Konferans Bildirisi
BibTex RIS Kaynak Göster

A BINARY INTEGER PROGRAMMING MODEL FOR EXAM SCHEDULING PROBLEM WITH SEVERAL DEPARTMENTS

Yıl 2017, Cilt: 12 Sayı: 2, 169 - 175, 19.12.2017

Öz

The problem of exam
scheduling is a kind of scheduling problem which is studied academically, in
which the exams of a certain number of courses is assigned to specific time
intervals taking certain constraints into consideration. In most faculties of
universities, exam schedules are made manually, which is both time-consuming
and error-prone. The objective of this study is to develop a mathematical model
that can solve exam scheduling problem in a shorter time than manual schedules
and without error. Minimizing total number of classrooms assigned is determined
as the objective function of the model. When the total number of classrooms assigned
is minimized, the number of tasks per exam invigilator (exam superviser or
assistant, proctor)  is also minimized. A
binary integer programming model is developed for this purpose.

Kaynakça

  • Acar, M.F.; Şevkli, M. (2013). Sınav Çizelgelemesi için Matematiksel Model Yaklaşımı. Verimlilik Dergisi, 1, 75-86.
  • Al-Yakoob, S. M., Sherali, H. D., & Al-Jazzaf, M. (2010). A mixed-integer mathematical modeling approach to exam timetabling. Computational Management Science, 7(1), 19.
  • Aslan E., Şimşek, T. (2016). Sınav Programı Çizelgeleme Problemi için 0-1 Tam Sayılı Doğrusal Programlama Modeli. XVII. Uluslararası Ekonometri Yöneylem Araştırması ve İstatistik Sempozyumu (Özet Bildiri) Sivas, Turkey.
  • Burke, E. K., & Bykov, Y. (2008, August). A late acceptance strategy in hill-climbing for exam timetabling problems. In PATAT 2008 Conference, Montreal, Canada.
  • Carter, M. W., & Laporte, G. (1997, August). Recent developments in practical course timetabling. In International Conference on the Practice and Theory of Automated Timetabling (pp. 3-19). Springer Berlin Heidelberg.
  • Cheong, C. Y., Tan, K. C., & Veeravalli, B. (2007, April). Solving the exam timetabling problem via a multi-objective evolutionary algorithm-a more general approach. In Computational Intelligence in Scheduling, 2007. SCIS'07. IEEE Symposium on (pp. 165-172). IEEE.
  • Corne, D., Fang, H. L., Mellish, C., & Corne, D. (1993). Solving the modular exam scheduling problem with genetic algorithms. Department of Artificial Intelligence, University of Edinburgh.
  • Dammak, A., Elloumi, A., & Kamoun, H. (2006). Classroom assignment for exam timetabling. Advances in Engineering Software, 37(10), 659-666. İlkuçar, M. (2011). Sınav Gözetmenlik Çizelgeleme Probleminin Optimizasyonu ve bir Uygulama Yazılımı. XIII. Akademik Bilişim Konferansı, 2 - 4 Şubat 2011 İnönü Üniversitesi, Malatya
  • Kağnıcıoğlu, C. H., & Yıldız, A. (2006). 0-1 tamsayılı bulanık hedef programlama yaklaşımı ile sınav görevi atama probleminin çözümü. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi, 7(2), 413-429.
  • Kordalewski, D., Liu, C., & Salvesen, K. (2009). Solving an exam scheduling problem using a genetic algorithm. Department of Statistics, University of Toronto, Toronto, Canada.
  • Malkawi, M., Hassan, M. A. H., & Hassan, O. A. H. (2008). A New Exam Scheduling Algorithm Using Graph Coloring. Int. Arab J. Inf. Technol., 5(1), 80-86.
  • Qu, R., Burke, E. K., McCollum, B., Merlot, L. T., & Lee, S. Y. (2009). A survey of search methodologies and automated system development for examination timetabling. Journal of scheduling, 12(1), 55-89.
  • Sagir, M., & Ozturk, Z. K. (2010). Exam scheduling: Mathematical modeling and parameter estimation with the Analytic Network Process approach. Mathematical and Computer Modelling, 52(5), 930-941.
  • Yaldır, A., & Baysal, C. (2012). Evrimsel Hesaplama Tekniği Kullanarak Sınav Takvimi Otomasyon Sistemi Geliştirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 18(2), 105-122.
  • Zhaohui, F., & Lim, A. (2000). Heuristics for the exam scheduling problem. In Tools with Artificial Intelligence, 2000. ICTAI 2000. Proceedings. 12th IEEE International Conference on (pp. 172-175). IEEE.
Yıl 2017, Cilt: 12 Sayı: 2, 169 - 175, 19.12.2017

Öz

Kaynakça

  • Acar, M.F.; Şevkli, M. (2013). Sınav Çizelgelemesi için Matematiksel Model Yaklaşımı. Verimlilik Dergisi, 1, 75-86.
  • Al-Yakoob, S. M., Sherali, H. D., & Al-Jazzaf, M. (2010). A mixed-integer mathematical modeling approach to exam timetabling. Computational Management Science, 7(1), 19.
  • Aslan E., Şimşek, T. (2016). Sınav Programı Çizelgeleme Problemi için 0-1 Tam Sayılı Doğrusal Programlama Modeli. XVII. Uluslararası Ekonometri Yöneylem Araştırması ve İstatistik Sempozyumu (Özet Bildiri) Sivas, Turkey.
  • Burke, E. K., & Bykov, Y. (2008, August). A late acceptance strategy in hill-climbing for exam timetabling problems. In PATAT 2008 Conference, Montreal, Canada.
  • Carter, M. W., & Laporte, G. (1997, August). Recent developments in practical course timetabling. In International Conference on the Practice and Theory of Automated Timetabling (pp. 3-19). Springer Berlin Heidelberg.
  • Cheong, C. Y., Tan, K. C., & Veeravalli, B. (2007, April). Solving the exam timetabling problem via a multi-objective evolutionary algorithm-a more general approach. In Computational Intelligence in Scheduling, 2007. SCIS'07. IEEE Symposium on (pp. 165-172). IEEE.
  • Corne, D., Fang, H. L., Mellish, C., & Corne, D. (1993). Solving the modular exam scheduling problem with genetic algorithms. Department of Artificial Intelligence, University of Edinburgh.
  • Dammak, A., Elloumi, A., & Kamoun, H. (2006). Classroom assignment for exam timetabling. Advances in Engineering Software, 37(10), 659-666. İlkuçar, M. (2011). Sınav Gözetmenlik Çizelgeleme Probleminin Optimizasyonu ve bir Uygulama Yazılımı. XIII. Akademik Bilişim Konferansı, 2 - 4 Şubat 2011 İnönü Üniversitesi, Malatya
  • Kağnıcıoğlu, C. H., & Yıldız, A. (2006). 0-1 tamsayılı bulanık hedef programlama yaklaşımı ile sınav görevi atama probleminin çözümü. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi, 7(2), 413-429.
  • Kordalewski, D., Liu, C., & Salvesen, K. (2009). Solving an exam scheduling problem using a genetic algorithm. Department of Statistics, University of Toronto, Toronto, Canada.
  • Malkawi, M., Hassan, M. A. H., & Hassan, O. A. H. (2008). A New Exam Scheduling Algorithm Using Graph Coloring. Int. Arab J. Inf. Technol., 5(1), 80-86.
  • Qu, R., Burke, E. K., McCollum, B., Merlot, L. T., & Lee, S. Y. (2009). A survey of search methodologies and automated system development for examination timetabling. Journal of scheduling, 12(1), 55-89.
  • Sagir, M., & Ozturk, Z. K. (2010). Exam scheduling: Mathematical modeling and parameter estimation with the Analytic Network Process approach. Mathematical and Computer Modelling, 52(5), 930-941.
  • Yaldır, A., & Baysal, C. (2012). Evrimsel Hesaplama Tekniği Kullanarak Sınav Takvimi Otomasyon Sistemi Geliştirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 18(2), 105-122.
  • Zhaohui, F., & Lim, A. (2000). Heuristics for the exam scheduling problem. In Tools with Artificial Intelligence, 2000. ICTAI 2000. Proceedings. 12th IEEE International Conference on (pp. 172-175). IEEE.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Emre Aslan

Türker Şimşek

Atila Karkacıer Bu kişi benim

Yayımlanma Tarihi 19 Aralık 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 12 Sayı: 2

Kaynak Göster

APA Aslan, E., Şimşek, T., & Karkacıer, A. (2017). A BINARY INTEGER PROGRAMMING MODEL FOR EXAM SCHEDULING PROBLEM WITH SEVERAL DEPARTMENTS. Bilgi Ekonomisi Ve Yönetimi Dergisi, 12(2), 169-175.