Yıl 2023,
, 95 - 104, 30.09.2023
Sahra Dandıl
,
Abdullah Düzgün
Destekleyen Kurum
Bilecik Şeyh Edebali Üniversitesi (Bilecik Seyh Edebali University)
Proje Numarası
2021-02.BŞEÜ.03-03
Kaynakça
- Aditya Color Chem, https://www.adityacolorchem.com/products/reactive-dyes.html, (Accessed April 16, 2023)
- An, L., Gu, R., Zhong, B., Yu, Y., Zhang, J. (2022). Water-icing-triggered scalable and controllable exfoliation of hexagonal boron nitride nanosheets. Cell Reports Physical Science, 3(7), 100941. https://doi.org/10.1016/j.xcrp.2022.100941
- Artioli, Y. (2008). Adsorption, in: Jørgensen, S. E. and Fath, B. D. (Eds.), Encyclopedia of Ecology. Elsevier, Amsterdam, Netherlands, pp. 60-65. https://doi.org/10.1016/B978-008045405-4.00252-4
- Batool, F., Akbar, J., Iqbal, S., Noreen, S., Bukhari, S. N. A. (2018). Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: an overview of linear and nonlinear approach and error analysis. Bioinorganic chemistry and applications, 2018. https://doi.org/10.1155/2018/3463724.
- Chen, B, Ding, L, Wang, Y., Zhang, Y. (2022). High efficient adsorption for thorium in aqueous solution using a novel tentacle-type chitosan-based aerogel: Adsorption behavior and mechanism. International Journal of Biological Macromolecules, 222, 1747-1757. https://doi.org/10.1016/j.ijbiomac.2022.09.256
- Chen, C., Wang, G., Beshiwork, B. A., Xu B., Lin B. (2022). Strain-tunable pure H− conduction in one-atom-thick hexagonal boron nitride for high-energy–density fuel cells. Chemical Engineering Journal, 450, 138223. https://doi.org/10.1016/j.cej.2022.138223
- Chen, S., Tian, H., Mao, J., Ma, F., Zhang, M., Chen, F., Yang, P. (2022). Preparation and application of chitosan-based medical electrospun nanofibers. International Journal of Biological Macromolecules, 226, 410-422, 2022. https://doi.org/10.1016/j.ijbiomac.2022.12.056
- Chen, Z., Zhang, Z. B., Zeng, J., Zhang, Z. J., Ma, S., Tang, C. M., Xu, J. Q. (2023). Preparation of polyethyleneimine-modified chitosan/Ce-UIO-66 composite hydrogel for the adsorption of methyl orange. Carbohydrate Polymers, 299, 120079. https://doi.org/10.1016/j.carbpol.2022.120079
- Chouaybi, I., Ouassif, H., Bettach, M., Moujahid, E. M. (2022). Fast and high removal of acid red 97 dye from aqueous solution by adsorption onto a synthetic hydrocalumite: Structural characterization and retention mechanisms. Inorganic Chemistry Communications, 146, 110169. https://doi.org/10.1016/j.inoche.2022.110169
- Dandil, S., Sahbaz, D. A., Acikgoz, C. (2019). Adsorption of Cu (II) ions onto crosslinked chitosan/Waste Active Sludge Char (WASC) beads: Kinetic, equilibrium, and thermodynamic study. International journal of biological macromolecules, 136, 668-675. https://doi.org/10.1016/j.ijbiomac.2019.06.063
- de Oliveira, T. F., de Souza, C. P., Lopes-Moriyama, A. L., da Silva, M. L. P. (2023). In situ modification of MCM-41 using niobium and tantalum mixed oxide from columbite processing for methylene blue adsorption: Characterization, kinetic, isotherm, thermodynamic and mechanism study. Materials Chemistry and Physics, 294, 127011. https://doi.org/10.1016/j.matchemphys.2022.127011
- Doke, K. M., Khan, E. M. (2013). Adsorption thermodynamics to clean up wastewater; critical review. Reviews in Environmental Science and Bio/Technology, 12(1), 25-44. DOI 10.1007/s11157-012-9273-z
- Duan, Y. T., Yao, Y., Ameta, R. K. (2022). Removal and recovering of anionic and cationic dyes using Neem Leaf ash prepared at 250, 500 and 750° C: Analyzed by adsorption isotherm and physicochemical parameters. Journal of Molecular Liquids, 370, 121012. https://doi.org/10.1016/j.molliq.2022.121012
- Emco Dyestuff Pvt. Ltd., https://www.emcochemicals.com/Dyes/Reactive-Dyes/Reactive-Dyes-VINYL-SULPHONE/Blue-3R (Accessed April 16, 2023)
- Ewis, D., Ba-Abbad, M. M., Benamor, A., El-Naas, M. H. (2022). Adsorption of organic water pollutants by clays and clay minerals composites: A comprehensive review. Applied Clay Science, 229, 106686. https://doi.org/10.1016/j.clay.2022.106686
- Farouq, R. (2022). Coupling Adsorption-Photocatalytic Degradation of Methylene Blue and Maxilon Red. Journal of Fluorescence, 32(4), 1-8. https://doi.org/10.1007/s10895-022-02934-1
- Gajera, R., Patel, R. V., Yadav, A., Labhasetwar, P. K. (2022). Adsorption of cationic and anionic dyes on photocatalytic flyash/TiO2 modified chitosan biopolymer composite. Journal of Water Process Engineering, 49, 102993. https://doi.org/10.1016/j.jwpe.2022.102993
- Hu, H., Xu, K. (2020). Physicochemical technologies for HRPs and risk control, in: Ren, H. and Zhang, X. (Eds.), High-risk pollutants in wastewater. Elsevier, Amsterdam, Netherlands, pp. 169-207. https://doi.org/10.1016/B978-0-12-816448-8.00008-3
- Jiang, R., Shen, T. T., Zhu, H. Y., Fu, Y. Q., Jiang, S. T., Li, J. B., Wang, J. L. (2022). Magnetic Fe3O4 embedded chitosan–crosslinked-polyacrylamide composites with enhanced removal of food dye: Characterization, adsorption and mechanism. International Journal of Biological Macromolecules, 227, 1234-1244. https://doi.org/10.1016/j.ijbiomac.2022.11.310
- Jin, Y., Li, Y., Du, Q., Chen, B., Chen, K., Zhang, Y., Wang, M., Sun, Y., Zhao, S., Jing, Z., Wang, Y. (2022). Efficient adsorption of Congo red by MIL-53 (Fe)/chitosan composite hydrogel spheres. Microporous and Mesoporous Materials, 348, 112404. https://doi.org/10.1016/j.micromeso.2022.112404
- Jin, Y., Li, Y., Du, Q., Chen, B., Chen, K., Zhang, Y., Wang, M., Sun, Y., Zhao, S., Jing, Z., Wang, J. (2023). Efficient adsorption of Congo red by MIL-53 (Fe)/chitosan composite hydrogel spheres. Miroporous and Mesoporous Materials, 348, 112404. https://doi.org/10.1016/j.micromeso.2022.112404
- Kaur, K., Jindal, R. (2019). Comparative study on the behaviour of Chitosan-Gelatin based Hydrogel and nanocomposite ion exchanger synthesized under microwave conditions towards photocatalytic removal of cationic dyes. Carbohydrate Polymers, 207, 398-410. https://doi.org/10.1016/j.carbpol.2018.12.002
- Kurczewska, J. (2022). Chitosan-montmorillonite hydrogel beads for effective dye adsorption. Journal of Water Process Engineering, 48, 102928. https://doi.org/10.1016/j.jwpe.2022.102928
- Liyanage, D., Walpita, J. (2020). Organic pollutants from E-waste and their electrokinetic remediation. in: Prasad, M.N.V., Vithanage, M. and Borthakur, A. (Eds.), Handbook of Electronic Waste Management. Elsevier, Amsterdam, Netherlands, pp. 171-189.
- Loganathan, M., Raj, A. S., Murugesan, A., Kumar, P. S. (2022). Effective adsorption of crystal violet onto aromatic polyimides: Kinetics and isotherm studies. Chemosphere, 304, 135332. https://doi.org/10.1016/j.chemosphere.2022.135332
- Long, W., Yang, C., Wang, G., Hu, J. (2022). Effective adsorption of Hg (II) ions by new ethylene mimine polymer/β-cyclodextrin crosslinked functionalized magnetic composite. Arabian Journal of Chemistry, 104439. https://doi.org/10.1016/j.arabjc.2022.104439
- Mahmoodi, N. M., Mokhtari-Shourijeh, Z. (2015). Preparation of PVA-chitosan blend nanofiber and its dye removal ability from colored wastewater. Fibers and Polymers, 16(9), 1861-1869. DOI 10.1007/s12221-015-5371-1
- Niu, C., Zhang, N., Hu, C., Zhang, C., Zhang, H., Xing, Y. (2021). Preparation of a novel citric acid-crosslinked Zn-MOF/chitosan composite and application in adsorption of chromium (VI) and methyl orange from aqueous solution. Carbohydrate Polymers, 258, 117644. https://doi.org/10.1016/j.carbpol.2021.117644
- Ojediran, J. O., Dada, A. O., Aniyi, S. O., David, R. O., Adewumi, A. D. (2021). Mechanism and isotherm modeling of effective adsorption of malachite green as endocrine disruptive dye using Acid Functionalized Maize Cob (AFMC). Scientific reports, 11(1), 1-15. | https://doi.org/10.1038/s41598-021-00993-1
- Parshi, N., Pan, D., Dhavle, V., Jana, B., Maity, S., Ganguly, J. (2019). Fabrication of lightweight and reusable salicylaldehyde functionalized chitosan as adsorbent for dye removal and its mechanism. International journal of biological macromolecules, 141, 626-635. https://doi.org/10.1016/j.ijbiomac.2019.09.025
- Pathania, D., Sharma, S., Singh, P. (2017). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian journal of chemistry, 10, S1445-S1451. https://doi.org/10.1016/j.arabjc.2013.04.021
- Peng, R., Zhang, S., Yao, Y., Wang, J., Zhu, X., Jiang, R., Zhang, J., Zhang, W., Wang, C. (2022). MOFs meet electrospinning: new opportunities for water treatment. Chemical Engineering Journal, 453, 139669. https://doi.org/10.1016/j.cej.2022.139669
- Qasem, K. M., Khan, S., Chinnam, S., Saleh, H. A., Mantasha, I., Zeeshan, M., Manea, Y. K., Shahid, M. (2022). Sustainable fabrication of Co-MOF@ CNT nano-composite for efficient adsorption and removal of organic dyes and selective sensing of Cr (VI) in aqueous phase. Materials Chemistry and Physics, 291, 126748. https://doi.org/10.1016/j.matchemphys.2022.126748
- Raghav, S., Kumar, D. (2018). Adsorption equilibrium, kinetics, and thermodynamic studies of fluoride adsorbed by tetrametallic oxide adsorbent. Journal of Chemical & Engineering data, 63(5), 1682-1697. https://doi.org/10.1021/acs.jced.8b00024
- Rios-Donato, N., Peña-Flores, A. M., Katime, I., Leyva-Ramos, R., Mendizábal, E. (2017). Kinetics and thermodynamics of adsorption of red dye 40 from acidic aqueous solutions onto a novel chitosan sulfate. Afinidad, 74(579), 214-220. https://raco.cat/index.php/afinidad/article/view/328558/419163
- Saeed, T., Naeem, A., Din, I. U., Farooq, M., Khan, I. W., Hamayun, M., Malik, T. (2022). Synthesis of chitosan composite of metal-organic framework for the adsorption of dyes; kinetic and thermodynamic approach. Journal of Hazardous Materials, 427, 127902. https://doi.org/10.1016/j.jhazmat.2021.127902
- Salim, N. A. A., Puteh, M. H., Khamidun, M. H., Fulazzaky, M. A., Abdullah, N. H., Yusoff, A. R. M., Zaini, M. A. A., Ahmad, N., Lazim, Z. M., Nuid, M. (2021). Interpretation of isotherm models for adsorption of ammonium onto granular activated carbon. Biointerface Res. Appl. Chem, 11, 9227-9241. https://doi.org/10.33263/BRIAC112.92279241
- Salimi, F., Tahmasobi, K., Karami, C., Jahangiri, A. (2017). Preparation of modified nano-SiO2 by bismuth and iron as a novel remover of methylene blue from water solution. Journal of the Mexican Chemical Society, 61(3), 250-259. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.scielo.org.mx/pdf/jmcs/v61n3/1870-249X-jmcs-61-03-00250.pdf
- Tara, N., Sharma, A., Choudhry, A., Abdulla, N. K., Rathi, G., Khan, A. M., Chaudhry, S. A. (2021). Graphene, graphene oxide, and reduced graphene oxide-based materials: a comparative adsorption performance, in: Ahamad, A., Siddiqui, S.I. and Singh, P. (Eds.), Contamination of Water. Elsevier, Amsterdam, Netherlands, pp. 495-507. https://doi.org/10.1016/B978-0-12-824058-8.00014-1
- Verma, S., Dutta, R. K. (2020). Adsorptive Removal of Toxic Dyes Using Chitosan and Its Composites, in: Naushad, Mu., Lichtfouse, E. (Eds.), Green Materials for Wastewater Treatment. Springer, Berlin, Germany, pp. 223-255. DOI:10.1007/978-3-030-17724-9_10
- Wan, X., Rong, Z., Zhu, K., Wu, Y. (2022). Chitosan-based dual network composite hydrogel for efficient adsorption of methylene blue dye. International Journal of Biological Macromolecules, 222, 725-735. https://doi.org/10.1016/j.ijbiomac.2022.09.213
- Wang, H., Luo, W., Guo, R., Li, D., Xue B. (2022). Effective adsorption of Congo red dye by magnetic chitosan prepared by solvent-free ball milling. Materials Chemistry and Physics, 292, 126857. https://doi.org/10.1016/j.matchemphys.2022.126857
- Wong, S., Ghafar, N. A., Ngadi, N., Razmi, F. A., Inuwa, I. M., Mat, R., Amin, N. A. S. (2020). Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste. Scientific reports, 10(1), 1-13. | https://doi.org/10.1038/s41598-020-60021-6
- Xu, K., Li, L., Huang, Z., Tian, Z., Li, H. (2022). Efficient adsorption of heavy metals from wastewater on nanocomposite beads prepared by chitosan and paper sludge. Science of The Total Environment, 846, 157399. https://doi.org/10.1016/j.scitotenv.2022.157399
- Yeo, J. Y. J., Khaerudini, D. S., Soetaredjo, F. E., Waworuntu, G. L., Ismadji, S., Putranto, A., Sunarso, J. (2023). Experimental and modelling study of adsorption isotherms of amoxicillin, ampicillin and doripenem on bentonite-chitosan composite. South African Journal of Chemical Engineering, 43, 38-45. https://doi.org/10.1016/j.sajce.2022.09.013
- Yun, J., Zhao, C., Li, X., Zhang, W., Liu, H. , Liu, B. (2022). Rheological properties and early mechanical strength of oil-well cement modified by hybrid nano-silica and nano-hexagonal boron nitride. Construction and Building Materials, 356, 129291. https://doi.org/10.1016/j.conbuildmat.2022.129291
- Zaini, M. S. M., Arshad, M., Syed-Hassan, S. S. A. (2022). Adsorption Isotherm and Kinetic Study of Methane on Palm Kernel Shell-Derived Activated Carbon. Journal of Bioresources and Bioproducts, 8, 66-77. https://doi.org/10.1016/j.jobab.2022.11.002
- Zhao, S., Li, Y., Wang, M., Chen, B., Zhang, Y., Sun, Y., Chen, K., Du, Q., Wang, Y., Pi, X., Jing, Z., (2023). Efficient adsorption of Congo red by micro/nano MIL-88A (Fe, Al, Fe-Al)/chitosan composite sponge: Preparation, characterization, and adsorption mechanism. International Journal of Biological Macromolecules, 124157. https://doi.org/10.1016/j.ijbiomac.2023.124157
- Zhao, X., Wang, X., Lou, T. (2021). Preparation of fibrous chitosan/sodium alginate composite foams for the adsorption of cationic and anionic dyes. Journal of Hazardous Materials, 403, 124054. https://doi.org/10.1016/j.jhazmat.2020.124054
Effective Dye Adsorption with Cross-linked Hexagonal Boron Nitride Spheres
Yıl 2023,
, 95 - 104, 30.09.2023
Sahra Dandıl
,
Abdullah Düzgün
Öz
In this study, cross-linked spheres (CS) were synthesized with chitosan and hexagonal boron nitride (h-BN) to be used in Reactive Blue 3R (RB3R) and Red P4BN (RP4BN) dye adsorption from wastewater. Surface characteristics of the CS were investigated by Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) analysis. The behavior of the adsorption processes with varying effective parameters were investigated. The highest removals were obtained at pH 3 for the RB3R and RP4BN removal processes as 62.8 and 74.2%, respectively. The equilibrium time of the processes was determined as 150 min. The pseudo-first-order kinetic model best explained the adsorption rates of the processes. The Freundlich isotherm model was fitted to define the adsorption mechanisms for both dyes. The positive ΔH values obtained as 24.27 and 16.59 kJ mol−1 for the RB3R and RP4BN adsorption processes, respectively, showed that the processes were endothermic. For the RB3R and RP4BN dye removal processes, ΔS values were calculated as 93.38 and 72.23 J mol−1K−1, respectively. Positive ΔS value indicates the processes that occur with an increase in disorder at the interface. The results described that the CS can be used in the adsorption of RB3R and RP4BN dyes from wastewater.
Proje Numarası
2021-02.BŞEÜ.03-03
Kaynakça
- Aditya Color Chem, https://www.adityacolorchem.com/products/reactive-dyes.html, (Accessed April 16, 2023)
- An, L., Gu, R., Zhong, B., Yu, Y., Zhang, J. (2022). Water-icing-triggered scalable and controllable exfoliation of hexagonal boron nitride nanosheets. Cell Reports Physical Science, 3(7), 100941. https://doi.org/10.1016/j.xcrp.2022.100941
- Artioli, Y. (2008). Adsorption, in: Jørgensen, S. E. and Fath, B. D. (Eds.), Encyclopedia of Ecology. Elsevier, Amsterdam, Netherlands, pp. 60-65. https://doi.org/10.1016/B978-008045405-4.00252-4
- Batool, F., Akbar, J., Iqbal, S., Noreen, S., Bukhari, S. N. A. (2018). Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: an overview of linear and nonlinear approach and error analysis. Bioinorganic chemistry and applications, 2018. https://doi.org/10.1155/2018/3463724.
- Chen, B, Ding, L, Wang, Y., Zhang, Y. (2022). High efficient adsorption for thorium in aqueous solution using a novel tentacle-type chitosan-based aerogel: Adsorption behavior and mechanism. International Journal of Biological Macromolecules, 222, 1747-1757. https://doi.org/10.1016/j.ijbiomac.2022.09.256
- Chen, C., Wang, G., Beshiwork, B. A., Xu B., Lin B. (2022). Strain-tunable pure H− conduction in one-atom-thick hexagonal boron nitride for high-energy–density fuel cells. Chemical Engineering Journal, 450, 138223. https://doi.org/10.1016/j.cej.2022.138223
- Chen, S., Tian, H., Mao, J., Ma, F., Zhang, M., Chen, F., Yang, P. (2022). Preparation and application of chitosan-based medical electrospun nanofibers. International Journal of Biological Macromolecules, 226, 410-422, 2022. https://doi.org/10.1016/j.ijbiomac.2022.12.056
- Chen, Z., Zhang, Z. B., Zeng, J., Zhang, Z. J., Ma, S., Tang, C. M., Xu, J. Q. (2023). Preparation of polyethyleneimine-modified chitosan/Ce-UIO-66 composite hydrogel for the adsorption of methyl orange. Carbohydrate Polymers, 299, 120079. https://doi.org/10.1016/j.carbpol.2022.120079
- Chouaybi, I., Ouassif, H., Bettach, M., Moujahid, E. M. (2022). Fast and high removal of acid red 97 dye from aqueous solution by adsorption onto a synthetic hydrocalumite: Structural characterization and retention mechanisms. Inorganic Chemistry Communications, 146, 110169. https://doi.org/10.1016/j.inoche.2022.110169
- Dandil, S., Sahbaz, D. A., Acikgoz, C. (2019). Adsorption of Cu (II) ions onto crosslinked chitosan/Waste Active Sludge Char (WASC) beads: Kinetic, equilibrium, and thermodynamic study. International journal of biological macromolecules, 136, 668-675. https://doi.org/10.1016/j.ijbiomac.2019.06.063
- de Oliveira, T. F., de Souza, C. P., Lopes-Moriyama, A. L., da Silva, M. L. P. (2023). In situ modification of MCM-41 using niobium and tantalum mixed oxide from columbite processing for methylene blue adsorption: Characterization, kinetic, isotherm, thermodynamic and mechanism study. Materials Chemistry and Physics, 294, 127011. https://doi.org/10.1016/j.matchemphys.2022.127011
- Doke, K. M., Khan, E. M. (2013). Adsorption thermodynamics to clean up wastewater; critical review. Reviews in Environmental Science and Bio/Technology, 12(1), 25-44. DOI 10.1007/s11157-012-9273-z
- Duan, Y. T., Yao, Y., Ameta, R. K. (2022). Removal and recovering of anionic and cationic dyes using Neem Leaf ash prepared at 250, 500 and 750° C: Analyzed by adsorption isotherm and physicochemical parameters. Journal of Molecular Liquids, 370, 121012. https://doi.org/10.1016/j.molliq.2022.121012
- Emco Dyestuff Pvt. Ltd., https://www.emcochemicals.com/Dyes/Reactive-Dyes/Reactive-Dyes-VINYL-SULPHONE/Blue-3R (Accessed April 16, 2023)
- Ewis, D., Ba-Abbad, M. M., Benamor, A., El-Naas, M. H. (2022). Adsorption of organic water pollutants by clays and clay minerals composites: A comprehensive review. Applied Clay Science, 229, 106686. https://doi.org/10.1016/j.clay.2022.106686
- Farouq, R. (2022). Coupling Adsorption-Photocatalytic Degradation of Methylene Blue and Maxilon Red. Journal of Fluorescence, 32(4), 1-8. https://doi.org/10.1007/s10895-022-02934-1
- Gajera, R., Patel, R. V., Yadav, A., Labhasetwar, P. K. (2022). Adsorption of cationic and anionic dyes on photocatalytic flyash/TiO2 modified chitosan biopolymer composite. Journal of Water Process Engineering, 49, 102993. https://doi.org/10.1016/j.jwpe.2022.102993
- Hu, H., Xu, K. (2020). Physicochemical technologies for HRPs and risk control, in: Ren, H. and Zhang, X. (Eds.), High-risk pollutants in wastewater. Elsevier, Amsterdam, Netherlands, pp. 169-207. https://doi.org/10.1016/B978-0-12-816448-8.00008-3
- Jiang, R., Shen, T. T., Zhu, H. Y., Fu, Y. Q., Jiang, S. T., Li, J. B., Wang, J. L. (2022). Magnetic Fe3O4 embedded chitosan–crosslinked-polyacrylamide composites with enhanced removal of food dye: Characterization, adsorption and mechanism. International Journal of Biological Macromolecules, 227, 1234-1244. https://doi.org/10.1016/j.ijbiomac.2022.11.310
- Jin, Y., Li, Y., Du, Q., Chen, B., Chen, K., Zhang, Y., Wang, M., Sun, Y., Zhao, S., Jing, Z., Wang, Y. (2022). Efficient adsorption of Congo red by MIL-53 (Fe)/chitosan composite hydrogel spheres. Microporous and Mesoporous Materials, 348, 112404. https://doi.org/10.1016/j.micromeso.2022.112404
- Jin, Y., Li, Y., Du, Q., Chen, B., Chen, K., Zhang, Y., Wang, M., Sun, Y., Zhao, S., Jing, Z., Wang, J. (2023). Efficient adsorption of Congo red by MIL-53 (Fe)/chitosan composite hydrogel spheres. Miroporous and Mesoporous Materials, 348, 112404. https://doi.org/10.1016/j.micromeso.2022.112404
- Kaur, K., Jindal, R. (2019). Comparative study on the behaviour of Chitosan-Gelatin based Hydrogel and nanocomposite ion exchanger synthesized under microwave conditions towards photocatalytic removal of cationic dyes. Carbohydrate Polymers, 207, 398-410. https://doi.org/10.1016/j.carbpol.2018.12.002
- Kurczewska, J. (2022). Chitosan-montmorillonite hydrogel beads for effective dye adsorption. Journal of Water Process Engineering, 48, 102928. https://doi.org/10.1016/j.jwpe.2022.102928
- Liyanage, D., Walpita, J. (2020). Organic pollutants from E-waste and their electrokinetic remediation. in: Prasad, M.N.V., Vithanage, M. and Borthakur, A. (Eds.), Handbook of Electronic Waste Management. Elsevier, Amsterdam, Netherlands, pp. 171-189.
- Loganathan, M., Raj, A. S., Murugesan, A., Kumar, P. S. (2022). Effective adsorption of crystal violet onto aromatic polyimides: Kinetics and isotherm studies. Chemosphere, 304, 135332. https://doi.org/10.1016/j.chemosphere.2022.135332
- Long, W., Yang, C., Wang, G., Hu, J. (2022). Effective adsorption of Hg (II) ions by new ethylene mimine polymer/β-cyclodextrin crosslinked functionalized magnetic composite. Arabian Journal of Chemistry, 104439. https://doi.org/10.1016/j.arabjc.2022.104439
- Mahmoodi, N. M., Mokhtari-Shourijeh, Z. (2015). Preparation of PVA-chitosan blend nanofiber and its dye removal ability from colored wastewater. Fibers and Polymers, 16(9), 1861-1869. DOI 10.1007/s12221-015-5371-1
- Niu, C., Zhang, N., Hu, C., Zhang, C., Zhang, H., Xing, Y. (2021). Preparation of a novel citric acid-crosslinked Zn-MOF/chitosan composite and application in adsorption of chromium (VI) and methyl orange from aqueous solution. Carbohydrate Polymers, 258, 117644. https://doi.org/10.1016/j.carbpol.2021.117644
- Ojediran, J. O., Dada, A. O., Aniyi, S. O., David, R. O., Adewumi, A. D. (2021). Mechanism and isotherm modeling of effective adsorption of malachite green as endocrine disruptive dye using Acid Functionalized Maize Cob (AFMC). Scientific reports, 11(1), 1-15. | https://doi.org/10.1038/s41598-021-00993-1
- Parshi, N., Pan, D., Dhavle, V., Jana, B., Maity, S., Ganguly, J. (2019). Fabrication of lightweight and reusable salicylaldehyde functionalized chitosan as adsorbent for dye removal and its mechanism. International journal of biological macromolecules, 141, 626-635. https://doi.org/10.1016/j.ijbiomac.2019.09.025
- Pathania, D., Sharma, S., Singh, P. (2017). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian journal of chemistry, 10, S1445-S1451. https://doi.org/10.1016/j.arabjc.2013.04.021
- Peng, R., Zhang, S., Yao, Y., Wang, J., Zhu, X., Jiang, R., Zhang, J., Zhang, W., Wang, C. (2022). MOFs meet electrospinning: new opportunities for water treatment. Chemical Engineering Journal, 453, 139669. https://doi.org/10.1016/j.cej.2022.139669
- Qasem, K. M., Khan, S., Chinnam, S., Saleh, H. A., Mantasha, I., Zeeshan, M., Manea, Y. K., Shahid, M. (2022). Sustainable fabrication of Co-MOF@ CNT nano-composite for efficient adsorption and removal of organic dyes and selective sensing of Cr (VI) in aqueous phase. Materials Chemistry and Physics, 291, 126748. https://doi.org/10.1016/j.matchemphys.2022.126748
- Raghav, S., Kumar, D. (2018). Adsorption equilibrium, kinetics, and thermodynamic studies of fluoride adsorbed by tetrametallic oxide adsorbent. Journal of Chemical & Engineering data, 63(5), 1682-1697. https://doi.org/10.1021/acs.jced.8b00024
- Rios-Donato, N., Peña-Flores, A. M., Katime, I., Leyva-Ramos, R., Mendizábal, E. (2017). Kinetics and thermodynamics of adsorption of red dye 40 from acidic aqueous solutions onto a novel chitosan sulfate. Afinidad, 74(579), 214-220. https://raco.cat/index.php/afinidad/article/view/328558/419163
- Saeed, T., Naeem, A., Din, I. U., Farooq, M., Khan, I. W., Hamayun, M., Malik, T. (2022). Synthesis of chitosan composite of metal-organic framework for the adsorption of dyes; kinetic and thermodynamic approach. Journal of Hazardous Materials, 427, 127902. https://doi.org/10.1016/j.jhazmat.2021.127902
- Salim, N. A. A., Puteh, M. H., Khamidun, M. H., Fulazzaky, M. A., Abdullah, N. H., Yusoff, A. R. M., Zaini, M. A. A., Ahmad, N., Lazim, Z. M., Nuid, M. (2021). Interpretation of isotherm models for adsorption of ammonium onto granular activated carbon. Biointerface Res. Appl. Chem, 11, 9227-9241. https://doi.org/10.33263/BRIAC112.92279241
- Salimi, F., Tahmasobi, K., Karami, C., Jahangiri, A. (2017). Preparation of modified nano-SiO2 by bismuth and iron as a novel remover of methylene blue from water solution. Journal of the Mexican Chemical Society, 61(3), 250-259. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.scielo.org.mx/pdf/jmcs/v61n3/1870-249X-jmcs-61-03-00250.pdf
- Tara, N., Sharma, A., Choudhry, A., Abdulla, N. K., Rathi, G., Khan, A. M., Chaudhry, S. A. (2021). Graphene, graphene oxide, and reduced graphene oxide-based materials: a comparative adsorption performance, in: Ahamad, A., Siddiqui, S.I. and Singh, P. (Eds.), Contamination of Water. Elsevier, Amsterdam, Netherlands, pp. 495-507. https://doi.org/10.1016/B978-0-12-824058-8.00014-1
- Verma, S., Dutta, R. K. (2020). Adsorptive Removal of Toxic Dyes Using Chitosan and Its Composites, in: Naushad, Mu., Lichtfouse, E. (Eds.), Green Materials for Wastewater Treatment. Springer, Berlin, Germany, pp. 223-255. DOI:10.1007/978-3-030-17724-9_10
- Wan, X., Rong, Z., Zhu, K., Wu, Y. (2022). Chitosan-based dual network composite hydrogel for efficient adsorption of methylene blue dye. International Journal of Biological Macromolecules, 222, 725-735. https://doi.org/10.1016/j.ijbiomac.2022.09.213
- Wang, H., Luo, W., Guo, R., Li, D., Xue B. (2022). Effective adsorption of Congo red dye by magnetic chitosan prepared by solvent-free ball milling. Materials Chemistry and Physics, 292, 126857. https://doi.org/10.1016/j.matchemphys.2022.126857
- Wong, S., Ghafar, N. A., Ngadi, N., Razmi, F. A., Inuwa, I. M., Mat, R., Amin, N. A. S. (2020). Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste. Scientific reports, 10(1), 1-13. | https://doi.org/10.1038/s41598-020-60021-6
- Xu, K., Li, L., Huang, Z., Tian, Z., Li, H. (2022). Efficient adsorption of heavy metals from wastewater on nanocomposite beads prepared by chitosan and paper sludge. Science of The Total Environment, 846, 157399. https://doi.org/10.1016/j.scitotenv.2022.157399
- Yeo, J. Y. J., Khaerudini, D. S., Soetaredjo, F. E., Waworuntu, G. L., Ismadji, S., Putranto, A., Sunarso, J. (2023). Experimental and modelling study of adsorption isotherms of amoxicillin, ampicillin and doripenem on bentonite-chitosan composite. South African Journal of Chemical Engineering, 43, 38-45. https://doi.org/10.1016/j.sajce.2022.09.013
- Yun, J., Zhao, C., Li, X., Zhang, W., Liu, H. , Liu, B. (2022). Rheological properties and early mechanical strength of oil-well cement modified by hybrid nano-silica and nano-hexagonal boron nitride. Construction and Building Materials, 356, 129291. https://doi.org/10.1016/j.conbuildmat.2022.129291
- Zaini, M. S. M., Arshad, M., Syed-Hassan, S. S. A. (2022). Adsorption Isotherm and Kinetic Study of Methane on Palm Kernel Shell-Derived Activated Carbon. Journal of Bioresources and Bioproducts, 8, 66-77. https://doi.org/10.1016/j.jobab.2022.11.002
- Zhao, S., Li, Y., Wang, M., Chen, B., Zhang, Y., Sun, Y., Chen, K., Du, Q., Wang, Y., Pi, X., Jing, Z., (2023). Efficient adsorption of Congo red by micro/nano MIL-88A (Fe, Al, Fe-Al)/chitosan composite sponge: Preparation, characterization, and adsorption mechanism. International Journal of Biological Macromolecules, 124157. https://doi.org/10.1016/j.ijbiomac.2023.124157
- Zhao, X., Wang, X., Lou, T. (2021). Preparation of fibrous chitosan/sodium alginate composite foams for the adsorption of cationic and anionic dyes. Journal of Hazardous Materials, 403, 124054. https://doi.org/10.1016/j.jhazmat.2020.124054