Araştırma Makalesi
BibTex RIS Kaynak Göster

Kimyasal Olarak Modifiye Edilmiş Kitosanın Kuvars Kristal Mikroterazi Kullanarak Antibiyofilm Aktivitesinin Değerlendirilmesi

Yıl 2020, - ICONST 2020, 13 - 21, 31.12.2020
https://doi.org/10.30516/bilgesci.806156

Öz

Biyomalzemeler üzerinde büyüme ve hücresel bağlanma ile biyofilm oluşumunu engellemek için, yeni biyomalzemeler geliştirilebilir. Bu şekilde biyomalzemeler yeni özellikler kazanabilir. Bu çalışmada, plazma modifiye kitosan (PCh), 5-etoksi-2-metil-benzofuran-3-karboksilik asit (E1) ile kimyasal olarak modifiye edildi. Kimyasal olarak modifiye edilmiş PCh ve PCh-E1 filmlerinin yapıları, X-ışını fotoelektron spektroskopisi (XPS), Fotolüminesans spektroskopisi (PL) ve Fourier dönüşümü kızılötesi spektroskopisi (FTIR) ile incelendi. PCh ve PCh-E1'in elektrospun nanolifleri, destek polimer polivinil alkol (PVA) varlığında yerinde elektroeğirme ve kuvars kristal mikroterazi (QCM) kullanılarak, QCM elektrot yüzeyinde mikrogram düzeyinde üretildi. Elektrospun nanoliflerin morfolojileri ve çapları Taramalı elektron mikroskobu (SEM) ile incelendi. PVA, PVA/PCh ve PVA/PCh-E1'in ortalama lif çapları ve standart sapmaları sırasıyla 280.0 ± 58.9, 104.5 ± 35.9 ve 99.4 ± 21.9 nm olarak belirlendi. PVA/PCh nanoliflerinden daha ince çapa sahip PVA/PCh-E1 nanolifler elde edildi. Nanolifler ile kaplanmış QCM elektrot yüzeylerinin Pseudomonas aeruginosa (P. aeruginosa) karşı antibiyofilm aktiviteleri, QCM ile bağlantılı bir akış hücresi kullanılarak değerlendirildi. PVA/PCh-E1 nanolifleri ile kaplanmış QCM elektrodunda (ΔF: -13709.5 Hz, Δm: 530.3 μg cm−2), PVA/PCh nanolifler ile kaplanmış QCM elektroduna (ΔF: -14552.7 Hz, Δm: 563.5 μg cm−2) göre daha az negatif frekans kayması ve kütle artışı belirlendi. QCM sonuçları, PVA/PCh-E1 nanoliflerinin, E1 bileşiğinin olası bir katkısı nedeniyle biyofilm oluşumunu önemli ölçüde azalttığını gösterdi.

Kaynakça

  • Abrigo, M., Kingshott, P., McArthur, S.L. (2015). Electrospun polystyrene fiber diameter influencing bacterial attachment, proliferation, and growth. Applied Materials & Interfaces, 7, 7644-7652.
  • Abu-Hashem, A.A., Hussein, H.A.R., Aly, A.S., Gouda, M.A. (2014). Synthesis of benzofuran derivatives via different methods. Synthetic Communications, 44, 2285-2312.
  • Asri, M., Elabed, S., Koraichi, S.I., Ghachtoul N.E. (2019). Biofilm-based systems for industrial wastewater treatment. Hussain, C.M. (ed.), Handbook of Environmental Materials Management, Springer, Cham., 1-21pp, https://doi.org/10.1007/978-3-319-73645-7_137.
  • Baumann, A.R., Martin, S.E., Feng, H. (2009). Removal of listeria monocytogenes biofilms from stainless steel by use of ultrasound and ozone. Journal of Food Protection, 72(6), 1306–1309.
  • Bazaka, K., Jacob, M.V., Crawford, R.J., Ivanova, E.P. (2012). Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Applied Microbiology and Biotechnology, 95, 299–311.
  • Channasanon, S., Graisuwan, W., Kiatkamjornwong, S., Hoven, V.P. (2007). Alternating bioactivity of multilayer thin films assembled from charged derivatives of chitosan. Journal of Colloid and Interface Science, 316, 331.
  • Charernsriwilaiwat, N., Opanasopit, P., Rojanarata, T., Ngawhirunpat, T., Supaphol, P. (2010). Preparation and characterization of chitosan-hydroxybenzotriazole/polyvinyl alcohol blend nanofibers by the electrospinning technique. Carbohydrate Polymers, 81, 675-680.
  • Dalvie, D.K., Kalgutkar, A.S., Khojasteh-Bakht, C.S., Scott Obach, R., O’Donnell, P.O. (2002). Biotransformation reactions of fivemembered aromatic heterocyclic rings. Chemical Research in Toxicology, 15, 269-299.
  • Eichhorn, S. J., Sampson, W.W. (2010). Relationships between specific surface area and pore size in electrospun polymer fibre networks. Journal of The Royal Society Interface, 7, 641-649.
  • Gholipour, K.A., Bahrami, S.H., Nouri, M. (2009). Chitosan-poly(vinyl alcohol) blend nanofibers: Morphology, biological and antimicrobial properties. e-Polymers, 9(1),1-12.
  • Goncales, C.E.P., Araldi, D., Panatieri, R.B., Rocha, J.B.T., Zeni, G., Nogueira, C.W. (2005). Antinociceptive properties of acetylenic thiophene and furan derivatives: Evidence for the mechanism of action, Life Sciences 76, 2221–2234.
  • Gottesdiener, K., Mehlisch, D.R., Huntington, M., Yuan, W.Y., Brown, P., Gertz, B., Mills, S., 1999. Efficacy and tolerability of the specific cyclooxygenase-2 inhibitor DFP compared with naproxen sodium in patients with postoperative dental pain, Clinical Therapy, 21, 1301–1312.
  • Hoven, V. P., Tangpasuthadol, V., Angkitpaiboon, Y., Vallapa, N., Kiatkamjornwong, S. (2007). Surface-charged chitosan: Preparation and protein adsorption. Carbohydrate Polymers, 68, 44-53.
  • Iyengar, S., Arnason, J.T., Philogene, B.J.R., Murand, P., Werstink, N.H., Timmins, G., (1987). Toxicokinetics of the phototoxic allelochemical α-terthienyl in three herbivorous lepidoptera. Pesticide Biochemistry and Physiology 29, 1–9.
  • Kargar, M., Wang, J., Nain, A. S., Behkam, B. (2012). Controlling bacterial adhesion to surfaces using topographical cues: a study of the interaction of Pseudomonas aeruginosa with nanofiber-textured surfaces. Soft Matter, 8, 10254-10259.
  • Kim, B.J., Cheong, H., Choi, E.S., Yun, S.H., Choi, B.H., Park, K.S., Kim, I.S., Park, D.H., Cha, H.J. (2017). Accelerated skin wound healing using electrospun nanofibrous mats blended with mussel adhesive protein and polycaprolactone. Journal of Biomedical Materials Research A, 105, 218-225.
  • Khodarahmi, G., Asadi, P., Hassanzadeh, F., Khodarahmi, E. (2015). Benzofuran as a promising scaffold for the synthesis of antimicrobial and antibreast cancer agents: A review. Journal of Research in Medical Sciences, 20(11), 1094–1104.
  • Klossner, R.R., Queen, H.A., Coughlin, A.J., Krause, W.E. (2008). Correlation of chitosan’s rheological properties and its ability to electrospun. Biomacromolecules, 9, 2947-2953.
  • Kossakowski, J., Krawiecka, M., Kuran, B., Stefańska, J., Wolska, I. (2010). Synthesis and preliminary evaluation of the antimicrobial activity of selected 3-benzofurancarboxylic acid derivatives. Molecules, 15, 4737-4749.
  • Kumar, S., Nigam, N., Ghosh, T., Dutta, P.K., Yadav, R.S., Pandey, A.C. (2010). Preparation, characterization, and optical properties of a chitosan-anthraldehyde crosslinkable film. Journal of Applied Polymer Science, 2010, 115, 3056-3062.
  • Lonn, S.J., Naemi, A., Benneche, T., Scheie, A.A. (2012). Thiophenones inhibit Staphylococcus epidermidis biofilm formation at non-toxic concentrations, FEMS Immunology Medical Microbiology, 65, 326–334.
  • Lopez, F., Jett, M., Muchowski J.M., Nitzan D., O’Yang C., (2002). Synthesis and biological evaluation of keterolac analogs. Heterocycles, 56, 91-95.
  • Malmström, J., Jonsson, M., Cotgreave, I.A., Hammarström, L., Sjödin, M., Engman, L. (2001). The antioxidant profile of 2,3-dihydrobenzo[b]furan-5-ol and its 1-thio, 1-seleno and 1-telluro analogues. Journal of the American Chemical Society, 123, 3434-3440.
  • Marcus, I.M., Herzberg, M., Walker, S.L., Freger, V. (2012). Pseudomonas aeruginosa attachment on QCM-D sensors: The role of cell and surface hydrophobicities. Langmuir, 28, 6396-6402.
  • Matsumoto, H., Tanioka, A. (2011). Functionality in electrospun nanofibrous membranes based on fiber’s size, surface area, and molecular orientation. Membranes, 1(3), 249-264.
  • Matsuura, H., Saxena, G., Farmer, S.W., Hancock, R.E.W., Towers, G.H.N. (1996). Antibacterial and antifungal polvine compounds from Glehnia littoralis ssp. leiocarpa. Planta Medica, 62, 256–259.
  • Meotti, F.C., Silva, D.O., Santos, A.R.S., Zeni, G., Rocha, J.B.T., Nogueira, C.W. (2003). Thiophenes and furans derivatives: a new class of potential pharmacological agents. Environmental Toxicology and Pharmacology, 15, 37-44.
  • Mi, F.L. (2005). Synthesis and characterization of a novel chitosangelatin bioconjugate with fluorescence emission. Biomacromolecules, 6, 975-987.
  • Mortimer, C.J., Burke, L., Wright, C.J. (2016). Microbial interactions with nanostructures and their importance for the development of electrospun nanofibrous materials used in regenerative medicine and filtration. Journal of Microbial Biochemical Technology, 8, 195-201.
  • Nohut Maslakci, N., Akalin, R.B., Ulusoy, S., Oksuz, L., Uygun Oksuz, A. (2015). Electrospun fibers of chemically modified chitosan for in situ investigation of the effect on biofilm formation with quartz crystal microbalance method. Industrial Engineering Chemistry Research, 54, 8010−8018.
  • Nohut Maslakci, N., Ulusoy, S., Uygun Oksuz, A. (2017). Investigation of the effects of plasma-treated chitosan electrospun fibers onto biofilm formation. Sensors and Actuators B: Chemical, 246, 887-895.
  • Nohut Maslakci, N., Ulusoy, S., Uygun Oksuz, A. (2018). Investigation of the effects of chemically grafted chitosan nanofibers on P. aeruginosa PA01 biofilm formation using quartz crystal microbalance technique. Molecular Crystals and Liquid Crystals, 669(1), 76-93.
  • Nune, V., Sharon, L.W., Osnat, G., Moshe, H. (2010). Reduced bacterial deposition and attachment by quorum-sensing inhibitor 4-nitro-pyridine-N-oxide: The role of physicochemical effects, Langmuir, 26, 12089-12094.
  • Ohkawa, K., Minato, K.I., Kumagai, G., Hayashi, S., Yamamoto, H. (2006). Chitosan nanofiber. Biomacromolecules, 7, 3291-3294.
  • Pillai, C.K.S. Sharma, C.P. (2009). Electrospinning of chitin and chitosan nanofibres, Trends in Biomaterials Artificial Organs, 22, 179-201.
  • Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur Wagung dünner Schichten und zur Mikrowagung. Zeitschrift für Physik, 155, 206-222.
  • Shi, X., Zhu, X. (2009). Biofilm formation and food safety in food industries. Trends in Food Science & Technology, 20(9), 407-413.
  • Sun, K., Li, Z.H. (2011). Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning, Express Polymer Letters, 5, 342–361.
  • Tiirola, M., Lahtinen, T., Vuento, M., Oker-Blom, C. (2009). Early succession of bacterial biofilms in paper machines. Journal of Industrial Microbiology and Biotechnology, 36, 929–937.
  • Uygun, A., Kiristi, M., Oksuz, L., Manolache, S., Ulusoy, S. (2011). RF hydrazine plasma modification of chitosan for antibacterial activity and nanofiber applications, Carbohydrate Research, 346, 259-265.
  • Veerachamy, S., Yarlagadda, T., Manivasagam, G., Yarlagadda, P.K.D.V. (2014). Bacterial adherence and biofilm formation on medical implants: A review. Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine, 228(10), 1083-1099.
  • Wang, X., Ding, B., Sun, M., Yu, J., Sun, G. (2010). Nanofibrous polyethyleneimine membranes as sensitive coatings for quartz crystal microbalance-based formaldehyde sensors. Sensors and Actuators B: Chemical, 144, 11-17.
  • Zeni, G., Lüdtke, D.S., Nogueira, C.W., Panatieri, R.B., Braga, A.L., Silveira, C.C., Stefani, H.A., Rocha, J.B.T., (2001). New acetylenic furan derivatives: synthesis and anti-inflammatory activity. Tetrahedron Letters, 42, 8927-8930.
  • Zhou, Y., Yang, D., Nie, J. (2006). Electrospinning of chitosan/poly(vinyl alcohol)/acrylic acid aqueous solutions. Journal of Applied Polymer Science, 102, 5692-5697.
  • Zou, A., Huo, M., Zhang, Y., Zhou, J., Yin, X., Yao, C., Zhu, Q., Zhang, M., Ren J., Zhang, Q. (2012). Octreotide-modified N-octyl-O, N-carboxymethyl chitosan micelles as potential carriers for targeted antitumor drug delivery, Journal of Pharmaceutical Sciences, 101, 627-640.

The Assessment of Antibiofilm Activity of Chemically Modified Chitosan Using Quartz Crystal Microbalance

Yıl 2020, - ICONST 2020, 13 - 21, 31.12.2020
https://doi.org/10.30516/bilgesci.806156

Öz

New biomaterials can be developed to prevent the formation of biofilms on biomaterials through growth and cellular attachment. In this way, biomaterials can gain new properties. In this study, the plasma modified-chitosan (PCh) was chemically modified with 5-ethoxy-2-methyl-benzofuran-3-carboxylic acid (E1). The structures of chemically modified PCh-E1 and PCh films were studied by X-ray photoelectron spectroscopy (XPS), Photoluminescence spectroscopy (PL), and Fourier transform infrared spectroscopy (FTIR). Electrospun nanofibers of PCh and PCh-E1 were produced at the microgram level onto the QCM electrode surface using in situ electrospinning and quartz crystal microbalance (QCM) in the presence of a support polymer polyvinyl alcohol (PVA). The morphologies and diameters of electrospun nanofibers were investigated by the Scanning electron microscopy (SEM). The average fiber diameters and standard deviations of PVA, PVA/PCh, and PVA/PCh-E1 were determined as 280.0 ± 58.9, 104.5 ± 35.9, and 99.4 ± 21.9 nm, respectively. Finer diameter PVA/PCh-E1 nanofibers were obtained from the PVA/PCh nanofibers. Antibiofilm activities against Pseudomonas aeruginosa (P. aeruginosa) of a QCM electrode surfaces coated with nanofibers were evaluated using the flow cell associated with the QCM. When QCM electrode coated with the PVA/PCh-E1 nanofibers was used, less negative frequency shift and the mass increase in (ΔF: -13709.5 Hz, Δm: 530.3 μg cm−2) was detected compared to the QCM electrode coated with PVA/PCh nanofibers (ΔF: -14552.7 Hz, Δm: 563.5 μg cm−2). QCM results showed that PVA/PCh-E1 nanofibers significantly decrease biofilm formation, due to a possible contribution of E1 compound.

Kaynakça

  • Abrigo, M., Kingshott, P., McArthur, S.L. (2015). Electrospun polystyrene fiber diameter influencing bacterial attachment, proliferation, and growth. Applied Materials & Interfaces, 7, 7644-7652.
  • Abu-Hashem, A.A., Hussein, H.A.R., Aly, A.S., Gouda, M.A. (2014). Synthesis of benzofuran derivatives via different methods. Synthetic Communications, 44, 2285-2312.
  • Asri, M., Elabed, S., Koraichi, S.I., Ghachtoul N.E. (2019). Biofilm-based systems for industrial wastewater treatment. Hussain, C.M. (ed.), Handbook of Environmental Materials Management, Springer, Cham., 1-21pp, https://doi.org/10.1007/978-3-319-73645-7_137.
  • Baumann, A.R., Martin, S.E., Feng, H. (2009). Removal of listeria monocytogenes biofilms from stainless steel by use of ultrasound and ozone. Journal of Food Protection, 72(6), 1306–1309.
  • Bazaka, K., Jacob, M.V., Crawford, R.J., Ivanova, E.P. (2012). Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Applied Microbiology and Biotechnology, 95, 299–311.
  • Channasanon, S., Graisuwan, W., Kiatkamjornwong, S., Hoven, V.P. (2007). Alternating bioactivity of multilayer thin films assembled from charged derivatives of chitosan. Journal of Colloid and Interface Science, 316, 331.
  • Charernsriwilaiwat, N., Opanasopit, P., Rojanarata, T., Ngawhirunpat, T., Supaphol, P. (2010). Preparation and characterization of chitosan-hydroxybenzotriazole/polyvinyl alcohol blend nanofibers by the electrospinning technique. Carbohydrate Polymers, 81, 675-680.
  • Dalvie, D.K., Kalgutkar, A.S., Khojasteh-Bakht, C.S., Scott Obach, R., O’Donnell, P.O. (2002). Biotransformation reactions of fivemembered aromatic heterocyclic rings. Chemical Research in Toxicology, 15, 269-299.
  • Eichhorn, S. J., Sampson, W.W. (2010). Relationships between specific surface area and pore size in electrospun polymer fibre networks. Journal of The Royal Society Interface, 7, 641-649.
  • Gholipour, K.A., Bahrami, S.H., Nouri, M. (2009). Chitosan-poly(vinyl alcohol) blend nanofibers: Morphology, biological and antimicrobial properties. e-Polymers, 9(1),1-12.
  • Goncales, C.E.P., Araldi, D., Panatieri, R.B., Rocha, J.B.T., Zeni, G., Nogueira, C.W. (2005). Antinociceptive properties of acetylenic thiophene and furan derivatives: Evidence for the mechanism of action, Life Sciences 76, 2221–2234.
  • Gottesdiener, K., Mehlisch, D.R., Huntington, M., Yuan, W.Y., Brown, P., Gertz, B., Mills, S., 1999. Efficacy and tolerability of the specific cyclooxygenase-2 inhibitor DFP compared with naproxen sodium in patients with postoperative dental pain, Clinical Therapy, 21, 1301–1312.
  • Hoven, V. P., Tangpasuthadol, V., Angkitpaiboon, Y., Vallapa, N., Kiatkamjornwong, S. (2007). Surface-charged chitosan: Preparation and protein adsorption. Carbohydrate Polymers, 68, 44-53.
  • Iyengar, S., Arnason, J.T., Philogene, B.J.R., Murand, P., Werstink, N.H., Timmins, G., (1987). Toxicokinetics of the phototoxic allelochemical α-terthienyl in three herbivorous lepidoptera. Pesticide Biochemistry and Physiology 29, 1–9.
  • Kargar, M., Wang, J., Nain, A. S., Behkam, B. (2012). Controlling bacterial adhesion to surfaces using topographical cues: a study of the interaction of Pseudomonas aeruginosa with nanofiber-textured surfaces. Soft Matter, 8, 10254-10259.
  • Kim, B.J., Cheong, H., Choi, E.S., Yun, S.H., Choi, B.H., Park, K.S., Kim, I.S., Park, D.H., Cha, H.J. (2017). Accelerated skin wound healing using electrospun nanofibrous mats blended with mussel adhesive protein and polycaprolactone. Journal of Biomedical Materials Research A, 105, 218-225.
  • Khodarahmi, G., Asadi, P., Hassanzadeh, F., Khodarahmi, E. (2015). Benzofuran as a promising scaffold for the synthesis of antimicrobial and antibreast cancer agents: A review. Journal of Research in Medical Sciences, 20(11), 1094–1104.
  • Klossner, R.R., Queen, H.A., Coughlin, A.J., Krause, W.E. (2008). Correlation of chitosan’s rheological properties and its ability to electrospun. Biomacromolecules, 9, 2947-2953.
  • Kossakowski, J., Krawiecka, M., Kuran, B., Stefańska, J., Wolska, I. (2010). Synthesis and preliminary evaluation of the antimicrobial activity of selected 3-benzofurancarboxylic acid derivatives. Molecules, 15, 4737-4749.
  • Kumar, S., Nigam, N., Ghosh, T., Dutta, P.K., Yadav, R.S., Pandey, A.C. (2010). Preparation, characterization, and optical properties of a chitosan-anthraldehyde crosslinkable film. Journal of Applied Polymer Science, 2010, 115, 3056-3062.
  • Lonn, S.J., Naemi, A., Benneche, T., Scheie, A.A. (2012). Thiophenones inhibit Staphylococcus epidermidis biofilm formation at non-toxic concentrations, FEMS Immunology Medical Microbiology, 65, 326–334.
  • Lopez, F., Jett, M., Muchowski J.M., Nitzan D., O’Yang C., (2002). Synthesis and biological evaluation of keterolac analogs. Heterocycles, 56, 91-95.
  • Malmström, J., Jonsson, M., Cotgreave, I.A., Hammarström, L., Sjödin, M., Engman, L. (2001). The antioxidant profile of 2,3-dihydrobenzo[b]furan-5-ol and its 1-thio, 1-seleno and 1-telluro analogues. Journal of the American Chemical Society, 123, 3434-3440.
  • Marcus, I.M., Herzberg, M., Walker, S.L., Freger, V. (2012). Pseudomonas aeruginosa attachment on QCM-D sensors: The role of cell and surface hydrophobicities. Langmuir, 28, 6396-6402.
  • Matsumoto, H., Tanioka, A. (2011). Functionality in electrospun nanofibrous membranes based on fiber’s size, surface area, and molecular orientation. Membranes, 1(3), 249-264.
  • Matsuura, H., Saxena, G., Farmer, S.W., Hancock, R.E.W., Towers, G.H.N. (1996). Antibacterial and antifungal polvine compounds from Glehnia littoralis ssp. leiocarpa. Planta Medica, 62, 256–259.
  • Meotti, F.C., Silva, D.O., Santos, A.R.S., Zeni, G., Rocha, J.B.T., Nogueira, C.W. (2003). Thiophenes and furans derivatives: a new class of potential pharmacological agents. Environmental Toxicology and Pharmacology, 15, 37-44.
  • Mi, F.L. (2005). Synthesis and characterization of a novel chitosangelatin bioconjugate with fluorescence emission. Biomacromolecules, 6, 975-987.
  • Mortimer, C.J., Burke, L., Wright, C.J. (2016). Microbial interactions with nanostructures and their importance for the development of electrospun nanofibrous materials used in regenerative medicine and filtration. Journal of Microbial Biochemical Technology, 8, 195-201.
  • Nohut Maslakci, N., Akalin, R.B., Ulusoy, S., Oksuz, L., Uygun Oksuz, A. (2015). Electrospun fibers of chemically modified chitosan for in situ investigation of the effect on biofilm formation with quartz crystal microbalance method. Industrial Engineering Chemistry Research, 54, 8010−8018.
  • Nohut Maslakci, N., Ulusoy, S., Uygun Oksuz, A. (2017). Investigation of the effects of plasma-treated chitosan electrospun fibers onto biofilm formation. Sensors and Actuators B: Chemical, 246, 887-895.
  • Nohut Maslakci, N., Ulusoy, S., Uygun Oksuz, A. (2018). Investigation of the effects of chemically grafted chitosan nanofibers on P. aeruginosa PA01 biofilm formation using quartz crystal microbalance technique. Molecular Crystals and Liquid Crystals, 669(1), 76-93.
  • Nune, V., Sharon, L.W., Osnat, G., Moshe, H. (2010). Reduced bacterial deposition and attachment by quorum-sensing inhibitor 4-nitro-pyridine-N-oxide: The role of physicochemical effects, Langmuir, 26, 12089-12094.
  • Ohkawa, K., Minato, K.I., Kumagai, G., Hayashi, S., Yamamoto, H. (2006). Chitosan nanofiber. Biomacromolecules, 7, 3291-3294.
  • Pillai, C.K.S. Sharma, C.P. (2009). Electrospinning of chitin and chitosan nanofibres, Trends in Biomaterials Artificial Organs, 22, 179-201.
  • Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur Wagung dünner Schichten und zur Mikrowagung. Zeitschrift für Physik, 155, 206-222.
  • Shi, X., Zhu, X. (2009). Biofilm formation and food safety in food industries. Trends in Food Science & Technology, 20(9), 407-413.
  • Sun, K., Li, Z.H. (2011). Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning, Express Polymer Letters, 5, 342–361.
  • Tiirola, M., Lahtinen, T., Vuento, M., Oker-Blom, C. (2009). Early succession of bacterial biofilms in paper machines. Journal of Industrial Microbiology and Biotechnology, 36, 929–937.
  • Uygun, A., Kiristi, M., Oksuz, L., Manolache, S., Ulusoy, S. (2011). RF hydrazine plasma modification of chitosan for antibacterial activity and nanofiber applications, Carbohydrate Research, 346, 259-265.
  • Veerachamy, S., Yarlagadda, T., Manivasagam, G., Yarlagadda, P.K.D.V. (2014). Bacterial adherence and biofilm formation on medical implants: A review. Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine, 228(10), 1083-1099.
  • Wang, X., Ding, B., Sun, M., Yu, J., Sun, G. (2010). Nanofibrous polyethyleneimine membranes as sensitive coatings for quartz crystal microbalance-based formaldehyde sensors. Sensors and Actuators B: Chemical, 144, 11-17.
  • Zeni, G., Lüdtke, D.S., Nogueira, C.W., Panatieri, R.B., Braga, A.L., Silveira, C.C., Stefani, H.A., Rocha, J.B.T., (2001). New acetylenic furan derivatives: synthesis and anti-inflammatory activity. Tetrahedron Letters, 42, 8927-8930.
  • Zhou, Y., Yang, D., Nie, J. (2006). Electrospinning of chitosan/poly(vinyl alcohol)/acrylic acid aqueous solutions. Journal of Applied Polymer Science, 102, 5692-5697.
  • Zou, A., Huo, M., Zhang, Y., Zhou, J., Yin, X., Yao, C., Zhu, Q., Zhang, M., Ren J., Zhang, Q. (2012). Octreotide-modified N-octyl-O, N-carboxymethyl chitosan micelles as potential carriers for targeted antitumor drug delivery, Journal of Pharmaceutical Sciences, 101, 627-640.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Neslihan Nohut Maşlakcı 0000-0003-1282-2477

Yayımlanma Tarihi 31 Aralık 2020
Kabul Tarihi 8 Aralık 2020
Yayımlandığı Sayı Yıl 2020 - ICONST 2020

Kaynak Göster

APA Nohut Maşlakcı, N. (2020). Kimyasal Olarak Modifiye Edilmiş Kitosanın Kuvars Kristal Mikroterazi Kullanarak Antibiyofilm Aktivitesinin Değerlendirilmesi. Bilge International Journal of Science and Technology Research13-21. https://doi.org/10.30516/bilgesci.806156