Araştırma Makalesi
BibTex RIS Kaynak Göster

Çinko ve NaCl Uygulamalarının Makarnalık Buğdayın (Triticum durum Desf.) Kuru Madde Verimi ve Besin Elementi Konsantrasyonları Üzerine Etkisi

Yıl 2019, Cilt: 8 Sayı: 1, 1 - 10, 18.07.2019

Öz

Dünyanın birçok bölgesinde bitki
verimliliğini azaltan tuzluluk, kurak ve yarı kurak bölgelerde yaygın olup
böylesi alanlarda çinko (Zn) eksikliği de bitkisel üretimi sınırlandıran önemli
bir sorundur. Bu çalışmada, Zn noksanlığına sahip bir toprakta Zn ve tuz
uygulamalarının makarnalık buğdayın (Kunduru-1149) yeşil aksam büyümesi ve bazı element konsantrasyonlarına etkilerinin
belirlenmesi amaçlanmıştır. Bu amaçla yürütülen
çalışmada denemenin başında 3 farklı Zn dozu (0, 5 ve 10 mg Zn kg-1)
bitkilerin sapa kalkma döneminde ise 4 farklı tuz dozu (%0, 0.5, 1 ve 1.5)
uygulanmıştır. Denemede bitkinin yeşil aksam klorofil içeriği (SPAD değeri),
kuru madde verimi, yeşil aksam potasyum (K), sodyum (Na), Zn, mangan (Mn), bakır
(Cu), demir (Fe) konsantrasyonları ve K/Na parametreleri incelenmiştir. Elde
edilen sonuçlara göre SPAD değerleri, Zn uygulamasının 5 mg kg-1
dozuyla artmış ancak tuz uygulaması ile azalmıştır. Tuz uygulamasının kuru
madde veriminde yol açtığı azalma, Zn’nun 10 mg kg-1 uygulamasına
göre kontrol ve 5 mg kg-1 uygulamasında daha fazla gerçekleşmiştir.
Bitkilerin yeşil aksamındaki K konsantrasyonları bütün tuz uygulamaları altında
azalma eğilimi gösterirken, Zn uygulamaları ile artmış, Na konsantrasyonu ise
bütün tuz uygulamaları altında artarken Zn uygulamasının aynı tuz uygulamaları
altında Na konsantrasyonunu azalttığını, 
Zn ve Mn konsantrasyonunun arttığı görülmüştür. Sonuçta, tuz
uygulamasından kaynaklanan zararın Zn uygulama koşulları altında azaldığı
görülmüştür.

Kaynakça

  • Achakzai, A. K. K., Kayani, S. A., Hanif, A. Z. H. A. R. (2010). Effect of salinity on uptake of micronutrients in sunflower at early vegetative stage. Pakistan Journal of Botany, 42(1), 129-139.
  • Aktaş, H., Abak, K., Ozturk, L., Cakmak, I. (2006). The Effect of Zinc on Growth and Shoot Concentrations of Sodium and Potassium in Pepper Plants under Salinity Stres. Turkish Journal of Agriculture and Forestry, 30, 407-412.
  • Alam, S.M. (1999) Nutrient uptake by plants under stress conditions. Handbook of Plant and Crop Stress, 285-313.
  • Al-Karaki, G. N. (2000). Growth, Water Use Efficiency and Sodium and Potassium Acquisition by Tomato Cultivars Grown Under Salt Stress. J. Plant Nutr. 23(1):1-8.
  • Alloway, B.J. (2008). Zinc in Soils and Crop nutrition, 2nd edition. IZA Brussels, Belgiumand IFA Paris, France.
  • Alpaslan, M., Inal, A., Günes, A., Çikili, Y. and Özcan, H. (1999). Effect of zinc treatment on the alleviation of sodium and chloride injury in tomato (Lycopersicum esculentum L.) Mill. cv. Lale) Grown Under Salinity. Turkish Journal of Botany, 23, 1-6.
  • Assaha, D. V., Ueda, A., Saneoka, H., Al-Yahyai, R., & Yaish, M. W. (2017). The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Frontiers in physiology, 8, 509.
  • Bailey S, Thompson E, Nixon PJ, Horton P, Mullineaux CW, Robinson C, Mann NH (2002). A critical role for the Var2 FtsH homologue of Arabidopsis thaliana in the photosystem II repair cycle in vivo. J. Biol. Chem., 277, 2006–2011.
  • Botella, M. A., Martinez, V., Pardines, J., Cerda, A. (1997). Salinity induced potassium deficiency in maize plants. Journal of Plant Physiology, 150(1-2), 200-205.
  • Bouyoucus, G.J. (1951). A Recalibration of The Hydrometer for Making Mechanical Analysis of Soils. Agronomy Journal, 43, 434-438.
  • Carson, P.L. (1980). Recomended Potassium Test. in: Recomended Chemical Soil Test Procedures for the North Central Region. Rev. Ed. North Central Region Publication No: 221. North Dakota Agric.Exp. Stn. North Dakota State University, Fargo, USA.
  • Cramer, R.G., Epstein, E., Lauchli, A. (1991). Effects Of Sodium, Potassium and Calcium on Salt Stressed Barley. II. Elemental Analysis. Physiologia Plantarum, 81(2), 197.
  • Cuartero,J., Fernandez-Munoz, R. (1999). Tomato and Salinity. Scientia Horticulturae 78, 83-125.
  • Çulha, Ş., Çakırlar, H. (2011). Tuzluluğun bitkiler üzerine etkileri ve tuz tolerans mekanizmaları. Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi, 11, 11-34.
  • Daneshbakhsh, B., Khoshgoftarmanesh, A.H., Shariatmadari, H. and Cakmak, I. (2013). Effect of zinc nutrition on salinityinduced oxidative damages in wheat genotypes differing in zinc deficiency tolerance. Acta Physiol. Plant., 35, 881–889.
  • Daşgan, H. Y., Koç, S., Ekici, B., Aktaş, H., Abak, K. (2006). Bazı fasulye ve börülce genotiplerinin tuz stresine tepkileri. Alatarım, 5(1), 23-31.
  • Eker, S., Heybet, E.H., Barut, H., Erdem H. (2013). Effects of zinc on growth and sodium, potassium and calcium concentrations of shoot in bread wheat under salt stress. Fresenius Environmental Bulletin, 22:1622-1627.
  • Eyüpoğlu F, Kurucu N, Talaz S. (1996). Türkiye topraklarının bitkiye yarayışlı bazı mikroelementler bakımından genel durumu. Toprak ve Su kaynakları Araştırma Yıllığı. Yayın No: 98, Ankara.
  • Garg, B.K., Gupta I.C. (1997). Saline Wastelands Environment and Plant Growth. Scientific Publishers, Jodhpur, India, 283 p.
  • Genç, Y., Humphries, J.M., Lyons, G.H., Graham, R.D., (2005). Exploiting genotypic variation in plant nutrient accumulation to alleviate micronutrient deficiency ion populations. Journal of Trace Elements, 18(4), 319-324.
  • Gorham 1., McDonnell, E., Budrewics, E. Wyn Jones, R. G. (1985). Salt tolerance in the Triticeae: Growth and solute accumulation in leaves of Thinopyrum hessarabicum. J. Expt. Bot., 36, 1021-103.
  • Graham, R. D., Welch, R. M. (1996). Breeding for staple food crops with high micronutrient density (Vol. 3). Intl Food Policy Res Inst.
  • Gulmezoglu N., Aydogan C., Turhan E. (2016). Physiological, Biochemical and Mineral Dimensions of Green Bean Genotypes Depending on Zn Priming and Salinity. Legume Research, 39 (5), 713-721.
  • Hamada, A.M., El-Enany, A.E. (1994). Effect of NaCl salinity on growth, pigment and mineral element contents, and gas exchange of broad bean and pea plants. Biol. Plant., 36, 75-81.
  • Jackson, M.L. (1959). Soil Chemical Analysis, Englewood Cliffs, New Jersey.
  • Levitt, J. (1980). Responses of Plants to Environmental Stresses. Vol.II, 2nd ed. Academic Press, New York, pp:607.
  • Lindsay, W.L., Norvell, W.A. (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42, 421-428.
  • Maas, E., Grieve, C. (1987). Sodium‐induced calcium deficiency in salt‐stressed corn. Plant Cell Environ. 10(7), 559-564.
  • Marschner, H., (2011). Marschner's Mineral Nutrition of Higher Plants. 3rd Edition. Academic Press.
  • Mer, R.K., Prajith, P.K., Pandya, D.H., Pandey, A.N., 2000. Effect of Salts on Germination of Seeds and Growth of Young Plants of Hordeum vulgare, Triticum aestivum, Cicer arietinum and Brassica juncea. Journal of Agronomy and Crop Science, 185: 209–217.
  • Misra, A.N., S.M. Sahl, M. Misra, P. Singh, T. Meera, N. Das, M. Har and P. Sahu. (1997). Sodium chloride induced changes in leaf growth, and pigment and protein contents in two rice cultivars. Biol. Plant., 39: 257-262.
  • Munns, R. ve Tester, M., 2008. Mechanisms of Salinity Tolerance, Annual Review of Plant Biology, 59, 651-681.
  • Olsen, S.N. Cole, C.V., Watanabe, F.S., Dean, L.A. (1954). Estimation of Available Phosphorus in Soils by Extraction with Sodiumbicarbonate, USDA, Circ. 939 p.
  • Page, A., Chang, A., Adriano, D. (1990). Deficiencies and toxicities of trace elements. Agric Salinity Assess Manage, 71, 138-160.
  • Parker D.R, Aguilera, J.J., Thomason, D.N. (1992). Zincphosporus interaction in two cultivars of tomato (Lycipersicon esculentum L.) grown in chelato-buffered nutrient solution. Plant Soil 193, 163–177.
  • Pessarakli, M., Szabolcs, I. (1999). Soil Salinity and Sodicity as Particular Plant/Crop Stress Factors, Handbook of Plant Crop Stress, ISBN 0-8247-1948-4, New York, 1198 p.
  • Rahman, S., Vance, G.F., Munn, L.C. (1993). Salinity induced effects on the nutrient status of soil, corn leaves and kernels. Comm. Soil. Sci. Plant Anal., 24, 2251-2269.
  • Ramoliya, P.J., Pandey, A.N. (2003). Effect of Salinization of Soil on Emergence, Growth and Survival of Seedlings Of Cordia rothii. Forest Ecology & Management, 176, 185-194.
  • Satti, S.M.E., Lopez, M. (1994). Effect of increasing potassium levels for alleviating sodium chloride stress on the growth and yield of tomato. Commun. Soil Sci. Plant Anal., 25, 2807-2823.
  • Shabala, S., Pottosin, I. (2014). Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiol. Plant. 151, 257–279. doi: 10.1111/ppl.12165
  • Shiam, I. H., Nahiyan, A. S. M., Momena, K., Mehraj, H., Uddin, A. J. (2015). Effect of NaCl salt on vegetative growth and yield of sixteen tomato lines. Journal of Bioscience and Agriculture Research, 3(1), 15-27.
  • Talei, D., Kadir, M. A., Yusop, M. K., Valdiani, A., Abdullah, M. P. (2012). Salinity effects on macro and micronutrients uptake in medicinal plant King of Bitters (Andrographis paniculata Nees.). Plant Omics J., 5(3), 271-8.
  • Torun, B., Çakmak, Ö., Özbek, H., Çakmak, I. (1998). Çinko eksikliği koşullarında yetiştirilen değişik tahıl türlerinin ve çeşitlerinin çinko eksikliğine karşı duyarlılığın belirlenmesi. I. Ulusal Çinko Kongresi, 12-16 Mayıs 1997, Bildiri Kitabı. 897-900, Eskişehir.
  • Very, A.A., Sentenac, H. (2003). Molecular mechanisms and regulation of K+ transport in higher plants. Ann. Rev. Plant Biol. 54, 575–603.
  • Villora, G., Moreno, D.A., Pulgar, G., Romero, L. (2000). Yield Improvement in Zucchini under Salt Stress: Determining Micronutrient Balance. Scientia Hort., 86, 175-183.
  • Walkley, A., Black, I.A. (1934). An examination of Degtjareff Method for Determining Soil Organic Matter and A Proposed Modification of The Chromic Acid Titration Method. Soil Science, 37, 29-37.
  • Yeşil, E., (2008). Genetic Variation for Salt and Zinc Deficiency Tolerance in Aegilops tauschii. Sabancı Üniversitesi, Yüksek Lisans Tezi.
  • Yildirim E., Taylor A.G., Spittler T.D. (2006). Ameliorative effects of biological treatments on growth of squash plants under salt stress. Scientia Hort. 111:16.
  • Yousfi, S., Mahmoudi, H., Abdelly, C., Gharsalli, M. (2007). Effect of salt on physiological responses of barley to iron deficiency. Plant Physiology and Biochemistry, 45(5), 309-314.

Effects of Zinc and NaCl Applications on Dry Matter Yield and Mineral Element Concentrations of Durum Wheat (Triticum durum Desf.)

Yıl 2019, Cilt: 8 Sayı: 1, 1 - 10, 18.07.2019

Öz

Salinity, which reduces plant productivity in many regions of the world, is common in arid and semi-arid regions and zinc (Zn) deficiency in such areas is an important problem that limits crop production. In this study, it was aimed to determine the effects of Zn and salt applications on the growth and mineral content of the shoots in Kunduru-1149, which is a durum wheat cultivar using a soil with Zn deficiency. In the study carried out with this aim, 3 Zn doses (0, 5 and 10 mg Zn kg-1) at the beginning of the experiment and Zn and 4 different salt doses (0, 0.5, 1 and 1.5%) at the tillering stage of plants were applied. Chlorophyll content (SPAD value), dry matter yield, green component potassium (K), sodium (Na), Zn, Mn, Cu, Fe concentrations and K/Na parameters of the plant were determined in the experiment. According to the results, SPAD values were increased due to Zn application regardless of salt application, but SPAD values decreased in all Zn applications due to increased salt applications. The yield reduction of the dry matter yielded by salt application was higher in the application of 0 mg kg-1 and 5 mg kg-1 than the 10 mg kg-1 application of Zn. While the K concentrations in the shoots of the plants tend to decrease under all salt applications, they increased with Zn applications and Na concentration increased under all salt applications, while Na concentration decreased with Zn application under the same salt applications. As a result, the damage caused by salt application has been observed to decrease under Zn application conditions.

Kaynakça

  • Achakzai, A. K. K., Kayani, S. A., Hanif, A. Z. H. A. R. (2010). Effect of salinity on uptake of micronutrients in sunflower at early vegetative stage. Pakistan Journal of Botany, 42(1), 129-139.
  • Aktaş, H., Abak, K., Ozturk, L., Cakmak, I. (2006). The Effect of Zinc on Growth and Shoot Concentrations of Sodium and Potassium in Pepper Plants under Salinity Stres. Turkish Journal of Agriculture and Forestry, 30, 407-412.
  • Alam, S.M. (1999) Nutrient uptake by plants under stress conditions. Handbook of Plant and Crop Stress, 285-313.
  • Al-Karaki, G. N. (2000). Growth, Water Use Efficiency and Sodium and Potassium Acquisition by Tomato Cultivars Grown Under Salt Stress. J. Plant Nutr. 23(1):1-8.
  • Alloway, B.J. (2008). Zinc in Soils and Crop nutrition, 2nd edition. IZA Brussels, Belgiumand IFA Paris, France.
  • Alpaslan, M., Inal, A., Günes, A., Çikili, Y. and Özcan, H. (1999). Effect of zinc treatment on the alleviation of sodium and chloride injury in tomato (Lycopersicum esculentum L.) Mill. cv. Lale) Grown Under Salinity. Turkish Journal of Botany, 23, 1-6.
  • Assaha, D. V., Ueda, A., Saneoka, H., Al-Yahyai, R., & Yaish, M. W. (2017). The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Frontiers in physiology, 8, 509.
  • Bailey S, Thompson E, Nixon PJ, Horton P, Mullineaux CW, Robinson C, Mann NH (2002). A critical role for the Var2 FtsH homologue of Arabidopsis thaliana in the photosystem II repair cycle in vivo. J. Biol. Chem., 277, 2006–2011.
  • Botella, M. A., Martinez, V., Pardines, J., Cerda, A. (1997). Salinity induced potassium deficiency in maize plants. Journal of Plant Physiology, 150(1-2), 200-205.
  • Bouyoucus, G.J. (1951). A Recalibration of The Hydrometer for Making Mechanical Analysis of Soils. Agronomy Journal, 43, 434-438.
  • Carson, P.L. (1980). Recomended Potassium Test. in: Recomended Chemical Soil Test Procedures for the North Central Region. Rev. Ed. North Central Region Publication No: 221. North Dakota Agric.Exp. Stn. North Dakota State University, Fargo, USA.
  • Cramer, R.G., Epstein, E., Lauchli, A. (1991). Effects Of Sodium, Potassium and Calcium on Salt Stressed Barley. II. Elemental Analysis. Physiologia Plantarum, 81(2), 197.
  • Cuartero,J., Fernandez-Munoz, R. (1999). Tomato and Salinity. Scientia Horticulturae 78, 83-125.
  • Çulha, Ş., Çakırlar, H. (2011). Tuzluluğun bitkiler üzerine etkileri ve tuz tolerans mekanizmaları. Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi, 11, 11-34.
  • Daneshbakhsh, B., Khoshgoftarmanesh, A.H., Shariatmadari, H. and Cakmak, I. (2013). Effect of zinc nutrition on salinityinduced oxidative damages in wheat genotypes differing in zinc deficiency tolerance. Acta Physiol. Plant., 35, 881–889.
  • Daşgan, H. Y., Koç, S., Ekici, B., Aktaş, H., Abak, K. (2006). Bazı fasulye ve börülce genotiplerinin tuz stresine tepkileri. Alatarım, 5(1), 23-31.
  • Eker, S., Heybet, E.H., Barut, H., Erdem H. (2013). Effects of zinc on growth and sodium, potassium and calcium concentrations of shoot in bread wheat under salt stress. Fresenius Environmental Bulletin, 22:1622-1627.
  • Eyüpoğlu F, Kurucu N, Talaz S. (1996). Türkiye topraklarının bitkiye yarayışlı bazı mikroelementler bakımından genel durumu. Toprak ve Su kaynakları Araştırma Yıllığı. Yayın No: 98, Ankara.
  • Garg, B.K., Gupta I.C. (1997). Saline Wastelands Environment and Plant Growth. Scientific Publishers, Jodhpur, India, 283 p.
  • Genç, Y., Humphries, J.M., Lyons, G.H., Graham, R.D., (2005). Exploiting genotypic variation in plant nutrient accumulation to alleviate micronutrient deficiency ion populations. Journal of Trace Elements, 18(4), 319-324.
  • Gorham 1., McDonnell, E., Budrewics, E. Wyn Jones, R. G. (1985). Salt tolerance in the Triticeae: Growth and solute accumulation in leaves of Thinopyrum hessarabicum. J. Expt. Bot., 36, 1021-103.
  • Graham, R. D., Welch, R. M. (1996). Breeding for staple food crops with high micronutrient density (Vol. 3). Intl Food Policy Res Inst.
  • Gulmezoglu N., Aydogan C., Turhan E. (2016). Physiological, Biochemical and Mineral Dimensions of Green Bean Genotypes Depending on Zn Priming and Salinity. Legume Research, 39 (5), 713-721.
  • Hamada, A.M., El-Enany, A.E. (1994). Effect of NaCl salinity on growth, pigment and mineral element contents, and gas exchange of broad bean and pea plants. Biol. Plant., 36, 75-81.
  • Jackson, M.L. (1959). Soil Chemical Analysis, Englewood Cliffs, New Jersey.
  • Levitt, J. (1980). Responses of Plants to Environmental Stresses. Vol.II, 2nd ed. Academic Press, New York, pp:607.
  • Lindsay, W.L., Norvell, W.A. (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42, 421-428.
  • Maas, E., Grieve, C. (1987). Sodium‐induced calcium deficiency in salt‐stressed corn. Plant Cell Environ. 10(7), 559-564.
  • Marschner, H., (2011). Marschner's Mineral Nutrition of Higher Plants. 3rd Edition. Academic Press.
  • Mer, R.K., Prajith, P.K., Pandya, D.H., Pandey, A.N., 2000. Effect of Salts on Germination of Seeds and Growth of Young Plants of Hordeum vulgare, Triticum aestivum, Cicer arietinum and Brassica juncea. Journal of Agronomy and Crop Science, 185: 209–217.
  • Misra, A.N., S.M. Sahl, M. Misra, P. Singh, T. Meera, N. Das, M. Har and P. Sahu. (1997). Sodium chloride induced changes in leaf growth, and pigment and protein contents in two rice cultivars. Biol. Plant., 39: 257-262.
  • Munns, R. ve Tester, M., 2008. Mechanisms of Salinity Tolerance, Annual Review of Plant Biology, 59, 651-681.
  • Olsen, S.N. Cole, C.V., Watanabe, F.S., Dean, L.A. (1954). Estimation of Available Phosphorus in Soils by Extraction with Sodiumbicarbonate, USDA, Circ. 939 p.
  • Page, A., Chang, A., Adriano, D. (1990). Deficiencies and toxicities of trace elements. Agric Salinity Assess Manage, 71, 138-160.
  • Parker D.R, Aguilera, J.J., Thomason, D.N. (1992). Zincphosporus interaction in two cultivars of tomato (Lycipersicon esculentum L.) grown in chelato-buffered nutrient solution. Plant Soil 193, 163–177.
  • Pessarakli, M., Szabolcs, I. (1999). Soil Salinity and Sodicity as Particular Plant/Crop Stress Factors, Handbook of Plant Crop Stress, ISBN 0-8247-1948-4, New York, 1198 p.
  • Rahman, S., Vance, G.F., Munn, L.C. (1993). Salinity induced effects on the nutrient status of soil, corn leaves and kernels. Comm. Soil. Sci. Plant Anal., 24, 2251-2269.
  • Ramoliya, P.J., Pandey, A.N. (2003). Effect of Salinization of Soil on Emergence, Growth and Survival of Seedlings Of Cordia rothii. Forest Ecology & Management, 176, 185-194.
  • Satti, S.M.E., Lopez, M. (1994). Effect of increasing potassium levels for alleviating sodium chloride stress on the growth and yield of tomato. Commun. Soil Sci. Plant Anal., 25, 2807-2823.
  • Shabala, S., Pottosin, I. (2014). Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiol. Plant. 151, 257–279. doi: 10.1111/ppl.12165
  • Shiam, I. H., Nahiyan, A. S. M., Momena, K., Mehraj, H., Uddin, A. J. (2015). Effect of NaCl salt on vegetative growth and yield of sixteen tomato lines. Journal of Bioscience and Agriculture Research, 3(1), 15-27.
  • Talei, D., Kadir, M. A., Yusop, M. K., Valdiani, A., Abdullah, M. P. (2012). Salinity effects on macro and micronutrients uptake in medicinal plant King of Bitters (Andrographis paniculata Nees.). Plant Omics J., 5(3), 271-8.
  • Torun, B., Çakmak, Ö., Özbek, H., Çakmak, I. (1998). Çinko eksikliği koşullarında yetiştirilen değişik tahıl türlerinin ve çeşitlerinin çinko eksikliğine karşı duyarlılığın belirlenmesi. I. Ulusal Çinko Kongresi, 12-16 Mayıs 1997, Bildiri Kitabı. 897-900, Eskişehir.
  • Very, A.A., Sentenac, H. (2003). Molecular mechanisms and regulation of K+ transport in higher plants. Ann. Rev. Plant Biol. 54, 575–603.
  • Villora, G., Moreno, D.A., Pulgar, G., Romero, L. (2000). Yield Improvement in Zucchini under Salt Stress: Determining Micronutrient Balance. Scientia Hort., 86, 175-183.
  • Walkley, A., Black, I.A. (1934). An examination of Degtjareff Method for Determining Soil Organic Matter and A Proposed Modification of The Chromic Acid Titration Method. Soil Science, 37, 29-37.
  • Yeşil, E., (2008). Genetic Variation for Salt and Zinc Deficiency Tolerance in Aegilops tauschii. Sabancı Üniversitesi, Yüksek Lisans Tezi.
  • Yildirim E., Taylor A.G., Spittler T.D. (2006). Ameliorative effects of biological treatments on growth of squash plants under salt stress. Scientia Hort. 111:16.
  • Yousfi, S., Mahmoudi, H., Abdelly, C., Gharsalli, M. (2007). Effect of salt on physiological responses of barley to iron deficiency. Plant Physiology and Biochemistry, 45(5), 309-314.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma
Yazarlar

Ayfer Alkan Torun 0000-0002-8493-5828

Nurdilek Gülmezoğlu 0000-0002-5756-526X

İnci Tolay 0000-0001-5895-9087

Ebru Duymuş Bu kişi benim 0000-0002-2213-2560

Zehra Aytaç 0000-0002-8663-093X

Şahin Cenkseven 0000-0003-2330-8668

Bülent Torun 0000-0002-7701-8298

Yayımlanma Tarihi 18 Temmuz 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 8 Sayı: 1

Kaynak Göster

APA Alkan Torun, A., Gülmezoğlu, N., Tolay, İ., Duymuş, E., vd. (2019). Çinko ve NaCl Uygulamalarının Makarnalık Buğdayın (Triticum durum Desf.) Kuru Madde Verimi ve Besin Elementi Konsantrasyonları Üzerine Etkisi. Bahri Dağdaş Bitkisel Araştırma Dergisi, 8(1), 1-10.