Araştırma Makalesi
PDF Mendeley EndNote BibTex Kaynak Göster

Monitoring of Deep-Seated Landslides at Karaoğlan Catchment Using Radar Interferometry Techniques (Mersin, Turkey)

Yıl 2021, Cilt 5, Sayı 2, 91 - 100, 30.09.2021
https://doi.org/10.30516/bilgesci.883935

Öz

Landslide inventory mapping studies around Mersin and Erdemli regions of southern Turkey revealed that numerous old large-scale and recent small-scale landslides were presumably aroused in different time intervals. While the recent active landslides have been mostly triggered by excessive rainfall, old landslides are considered to be occurred by geomorphologic valley incision processes besides the other preparatory environmental conditions. The evaluation of the spatial distribution of old landslides present retrogressive, deep-seated with complex and rotational slides in the ophiolites and ophiolitic melange units comprising also overlying reefal limestones. In this study, surface deformations caused by landslides were evaluated using radar interferometry techniques for a specified period in Karaoglan catchment. Landslide related deformations were detected over radar images of L-band ALOS-PALSAR sensor for the years between 2007 and 2011. Landslides which are active are investigated in detail cross-sections. The mean displacement from differential interferogram cross-sections was measured 3.5 cm in LOS direction. Differential SAR interferometry for studied period depicts that the average rate of movement for the entire area is extremely slow with a rate of 10 mm/yr.

Kaynakça

  • Berardino, P., Costantini, G., Franceschetti, G., Iodice, L., Pietranera, L., Rizzo, V., (2003). Use of differential SAR interferometry in monitoring and modelling large slope instability at Matera (Basilicata, Italy). Engineering Geology, 68, 31-51.
  • Bovenga, F., Wasowski, J., Nitti, D.O., Nutricato, R., Chiaradia, M.T., (2012). Using COSMO/SkyMed X-band and ENVISAT C-band SAR interferometry for landslides analysis. Remote Sensing of Environment, 119, 272-285.
  • Calo, F., Calcaterra, D., Iodice, A., Parise, M., Ramondini, M., (2012). Assessing the activity of a large landslide in southern Italy by ground-monitoring and SAR interferometric techniques. International Journal of Remote Sensing, 33, 3512-3530.
  • Cascini, L., Fornaro, G., Peduto, D., (2010). Advanced low‐ and full‐resolution DInSAR map generation for slow‐moving landslide analysis at different scales. Engineering Geology, 112, 29-42.
  • Catani, F., Farina, P., Moretti, S., Nico, G., Strozzi, T., (2005). On the application of SAR interferometry to geomorphological studies: estimation of landforms attributes and mass movements. Geomorphology, 66, 119-131.
  • Colesanti, C., Wasowski, J., (2006). Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Engineering Geology, 88, 173-199.
  • Cruden, D.M., Varnes, D.J., (1996). Landslide types and processes. In: Turner AK, Schuster LR (ed) Special Report 247: Landslides: Investigation and Mitigation, Transportation Research Board, Washington, pp 129-177.
  • Çan, T., Duman, T.Y., Çil, E., Mazman, T., (2009). GIS Based Landslide Inventory, Susceptibility, Hazard and Risk Assessment of the Northern Parts of Mersin Central and Erdemli Districts (In Turkish). TÜBİTAK-ÇAYDAG Project no: 107Y138.
  • Delacourt, C., Raucoules, D., Le Mouélic, S., Carnec, C., Feurer, D., Allemand, P., Cruchet, M., (2009). Observation of a large landslide on la reunion island using differential SAR interferometry (JERS and Radarsat) and correlation of optical (Spot5 and Aerial) images. Sensors, 9, 616-630.
  • Delgado, J., Vicente, F., García-Tortosa, F., Alfaro, P., Estévez, A., Lopez-Sanchez, J.M., Tomas, R., Mallorquí, J.J., (2011). A deep seated compound rotational rock slide and rock spread in SE Spain: Structural control and DInSAR monitoring. Geomorphology, 129, 252-262.
  • Farina, P., Colombo, D., Fumagalli, A., Marks, F., Moretti, S., (2006). Permanent Scatterers for landslide investigations: Outcomes from the ESA-SLAM project. Engineering Geology, 88, 200-217.
  • Ferretti, A., Prati, C., Rocca, F., (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Geoscience and Remote Sensing Letters, 38, 2202-2212.
  • Ferretti, A., Massonnet, D., Monti Guarnieri, A., Prati, C., Rocca, F., (2007). InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation. ESA Publications TM-19 http://www.esa.int/About_Us/ESA_Publications/InSAR_Principles_Guidelines_for_SAR_Interferometry_Processing_and_Interpretation_br_ESA_TM-19. Accessed 16 June 2013.
  • Guzzetti, F., Manunta, M., Ardizzone, F., Pepe, A., Cardinali, M., Zeni, G., Reichenbach, P., Lanari, R., (2009). Analysis of ground deformation detected using the SBAS‐DInSAR technique in Umbria, Central Italy. Pure and Applied Geophysics, 166, 1425-1459.
  • Hanssen, R., (2001). Radar Interferometry: Data Interpretation and Error Analysis. Kluwer Academic Publishers, Dordrecht.
  • Hastaoglu, K.O., Poyraz, F., Turk, T., Yılmaz, I., Kocbulut, F., Demirel, M., Sanli, U., Duman, H., Balik Sanli, F., (2018). Investigation of the success of monitoring slow motionlandslides using Persistent Scatterer Interferometry and GNSS methods, Survey Review, 50 (363), 475-486.
  • Hurtrez, J., Lucazeau, F., Lave, J., Avouac, J., (1999). Investigation of the relationships between basin morphology, tectonic uplift, and denudation from the study of an active fold belt in the Siwalik Hills, Central Nepal. Journal of Geophysical Research, 104, 12779-12796.
  • Kimura, H., Yamaguchi, Y., (2000). Detection of landslide areas using radar interferometry. Photogrammetric Engineering and Remote Sensing, 66, 337-344.
  • Massonnet, D., Feigl, K.L., (1998). Radar interferometry and its application to changes in the earth’s surface. Reviews of Geophysics, 36, 441-500.
  • Metternicht, G., Hurni, L., Gogu, R., (2005). Remote sensing of landslides: an analysis of the potential contribution to geo-spatial systems for hazards assessment in mountainous environments. Remote Sensing of Environment, 98, 284-303.
  • Pampal, S., (1987). Geology of the Guzeloluk-Sorgun (Mersin) region (In Turkish). Journal Of The Faculty Of Engineering And Architecture Of Gazi University, 2, 143-170.
  • Parlak, O., Delaloye, M., Bingöl, E., (1996). Mineral chemistry of ultramafic-mafic cumulates as an indicator of the arc-related origin of the Mersin ophiolite (southern Turkey). Geologische Rundschau, 85, 647-661.
  • Parlak, O., Robertson, A.H.F., (2004). The ophiolite-related Mersin Melange, southern Turkey: Its role in the tectonic-sedimentary setting of the Tethys in the eastern Mediterranean region. Geological Magazine, 141, 257-286.
  • Refice, A., Bovenga, F., Guerriero, L., & Wasowski, J. (2001). DInSAR applications to landslide studies. In IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No. 01CH37217) (Vol. 1, pp. 144-146). IEEE.
  • Rosen, P., Hensley, S., Joughin, I., Li, F., Madsen, S., Rodriguez, E., Goldstein, R., (2000). Synthetic aperture radar interferometry. Proceedings of the IEEE, 88 (2000), 333-382.
  • Rott, H., Nagler, T., (2006). The contribution of radar interferometry to the assessment of landslide hazards. Advances in Space Research, 37, 710-719.
  • Rott, H., (2009). Advances in interferometric synthetic aperture radar (InSAR) in earth system science. Progress in Physical Geography, 6, 769-791.
  • Sandwell, D., Myer, D., Mellors, R., Shimada, M., Brooks, B., Foster, J., (2008). Accuracy and resolution of ALOS interferometry: Vector deformation maps of the Father’s day intrusion at Kilauea. IEEE Transactions on Geoscience and Remote Sensing, 46, 3524-3534
  • Singhroy, V., Alasset, P.J., Couture, R., Froese, C., (2008). InSAR monitoring of landslides in Canada. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS'08), 3, 202-205.
  • Singhroy, V., (2008). Satellite remote sensing applications for landslide detection and monitoring. In: Sassa, K., Canuti, P., (ed) Landslide Disaster Risk Reduction, Springer, Berlin, pp 143-158.
  • Singhroy, V., Li, J., Charbonneau, F., Pavlic, G., Segin, G., (2011). InSAR Monitoring of Landslides affecting strategic Transportation Corridors. Proceedings 34th International Symposium on Remote Sensing of Environment, Sydney. 3p.
  • Strahler, A.N., (1952). Hypsometric (area-altitude) analysis of erosional topology. Geological Society of America Bulletin, 63, 1117-1142.
  • Strozzi, T., Farina, P., Corsini, A., Ambrosi, C., Thuring, M., Zilger, J., Wiesmann, A., Wegmüller, U., Werner, C., (2005). Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslides, 2, 193-201.
  • Strozzi, T., Delaloye, A., Kääb, A., Ambrosi, C., Perruchoud, E., Wegmüller, U., (2010). Combined observations of rock mass movements using satellite SAR interferometry, differential GPS, airborne digital photogrammetry and airborne photography interpretation. Journal of Geophysical Research, 115(F1), F01014
  • Yetiş, C., (1988). Reorganization of the Tertiary Stratigraphy in the Adana Basin, Southern Turkey. Newsletters on Stratigraphy, 20, 43-58.
  • Zhou, X., Chang, N., Li, S., (2009)s. Application of SAR Interferometry in earth and environmental science research. Sensors, 9, 1876-1912.

Radar İnterferometri Teknikleri Kullanarak Derin Kompleks Heyelanların İzlenmesi: Karaoğlan Havzası (Mersin-Türkiye)

Yıl 2021, Cilt 5, Sayı 2, 91 - 100, 30.09.2021
https://doi.org/10.30516/bilgesci.883935

Öz

Akdeniz bölgesinde yer alan Mersin ve Erdemli bölgelerindeki heyelan envanter haritalama çalışmaları farklı dönemlerde çok sayıda eski büyük ölçekli ve yeni küçük ölçekli heyelanların gelişmekte olduğunu göstermektedir. Güncel aktif heyelanlar çoğunlukla aşırı yağışlar ile tetiklenmekte iken eski heyelanların diğer hazırlayıcı çevresel faktörlerin yanı sıra jeomorfolojik vadi gelişim süreçlerinin bir parçası olarak gerçekleştiği düşünülmektedir. Eski heyelan alanlarının mekânsal dağılımı incelendiğinde resifal kireçtaşlarının üzerlediği ofiyolit ve ofiyolitik melanj birimlerinde gerçekleşen gerileyen, derin kompleks ve rotasyonel kaymalardır. Bu çalışmada belli bir zaman aralığı için Karaoğlan havzasında gerçekleşen heyelanların neden olduğu yüzey deformasyonları radar interferometri teknikleri ile incelenmiştir. Heyelanlarla ilişkili deformasyonlar 2007 ve 2011 yılları arasında L-band ALOS-PALSAR algılayıcısı radar görüntüleri kullanılarak tespit edilmiştir. Aktif heyelanlarla ilişkili değişim kesitleri oluşturulmuştur. Fark interferogram kesitlerinde ortalama yer değiştirme uydu görüntü alım doğrultusunda 3,5 cm olarak ölçülmüştür. Çalışma alanında fark SAR interferometri sonuçları incelenen dönemde 10 mm/yıl olarak oldukça yavaş bir hareket söz konusu olduğunu göstermektedir.

Kaynakça

  • Berardino, P., Costantini, G., Franceschetti, G., Iodice, L., Pietranera, L., Rizzo, V., (2003). Use of differential SAR interferometry in monitoring and modelling large slope instability at Matera (Basilicata, Italy). Engineering Geology, 68, 31-51.
  • Bovenga, F., Wasowski, J., Nitti, D.O., Nutricato, R., Chiaradia, M.T., (2012). Using COSMO/SkyMed X-band and ENVISAT C-band SAR interferometry for landslides analysis. Remote Sensing of Environment, 119, 272-285.
  • Calo, F., Calcaterra, D., Iodice, A., Parise, M., Ramondini, M., (2012). Assessing the activity of a large landslide in southern Italy by ground-monitoring and SAR interferometric techniques. International Journal of Remote Sensing, 33, 3512-3530.
  • Cascini, L., Fornaro, G., Peduto, D., (2010). Advanced low‐ and full‐resolution DInSAR map generation for slow‐moving landslide analysis at different scales. Engineering Geology, 112, 29-42.
  • Catani, F., Farina, P., Moretti, S., Nico, G., Strozzi, T., (2005). On the application of SAR interferometry to geomorphological studies: estimation of landforms attributes and mass movements. Geomorphology, 66, 119-131.
  • Colesanti, C., Wasowski, J., (2006). Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Engineering Geology, 88, 173-199.
  • Cruden, D.M., Varnes, D.J., (1996). Landslide types and processes. In: Turner AK, Schuster LR (ed) Special Report 247: Landslides: Investigation and Mitigation, Transportation Research Board, Washington, pp 129-177.
  • Çan, T., Duman, T.Y., Çil, E., Mazman, T., (2009). GIS Based Landslide Inventory, Susceptibility, Hazard and Risk Assessment of the Northern Parts of Mersin Central and Erdemli Districts (In Turkish). TÜBİTAK-ÇAYDAG Project no: 107Y138.
  • Delacourt, C., Raucoules, D., Le Mouélic, S., Carnec, C., Feurer, D., Allemand, P., Cruchet, M., (2009). Observation of a large landslide on la reunion island using differential SAR interferometry (JERS and Radarsat) and correlation of optical (Spot5 and Aerial) images. Sensors, 9, 616-630.
  • Delgado, J., Vicente, F., García-Tortosa, F., Alfaro, P., Estévez, A., Lopez-Sanchez, J.M., Tomas, R., Mallorquí, J.J., (2011). A deep seated compound rotational rock slide and rock spread in SE Spain: Structural control and DInSAR monitoring. Geomorphology, 129, 252-262.
  • Farina, P., Colombo, D., Fumagalli, A., Marks, F., Moretti, S., (2006). Permanent Scatterers for landslide investigations: Outcomes from the ESA-SLAM project. Engineering Geology, 88, 200-217.
  • Ferretti, A., Prati, C., Rocca, F., (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Geoscience and Remote Sensing Letters, 38, 2202-2212.
  • Ferretti, A., Massonnet, D., Monti Guarnieri, A., Prati, C., Rocca, F., (2007). InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation. ESA Publications TM-19 http://www.esa.int/About_Us/ESA_Publications/InSAR_Principles_Guidelines_for_SAR_Interferometry_Processing_and_Interpretation_br_ESA_TM-19. Accessed 16 June 2013.
  • Guzzetti, F., Manunta, M., Ardizzone, F., Pepe, A., Cardinali, M., Zeni, G., Reichenbach, P., Lanari, R., (2009). Analysis of ground deformation detected using the SBAS‐DInSAR technique in Umbria, Central Italy. Pure and Applied Geophysics, 166, 1425-1459.
  • Hanssen, R., (2001). Radar Interferometry: Data Interpretation and Error Analysis. Kluwer Academic Publishers, Dordrecht.
  • Hastaoglu, K.O., Poyraz, F., Turk, T., Yılmaz, I., Kocbulut, F., Demirel, M., Sanli, U., Duman, H., Balik Sanli, F., (2018). Investigation of the success of monitoring slow motionlandslides using Persistent Scatterer Interferometry and GNSS methods, Survey Review, 50 (363), 475-486.
  • Hurtrez, J., Lucazeau, F., Lave, J., Avouac, J., (1999). Investigation of the relationships between basin morphology, tectonic uplift, and denudation from the study of an active fold belt in the Siwalik Hills, Central Nepal. Journal of Geophysical Research, 104, 12779-12796.
  • Kimura, H., Yamaguchi, Y., (2000). Detection of landslide areas using radar interferometry. Photogrammetric Engineering and Remote Sensing, 66, 337-344.
  • Massonnet, D., Feigl, K.L., (1998). Radar interferometry and its application to changes in the earth’s surface. Reviews of Geophysics, 36, 441-500.
  • Metternicht, G., Hurni, L., Gogu, R., (2005). Remote sensing of landslides: an analysis of the potential contribution to geo-spatial systems for hazards assessment in mountainous environments. Remote Sensing of Environment, 98, 284-303.
  • Pampal, S., (1987). Geology of the Guzeloluk-Sorgun (Mersin) region (In Turkish). Journal Of The Faculty Of Engineering And Architecture Of Gazi University, 2, 143-170.
  • Parlak, O., Delaloye, M., Bingöl, E., (1996). Mineral chemistry of ultramafic-mafic cumulates as an indicator of the arc-related origin of the Mersin ophiolite (southern Turkey). Geologische Rundschau, 85, 647-661.
  • Parlak, O., Robertson, A.H.F., (2004). The ophiolite-related Mersin Melange, southern Turkey: Its role in the tectonic-sedimentary setting of the Tethys in the eastern Mediterranean region. Geological Magazine, 141, 257-286.
  • Refice, A., Bovenga, F., Guerriero, L., & Wasowski, J. (2001). DInSAR applications to landslide studies. In IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No. 01CH37217) (Vol. 1, pp. 144-146). IEEE.
  • Rosen, P., Hensley, S., Joughin, I., Li, F., Madsen, S., Rodriguez, E., Goldstein, R., (2000). Synthetic aperture radar interferometry. Proceedings of the IEEE, 88 (2000), 333-382.
  • Rott, H., Nagler, T., (2006). The contribution of radar interferometry to the assessment of landslide hazards. Advances in Space Research, 37, 710-719.
  • Rott, H., (2009). Advances in interferometric synthetic aperture radar (InSAR) in earth system science. Progress in Physical Geography, 6, 769-791.
  • Sandwell, D., Myer, D., Mellors, R., Shimada, M., Brooks, B., Foster, J., (2008). Accuracy and resolution of ALOS interferometry: Vector deformation maps of the Father’s day intrusion at Kilauea. IEEE Transactions on Geoscience and Remote Sensing, 46, 3524-3534
  • Singhroy, V., Alasset, P.J., Couture, R., Froese, C., (2008). InSAR monitoring of landslides in Canada. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS'08), 3, 202-205.
  • Singhroy, V., (2008). Satellite remote sensing applications for landslide detection and monitoring. In: Sassa, K., Canuti, P., (ed) Landslide Disaster Risk Reduction, Springer, Berlin, pp 143-158.
  • Singhroy, V., Li, J., Charbonneau, F., Pavlic, G., Segin, G., (2011). InSAR Monitoring of Landslides affecting strategic Transportation Corridors. Proceedings 34th International Symposium on Remote Sensing of Environment, Sydney. 3p.
  • Strahler, A.N., (1952). Hypsometric (area-altitude) analysis of erosional topology. Geological Society of America Bulletin, 63, 1117-1142.
  • Strozzi, T., Farina, P., Corsini, A., Ambrosi, C., Thuring, M., Zilger, J., Wiesmann, A., Wegmüller, U., Werner, C., (2005). Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslides, 2, 193-201.
  • Strozzi, T., Delaloye, A., Kääb, A., Ambrosi, C., Perruchoud, E., Wegmüller, U., (2010). Combined observations of rock mass movements using satellite SAR interferometry, differential GPS, airborne digital photogrammetry and airborne photography interpretation. Journal of Geophysical Research, 115(F1), F01014
  • Yetiş, C., (1988). Reorganization of the Tertiary Stratigraphy in the Adana Basin, Southern Turkey. Newsletters on Stratigraphy, 20, 43-58.
  • Zhou, X., Chang, N., Li, S., (2009)s. Application of SAR Interferometry in earth and environmental science research. Sensors, 9, 1876-1912.

Ayrıntılar

Birincil Dil İngilizce
Konular Yerbilimleri, Ortak Disiplinler
Bölüm Araştırma Makaleleri
Yazarlar

Muhterem KÜÇÜKÖNDER (Sorumlu Yazar)
Kahramanmaraş Sütçü İmam Üniversitesi, Fen-Edebiyat Fakültesi, Coğrafya Bölümü
0000-0001-5350-7794
Türkiye


Tolga ÇAN
CUKUROVA UNIVERSITY
0000-0001-9940-2832
Türkiye

Destekleyen Kurum Çukurova Üniversitesi
Proje Numarası MMF2011BAP21
Teşekkür This work is supported by the Scientific Research Project Fund of Çukurova University under the project number MMF2011BAP21.
Yayımlanma Tarihi 30 Eylül 2021
Yayınlandığı Sayı Yıl 2021, Cilt 5, Sayı 2

Kaynak Göster

APA Küçükönder, M. & Çan, T. (2021). Monitoring of Deep-Seated Landslides at Karaoğlan Catchment Using Radar Interferometry Techniques (Mersin, Turkey) . Bilge International Journal of Science and Technology Research , 5 (2) , 91-100 . DOI: 10.30516/bilgesci.883935