Araştırma Makalesi
BibTex RIS Kaynak Göster

Time‑Frequency and Causal Dynamics Between Green Logistics, Environmental Factors, and China’s Transportation Sector: A Fourier Toda–Yamamoto and Cross‑Wavelet Approach

Yıl 2025, Cilt: 10 Sayı: 3, 1221 - 1240, 29.10.2025
https://doi.org/10.25229/beta.1693686

Öz

This study examines causality relationships between the financial performance of China's transport industry and the selected green logistics, environmental, and macroeconomic indicators. Based on the monthly data spanning from January 2010 to December 2020, logarithm of Shanghai Transportation Index (LSZSE) is designated as the explanatory variable, while green logistics performance (LGRL), per capita income (LGDP), CO₂ emissions arising from transport activities (LTCO₂), and the percentage of renewable consumption of energy (LNREC) are employed as explanatory variables. In order to determine the properties of stationarity of the series, the unit root test with the Fourier Augmented Dickey-Fuller (Fourier ADF) that is robust to smooth structural breaks and nonlinear dynamics is employed. Based on the integration results, the Fourier Toda–Yamamoto (FTY) causality test is employed to test for causal relationships among variables of different orders of integration. The empirical test reveals a statistically significant one-way causality running from green logistics (LGRL) to sector performance of transportation (LSZSE) at the 10% level of significance. The cross-wavelet analysis demonstrated that the interactions between the series vary across long- and short-term scales, exhibiting synchronous or lagged structures depending on the period. This may be understood as that advancement in sustainability logistic activities will be able to influence investor sentiment and market worthiness within the industry.

Kaynakça

  • Adams, S., & Acheampong, A. O. (2019). Reducing carbon emissions: The role of renewable energy and democracy. Journal of Cleaner Production, 240, 118245. https://doi.org/10.1016/j.jclepro.2019.118245.
  • Barut, A., Citil, M., Ahmed, Z., Sinha, A., & Abbas, S. (2023). How do economic and financial factors influence green logistics? A comparative analysis of E7 and G7 nations. Environmental Science and Pollution Research, 30(1), 1011–1022. https://doi.org/10.1007/s11356022 222520
  • Brown, R. L., Durbin, J., & Evans, J. M. (1975). Techniques for testing the constancy of regression relationships over time. Journal of the Royal Statistical Society: Series B, 37(2), 149–192.
  • Chen, W., & Lei, Y. (2017). Path analysis of factors in energy-related CO2 emissions from Beijing’s transportation sector. Transportation Research Part D: Transport and Environment, 50, 473–487.
  • Choi, S.-H., & Choi, J.-I. (2017). Analysis of stock price increase and volatility of logistics related companies. Journal of Digital Convergence, 15(2), 135–144. https://doi.org/10.14400/JDC.2017.15.2.135
  • Czech, K., Weremczuk, A., & Wielechowski, M. (2022). Transportation industries during the COVID-19 pandemic: Stock market performance of the largest listed companies. Ekonomika i Organizacja Logistyki.
  • Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series. Journal of the American Statistical Association, 74(366), 427–431.
  • Dickey, D. A., & Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, 49(4), 1057–1072.
  • Du, J., Cheng, J., & Ali, K. (2023). Modelling the green logistics and financial innovation on carbon neutrality goal: A fresh insight for BRICST. Geological Journal, 58(7), 2742–2756. https://doi.org/10.1002/gj.4732.
  • Enders, W., & Lee, J. (2012). A unit root test using a Fourier series to approximate smooth breaks. Oxford Bulletin of Economics and Statistics, 74(4), 574–599.
  • European Commission, Joint Research Centre. (2023). Emissions database for global atmospheric research (EDGAR), release v8.0: 1970–2022 global greenhouse-gas emissions. Publications Office of the European Union. https://edgar.jrc.ec.europa.eu
  • Friede, G., Busch, T., & Bassen, A. (2015). ESG and financial performance: Aggregated evidence from more than 2000 empirical studies. Journal of Sustainable Finance & Investment, 5(4), 210–233. https://doi.org/10.1080/20430795.2015.1118917.
  • Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. https://noc.ac.uk/business/marine-data-products/cross-wavelet-wavelet-coherence-toolbox-matlab
  • Hofmann, E., & Prockl, G. (2017). Zusammenhang zwischen Ölpreisentwicklung und der Aktienperformance börsennotierter Logistikdienstleister. BFuP – Betriebswirtschaftliche Forschung und Praxis, 69(3), 359–383.
  • International Energy Agency. (2024). Transport: Tracking report. IEA. https://www.iea.org/energy-system/transport
  • International Energy Agency. (2025). Global energy review 2025. IEA. https://www.iea.org/reports/global-energy-review-2025
  • Jaber, M. M., Szép, T., El-Naqa, A. R., & Abusmier, S. A. (2025). Energy consumption, economic growth, and climate change nexus in Jordan: Insights from the Toda–Yamamoto causality test. Resources, 14(3), 36.
  • Karaca, A. (2023). The correlation between logistics performance, financial performance, and stock price in the Borsa Istanbul transportation and storage sector. Trends in Business and Economics, 37(4), 292–299.
  • Kirikkaleli, D., & Ali, K. (2023). Patents on environmental technologies and environmental degradation in a Scandinavian country: Evidence from novel Fourier-based estimators. Geological Journal, 58, 2595–2609. https://doi.org/10.1002/gj.4722.
  • Lin, M.-C., & Wu, C.-F. (2022). Transportation, environmental degradation, and health dynamics in the United States and China: Evidence from bootstrap ARDL with a Fourier function. Frontiers in Public Health, 10, 907390.
  • Mohsin, A. K. M., Tushar, H., Hossain, S. F. A., Chisty, K. K. S., Iqbal, M. M., Kamruzzaman, M., & Rahman, S. (2022). Green logistics and environment, economic growth in the context of the Belt and Road Initiative. Heliyon, 8(6), e09641.
  • Ouni, M., & Abdallah, K. B. (2023). Environmental sustainability and green logistics: Evidence from BRICS and Gulf countries by cross-sectionally augmented autoregressive distributed lag (CS-ARDL) approach. Sustainable Development, 32(4), 3753–3770. https://doi.org/10.1002/sd.2856.
  • Rodionova, M., Skhvediani, A., & Kudryavtseva, T. (2022). ESG as a booster for logistics stock returns—Evidence from the US stock market. Sustainability, 14(19), 12356. https://doi.org/10.3390/su141912356.
  • Saboori, B., Sapri, M., & Baba, M. (2014). Economic growth, energy consumption and CO2 emissions in OECD’s transport sector: A fully modified bi-directional relationship approach. Energy, 66, 150–161.
  • Saidi, K., & Hammami, S. (2015). The impact of CO2 emissions and economic growth on energy consumption in 58 countries. Energy Reports, 1, 62–70.
  • Spetan, K. (2016). Renewable energy consumption, CO2 emissions and economic growth: A case of Jordan. International Journal of Business and Economic Research, 5, 217.
  • Toda, H. Y., & Yamamoto, T. (1995). Statistical inference in vector autoregressions with possibly integrated processes. Journal of Econometrics, 66(1–2), 225–250. https://doi.org/10.1016/0304-4076(94)01616-8
  • Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society. https://psl.noaa.gov/people/gilbert.p.compo/Torrence_compo1998.pdf
  • Zhou, Q., Wang, H., & Chen, X. (2023). Carbon emissions and logistics performance: Evidence from China. Journal of Cleaner Production, 389, 136089. https://doi.org/10.1016/j.jclepro.2023.136089

Yeşil Lojistik, Çevresel Faktörler ve Çin Ulaştırma Sektörü Arasındaki Zaman‑Frekans ve Nedensel Dinamikler: Fourier Toda–Yamamoto ve Çapraz Dalgacık Yaklaşımı

Yıl 2025, Cilt: 10 Sayı: 3, 1221 - 1240, 29.10.2025
https://doi.org/10.25229/beta.1693686

Öz

Bu çalışma, Çin ulaştırma sektörünün finansal performansı ile seçilmiş yeşil lojistik, çevresel ve makroekonomik göstergeler arasındaki nedensellik ilişkilerini incelemektedir. Ocak 2010–Aralık 2020 dönemine ait aylık veriler kullanılarak Shanghai Ulaştırma Endeksi’nin logaritması (LSZSE) bağımlı değişken, yeşil lojistik performansı (LGRL), kişi başına gelir (LGDP), ulaştırma kaynaklı CO₂ emisyonları (LTCO₂) ve yenilenebilir enerji tüketim oranı (LNREC) ise bağımsız değişkenler olarak modele dâhil edilmiştir. Serilerin durağanlık özelliklerini belirlemek amacıyla, düzgün yapısal kırılmalara ve doğrusal olmayan dinamiklere duyarlı Fourier Genişletilmiş Dickey–Fuller (Fourier ADF) birim kök testi uygulanmıştır. Bütünleşme derecelerine ilişkin bulgular temel alınarak, farklı bütünleşik mertebelerdeki değişkenler arasındaki nedensellik ilişkilerini analiz etmek için Fourier Toda–Yamamoto (FTY) nedensellik testi kullanılmıştır. Ampirik sonuçlar, %10 önem düzeyinde yeşil lojistik performansından (LGRL) ulaştırma sektörü performansına (LSZSE) tek yönlü bir nedensellik akışı olduğunu göstermektedir. Ayrıca çapraz dalgacık analizi, seriler arasındaki etkileşimlerin uzun ve kısa dönem ölçeklerinde farklılık sergilediğini; döneme bağlı olarak eşzamanlı (in‑phase) ya da gecikmeli (lagged) yapılar ortaya koyduğunu kanıtlamıştır. Bu sonuçlar, sürdürülebilir lojistik faaliyetlerindeki ilerlemenin sektörün piyasa değerini ve yatırımcı duyarlılığını etkileyebileceğini göstermektedir.

Kaynakça

  • Adams, S., & Acheampong, A. O. (2019). Reducing carbon emissions: The role of renewable energy and democracy. Journal of Cleaner Production, 240, 118245. https://doi.org/10.1016/j.jclepro.2019.118245.
  • Barut, A., Citil, M., Ahmed, Z., Sinha, A., & Abbas, S. (2023). How do economic and financial factors influence green logistics? A comparative analysis of E7 and G7 nations. Environmental Science and Pollution Research, 30(1), 1011–1022. https://doi.org/10.1007/s11356022 222520
  • Brown, R. L., Durbin, J., & Evans, J. M. (1975). Techniques for testing the constancy of regression relationships over time. Journal of the Royal Statistical Society: Series B, 37(2), 149–192.
  • Chen, W., & Lei, Y. (2017). Path analysis of factors in energy-related CO2 emissions from Beijing’s transportation sector. Transportation Research Part D: Transport and Environment, 50, 473–487.
  • Choi, S.-H., & Choi, J.-I. (2017). Analysis of stock price increase and volatility of logistics related companies. Journal of Digital Convergence, 15(2), 135–144. https://doi.org/10.14400/JDC.2017.15.2.135
  • Czech, K., Weremczuk, A., & Wielechowski, M. (2022). Transportation industries during the COVID-19 pandemic: Stock market performance of the largest listed companies. Ekonomika i Organizacja Logistyki.
  • Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series. Journal of the American Statistical Association, 74(366), 427–431.
  • Dickey, D. A., & Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, 49(4), 1057–1072.
  • Du, J., Cheng, J., & Ali, K. (2023). Modelling the green logistics and financial innovation on carbon neutrality goal: A fresh insight for BRICST. Geological Journal, 58(7), 2742–2756. https://doi.org/10.1002/gj.4732.
  • Enders, W., & Lee, J. (2012). A unit root test using a Fourier series to approximate smooth breaks. Oxford Bulletin of Economics and Statistics, 74(4), 574–599.
  • European Commission, Joint Research Centre. (2023). Emissions database for global atmospheric research (EDGAR), release v8.0: 1970–2022 global greenhouse-gas emissions. Publications Office of the European Union. https://edgar.jrc.ec.europa.eu
  • Friede, G., Busch, T., & Bassen, A. (2015). ESG and financial performance: Aggregated evidence from more than 2000 empirical studies. Journal of Sustainable Finance & Investment, 5(4), 210–233. https://doi.org/10.1080/20430795.2015.1118917.
  • Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. https://noc.ac.uk/business/marine-data-products/cross-wavelet-wavelet-coherence-toolbox-matlab
  • Hofmann, E., & Prockl, G. (2017). Zusammenhang zwischen Ölpreisentwicklung und der Aktienperformance börsennotierter Logistikdienstleister. BFuP – Betriebswirtschaftliche Forschung und Praxis, 69(3), 359–383.
  • International Energy Agency. (2024). Transport: Tracking report. IEA. https://www.iea.org/energy-system/transport
  • International Energy Agency. (2025). Global energy review 2025. IEA. https://www.iea.org/reports/global-energy-review-2025
  • Jaber, M. M., Szép, T., El-Naqa, A. R., & Abusmier, S. A. (2025). Energy consumption, economic growth, and climate change nexus in Jordan: Insights from the Toda–Yamamoto causality test. Resources, 14(3), 36.
  • Karaca, A. (2023). The correlation between logistics performance, financial performance, and stock price in the Borsa Istanbul transportation and storage sector. Trends in Business and Economics, 37(4), 292–299.
  • Kirikkaleli, D., & Ali, K. (2023). Patents on environmental technologies and environmental degradation in a Scandinavian country: Evidence from novel Fourier-based estimators. Geological Journal, 58, 2595–2609. https://doi.org/10.1002/gj.4722.
  • Lin, M.-C., & Wu, C.-F. (2022). Transportation, environmental degradation, and health dynamics in the United States and China: Evidence from bootstrap ARDL with a Fourier function. Frontiers in Public Health, 10, 907390.
  • Mohsin, A. K. M., Tushar, H., Hossain, S. F. A., Chisty, K. K. S., Iqbal, M. M., Kamruzzaman, M., & Rahman, S. (2022). Green logistics and environment, economic growth in the context of the Belt and Road Initiative. Heliyon, 8(6), e09641.
  • Ouni, M., & Abdallah, K. B. (2023). Environmental sustainability and green logistics: Evidence from BRICS and Gulf countries by cross-sectionally augmented autoregressive distributed lag (CS-ARDL) approach. Sustainable Development, 32(4), 3753–3770. https://doi.org/10.1002/sd.2856.
  • Rodionova, M., Skhvediani, A., & Kudryavtseva, T. (2022). ESG as a booster for logistics stock returns—Evidence from the US stock market. Sustainability, 14(19), 12356. https://doi.org/10.3390/su141912356.
  • Saboori, B., Sapri, M., & Baba, M. (2014). Economic growth, energy consumption and CO2 emissions in OECD’s transport sector: A fully modified bi-directional relationship approach. Energy, 66, 150–161.
  • Saidi, K., & Hammami, S. (2015). The impact of CO2 emissions and economic growth on energy consumption in 58 countries. Energy Reports, 1, 62–70.
  • Spetan, K. (2016). Renewable energy consumption, CO2 emissions and economic growth: A case of Jordan. International Journal of Business and Economic Research, 5, 217.
  • Toda, H. Y., & Yamamoto, T. (1995). Statistical inference in vector autoregressions with possibly integrated processes. Journal of Econometrics, 66(1–2), 225–250. https://doi.org/10.1016/0304-4076(94)01616-8
  • Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society. https://psl.noaa.gov/people/gilbert.p.compo/Torrence_compo1998.pdf
  • Zhou, Q., Wang, H., & Chen, X. (2023). Carbon emissions and logistics performance: Evidence from China. Journal of Cleaner Production, 389, 136089. https://doi.org/10.1016/j.jclepro.2023.136089
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sermaye Piyasaları, Finansal Ekonomi
Bölüm Araştırma Makaleleri
Yazarlar

Özge Demirkale 0000-0002-4227-3934

Erken Görünüm Tarihi 20 Ekim 2025
Yayımlanma Tarihi 29 Ekim 2025
Gönderilme Tarihi 7 Mayıs 2025
Kabul Tarihi 9 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 10 Sayı: 3

Kaynak Göster

APA Demirkale, Ö. (2025). Time‑Frequency and Causal Dynamics Between Green Logistics, Environmental Factors, and China’s Transportation Sector: A Fourier Toda–Yamamoto and Cross‑Wavelet Approach. Bulletin of Economic Theory and Analysis, 10(3), 1221-1240. https://doi.org/10.25229/beta.1693686

OA_transp.png

by-nc.png
Bu dergide yayımlanan eserler Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmaktadır.