
  • Ben-Zvi A., De Los Rios P., Dietler G. and Goloubinoff P. Active solubilization and refolding of stable protein aggregates by cooperative unfolding action of individual Hsp70 chaperones. J. Biol. Chem. 2004 279: 37298–37303
  • Diamant S., Peres Ben-Zvi A., Bukau B. and Goloubinoff P. Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery. J. Biol. Chem. 2000275: 21107–21113
  • Glover J. R. and Lindquist S. Hsp104, Hsp70 and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 1998 94: 73–82
  • Liberek K, Lewandowska A, Zietkiewicz S. Chaperones in control of protein disaggregation. Embo J 2008;27(2):328–335.
  • Frydman J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 2001;70:603–647.
  • Hohfeld J, Cyr DM, Patterson C. From the cradle to the grave: molecular chaperones that may choose between folding and degradation. EMBO Rep 2001;2(10):885–890.
  • Kramer G, et al. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat Struct Mol Biol 2009;16(6):589–597.
  • Young JC, Barral JM, Ulrich Hartl F. More than folding: localized functions of cytosolic chaperones. Trends Biochem Sci 2003;28(10):541–547.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Basic Sciences
Yazarlar

Yakup Gülnahar

Yayımlanma Tarihi 5 Nisan 2013
Yayımlandığı Sayı Yıl 2010

Kaynak Göster

APA Gülnahar, Y. (2013). Heat Shock Protein 70 extraction from human tooth for ELISA. Basic and Clinical Sciences, 1(2), 25-30. https://doi.org/10.12808/bcs.v1i2.6
AMA Gülnahar Y. Heat Shock Protein 70 extraction from human tooth for ELISA. Basic and Clinical Sciences. Nisan 2013;1(2):25-30. doi:10.12808/bcs.v1i2.6
Chicago Gülnahar, Yakup. “Heat Shock Protein 70 Extraction from Human Tooth for ELISA”. Basic and Clinical Sciences 1, sy. 2 (Nisan 2013): 25-30. https://doi.org/10.12808/bcs.v1i2.6.
EndNote Gülnahar Y (01 Nisan 2013) Heat Shock Protein 70 extraction from human tooth for ELISA. Basic and Clinical Sciences 1 2 25–30.
IEEE Y. Gülnahar, “Heat Shock Protein 70 extraction from human tooth for ELISA”, Basic and Clinical Sciences, c. 1, sy. 2, ss. 25–30, 2013, doi: 10.12808/bcs.v1i2.6.
ISNAD Gülnahar, Yakup. “Heat Shock Protein 70 Extraction from Human Tooth for ELISA”. Basic and Clinical Sciences 1/2 (Nisan 2013), 25-30. https://doi.org/10.12808/bcs.v1i2.6.
JAMA Gülnahar Y. Heat Shock Protein 70 extraction from human tooth for ELISA. Basic and Clinical Sciences. 2013;1:25–30.
MLA Gülnahar, Yakup. “Heat Shock Protein 70 Extraction from Human Tooth for ELISA”. Basic and Clinical Sciences, c. 1, sy. 2, 2013, ss. 25-30, doi:10.12808/bcs.v1i2.6.
Vancouver Gülnahar Y. Heat Shock Protein 70 extraction from human tooth for ELISA. Basic and Clinical Sciences. 2013;1(2):25-30.