Araştırma Makalesi
BibTex RIS Kaynak Göster

Ti3SiC2 MAX Phase From TiC-Si-Ti Mixture

Yıl 2018, Cilt: 2 - Özel Sayı - International Conference on Science and Technology (ICONST 2018), 25 - 31, 31.12.2018
https://doi.org/10.30516/bilgesci.490925

Öz

There are more than ten MAX phase systems and more
than fifty MAX phases. This work is focused to produce Ti3SiC2
MAX phase using Si, C, TiC powders. On the DTA curve of the mixture showed two
exothermic peaks at temperature 970 and 1250 ˚C which were related with the
formation of the MAX structure on the carbide layer. TiSi, SiC, TiC and Ti3SiC2
phases were detected in the sintered samples at temperature above 1300 ˚C for 3
h sintering time. At higher temperature and longer reaction time, SiC
decomposes depending on the holding and reaction temperature. The silicon to
titanium carbide and carbon ratios should be in stoichiometric but the silicon
content of the starting composition requires more than 20% excess.

Kaynakça

  • Atasoy, A., Saka, E. (2016). Synthesis of the MAX phase of Ti3SiC2 ceramic from oxide. 18. Inter Metall and Materials Congr. (IMMC 2016) Istanbul, 71-74.
  • Atasoy, A. (2017). Synthesis and characterisation of Ti3SiC2 based composite’, Fresenius Environmental Bulletin, 26 (8), 5163-5169.
  • Bao, Y.W., Zhou Y.C. (2004). Mechanical properties of Ti3SiC2 at high temperature. Acta Metall 17: 4 65-70.
  • Barsoum, M.W., El-Raghy T. (1996). Synthesis and characterization of a remarkable Ceramic: Ti3SiC2. J Amer Cer Soc. 79; 1953-1956.
  • Barsoum, M.W. (2000). The MN+1AXN phases: a new class of solids; thermodynamically stable nano laminates. Prog Solid State Chem. 28.201-81.
  • Barsoum, M.W., El-Raghy T. (2001). The max phases: unique new carbides and nitride materials. Amer Scientific. 89: 334-343.
  • Chen, D., Shirato, K., Barsoum, M.W., El-Raghy, T., Ritchie, R.O. (2001). Cyclic fatigue-crack growth and fracture properties in Ti3SiC2 ceramics at elevated temperatures. J Am Ceram Soc. 84(12): 2914-2920.
  • El Saeed, M.A., Deorsola, F. A., Rashad, R.M. (2012). Optimization of the MAX phase synthesis. Int J Ref Metals Hard Mat. 35: 127-131.
  • Etzkorn, J., Ade, M., Hillebrecht, H. (2007). Ta3AlC2 and Ta4AlC3-single-crystal investigations of two new ternary carbides of tantalum synthesized by the molten metal technique. Inorg Chem. 46: 1410-1418.
  • Gilbert, C.J., Bloyer, D.R., Barsoum, M.W., El-Raghy, T., Tomsia, A.P, Ritchie, R.O. (2000). Fatigue-crack growth and fracture properties of coarse and fine grained Ti3SiC2. Scripta Mat. 238:761-767.
  • Gupta, S. Barsoum, M.W. (2004). Syntheses and oxidation of V2AlC and (Ti0.5V0.5)2AlC in air. J Electro Chem Soc. 151: 24-29.
  • Hoffman, E.N., Vinson, D.W., Sindelar, R.L., Tallman, D.J., Kohse, G., Barsoum, M.W. (2012). MAX phase carbides and nitrides: Properties for future nuclear power plant in-core applications and neutron transmutation analysis. Nuc Eng & Design. 244: 17-24.
  • Hu, C., Xhang, H., Li, F., Huang, Q., Bao, Y. (2013). New phases discovery in MAX family. Int J Ref Metals Hard Mat. 36: 300-312.
  • Li, S.B., Chang L.F., Zhang L.T. (2003). Oxidation behaviour of Ti3SiC2 at high temperature in air. Mat Science Eng Struc Mat Prog Microstructure Process. 341:112-120.
  • Merzhanov, A.G. (2004). The chemistry of self-propagating high-temperature synthesis. J Mat Chem. 14: 1779-1786.
  • Mishra, S.K., Khusboo, A., Sherbokov, V. (2011). Fabrication of in-situ Ti-Si-C fine grained composite by the self-propagating high temperature synthesis. Int J Ref Met Hard Mat. 29: 209-213.
  • Noontny, H. (1970). Struktu chemite einiger verbindungen der ubergangs metallemit den elementen C Si GeSn. Prog Solid State Chem. 2: 27-62.
  • Noontny, H., Schuster J.C., Rogl P. (1982). Structural chemistry of complex carbides and related compounds, J Solis State Chem. 44: 126-133.
  • Orthner, H.R., Tomasi R., Botta F.W.J. (2002). Reaction sintering of titanium carbide and titanium silicide prepared by high energy milling. Mater Sci Eng. 336:202-208.Pampunch, R., Lis J., Stobierski L., Tymkiewicz M. (1989). Solid combustion synthesis of Ti3SiC2S. J Eur Ceram Soc. 5: 283-287.
  • Raoult, C. Langlais F., Naslain R. (1994). Solid state synthesis and obtain and characterization of the ternary phase Ti3SiC2. J Mat Sci. 29: 3384-3394.
  • Rodovic, M., Barsoum, M.W., (2013). Max phases: Bridging the gap between metals and ceramics. Amer Ceram Soc. 92(3):20-27.
  • Sun, Z.M., Zhang Z.F., Hashimoto H., Abe T. (2002). Tannery compound Ti3SiC2: Part 1.Pulse discharge sintering synthesis. Mat Trans. 43: 428-431.
  • Sun, Z.M., Yang S., Hohimoto H. (2004). Ti3SiC2 powder synthesis. Ceram Int. 30: 1873-1877.
  • Sunberg, M., Malmgvist, G., Magnusson, A., El-Raghy T. (2004). Alumina forming high temperature silicides-carbides, Ceram Inter. 30: 899-1904.
  • Yoo, H.I., Barsoum, M.W., El-Rabhy, T. (2000). TiSiC; A material with negligible thermo power over an extended temperature. Natura. 407:581-582.
  • Zhang, Z.F., Sun, Z.M., Hashimoto, H., Abe, T. (2004). Effect of sintering temperature and Si content on the purity of Ti3SiC2 synthesis from Ti/Si/TiC powders. J Alloy Comp. 352:283-288.
  • Zhen, T., Barsoum, M.W., Kalidindi, S.R. (2005). Effect of temperature, strain rate and grain size on the compressive properties of Ti3SiC2. Acta Mater 53: 4163-71.
  • Zhou, Y., Sun, Z. (2000). Temperature fluctuation/hot pressing synthesis of Ti3SiC2. J Mat Sci. 35: 4343-46.
  • Zhou, Y., Sun, Z. (2000). Pulsed electro spark deposition of MAX phase Cr2AlC based coating on titanium alloy. Surf Coat Tech. 235:454-460.
  • Zhou, Y., Sun Z. (2000). Low temperature thermal expansion, high temperature electrical conductivity and mechanical properties of Nb4AlC3 ceramic synthesized by spark plasma sintering. J Alloys Compd. 487:675-81.
Yıl 2018, Cilt: 2 - Özel Sayı - International Conference on Science and Technology (ICONST 2018), 25 - 31, 31.12.2018
https://doi.org/10.30516/bilgesci.490925

Öz

Kaynakça

  • Atasoy, A., Saka, E. (2016). Synthesis of the MAX phase of Ti3SiC2 ceramic from oxide. 18. Inter Metall and Materials Congr. (IMMC 2016) Istanbul, 71-74.
  • Atasoy, A. (2017). Synthesis and characterisation of Ti3SiC2 based composite’, Fresenius Environmental Bulletin, 26 (8), 5163-5169.
  • Bao, Y.W., Zhou Y.C. (2004). Mechanical properties of Ti3SiC2 at high temperature. Acta Metall 17: 4 65-70.
  • Barsoum, M.W., El-Raghy T. (1996). Synthesis and characterization of a remarkable Ceramic: Ti3SiC2. J Amer Cer Soc. 79; 1953-1956.
  • Barsoum, M.W. (2000). The MN+1AXN phases: a new class of solids; thermodynamically stable nano laminates. Prog Solid State Chem. 28.201-81.
  • Barsoum, M.W., El-Raghy T. (2001). The max phases: unique new carbides and nitride materials. Amer Scientific. 89: 334-343.
  • Chen, D., Shirato, K., Barsoum, M.W., El-Raghy, T., Ritchie, R.O. (2001). Cyclic fatigue-crack growth and fracture properties in Ti3SiC2 ceramics at elevated temperatures. J Am Ceram Soc. 84(12): 2914-2920.
  • El Saeed, M.A., Deorsola, F. A., Rashad, R.M. (2012). Optimization of the MAX phase synthesis. Int J Ref Metals Hard Mat. 35: 127-131.
  • Etzkorn, J., Ade, M., Hillebrecht, H. (2007). Ta3AlC2 and Ta4AlC3-single-crystal investigations of two new ternary carbides of tantalum synthesized by the molten metal technique. Inorg Chem. 46: 1410-1418.
  • Gilbert, C.J., Bloyer, D.R., Barsoum, M.W., El-Raghy, T., Tomsia, A.P, Ritchie, R.O. (2000). Fatigue-crack growth and fracture properties of coarse and fine grained Ti3SiC2. Scripta Mat. 238:761-767.
  • Gupta, S. Barsoum, M.W. (2004). Syntheses and oxidation of V2AlC and (Ti0.5V0.5)2AlC in air. J Electro Chem Soc. 151: 24-29.
  • Hoffman, E.N., Vinson, D.W., Sindelar, R.L., Tallman, D.J., Kohse, G., Barsoum, M.W. (2012). MAX phase carbides and nitrides: Properties for future nuclear power plant in-core applications and neutron transmutation analysis. Nuc Eng & Design. 244: 17-24.
  • Hu, C., Xhang, H., Li, F., Huang, Q., Bao, Y. (2013). New phases discovery in MAX family. Int J Ref Metals Hard Mat. 36: 300-312.
  • Li, S.B., Chang L.F., Zhang L.T. (2003). Oxidation behaviour of Ti3SiC2 at high temperature in air. Mat Science Eng Struc Mat Prog Microstructure Process. 341:112-120.
  • Merzhanov, A.G. (2004). The chemistry of self-propagating high-temperature synthesis. J Mat Chem. 14: 1779-1786.
  • Mishra, S.K., Khusboo, A., Sherbokov, V. (2011). Fabrication of in-situ Ti-Si-C fine grained composite by the self-propagating high temperature synthesis. Int J Ref Met Hard Mat. 29: 209-213.
  • Noontny, H. (1970). Struktu chemite einiger verbindungen der ubergangs metallemit den elementen C Si GeSn. Prog Solid State Chem. 2: 27-62.
  • Noontny, H., Schuster J.C., Rogl P. (1982). Structural chemistry of complex carbides and related compounds, J Solis State Chem. 44: 126-133.
  • Orthner, H.R., Tomasi R., Botta F.W.J. (2002). Reaction sintering of titanium carbide and titanium silicide prepared by high energy milling. Mater Sci Eng. 336:202-208.Pampunch, R., Lis J., Stobierski L., Tymkiewicz M. (1989). Solid combustion synthesis of Ti3SiC2S. J Eur Ceram Soc. 5: 283-287.
  • Raoult, C. Langlais F., Naslain R. (1994). Solid state synthesis and obtain and characterization of the ternary phase Ti3SiC2. J Mat Sci. 29: 3384-3394.
  • Rodovic, M., Barsoum, M.W., (2013). Max phases: Bridging the gap between metals and ceramics. Amer Ceram Soc. 92(3):20-27.
  • Sun, Z.M., Zhang Z.F., Hashimoto H., Abe T. (2002). Tannery compound Ti3SiC2: Part 1.Pulse discharge sintering synthesis. Mat Trans. 43: 428-431.
  • Sun, Z.M., Yang S., Hohimoto H. (2004). Ti3SiC2 powder synthesis. Ceram Int. 30: 1873-1877.
  • Sunberg, M., Malmgvist, G., Magnusson, A., El-Raghy T. (2004). Alumina forming high temperature silicides-carbides, Ceram Inter. 30: 899-1904.
  • Yoo, H.I., Barsoum, M.W., El-Rabhy, T. (2000). TiSiC; A material with negligible thermo power over an extended temperature. Natura. 407:581-582.
  • Zhang, Z.F., Sun, Z.M., Hashimoto, H., Abe, T. (2004). Effect of sintering temperature and Si content on the purity of Ti3SiC2 synthesis from Ti/Si/TiC powders. J Alloy Comp. 352:283-288.
  • Zhen, T., Barsoum, M.W., Kalidindi, S.R. (2005). Effect of temperature, strain rate and grain size on the compressive properties of Ti3SiC2. Acta Mater 53: 4163-71.
  • Zhou, Y., Sun, Z. (2000). Temperature fluctuation/hot pressing synthesis of Ti3SiC2. J Mat Sci. 35: 4343-46.
  • Zhou, Y., Sun, Z. (2000). Pulsed electro spark deposition of MAX phase Cr2AlC based coating on titanium alloy. Surf Coat Tech. 235:454-460.
  • Zhou, Y., Sun Z. (2000). Low temperature thermal expansion, high temperature electrical conductivity and mechanical properties of Nb4AlC3 ceramic synthesized by spark plasma sintering. J Alloys Compd. 487:675-81.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Üretim Teknolojileri
Bölüm Araştırma Makaleleri
Yazarlar

Ahmet Atasoy 0000-0003-1564-8793

Emre Saka

Yayımlanma Tarihi 31 Aralık 2018
Kabul Tarihi 30 Aralık 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 2 - Özel Sayı - International Conference on Science and Technology (ICONST 2018)

Kaynak Göster

APA Atasoy, A., & Saka, E. (2018). Ti3SiC2 MAX Phase From TiC-Si-Ti Mixture. Bilge International Journal of Science and Technology Research, 2, 25-31. https://doi.org/10.30516/bilgesci.490925