Araştırma Makalesi
BibTex RIS Kaynak Göster

Methane, Diesel Fuel, Electrical Energy, CO2 Emissions and Economical Equavialent from Animal Manure of Tokat, Turkey

Yıl 2021, Cilt: 5 Sayı: 2, 144 - 153, 31.12.2021
https://doi.org/10.47897/bilmes.969372

Öz

The animal husbandry sector is becoming a rapidly developing sector in Turkey and more waste is emerging in animal husbandry enterprises. It is necessary to dispose of these wastes that have a negative environmental impact. In search of new energy sources, it is becoming increasingly important to dispose of organic waste and use it in biogas production as an alternative energy source. Expanding the production of biogas will be very effective both in reducing external dependence on energy and in reducing the carbon emissions that cause global warming. There are various studies in the literature on biogas potential calculations in Tokat province. In this study, animal species were given in detail, and district-based calculations were made and total biogas production potential was determined for Tokat, Turkey by taking into account different animal types according to 2020 Turkish Statistical Institute (TUIK) data. Different energy equivalent transformations that can be obtained depending on the biogas potential have been studied. The amount of benefits in TL that can be obtained for conversions has been determined. According to the total number of animals, the total amount of waste in the province was determined to be 249596 tons per year. The annual amount of biogas that can be obtained from waste is 49.92 x 106 m3 . It has been determined that this amount can be converted into 1133 x103 GJ thermal energy, 234.62
GWh electrical energy, and 32.95 x 106 liters. It has been calculated that 85636252 TL will be used for the conversion of biogas to electrical energy and 215822500 TL will be used for the conversion of diesel fuel.

Kaynakça

  • [1]. Cheah, W. Y., Ling, T. C., Show, J.C., Juan, J.C., Chang, J. S., and Lee, D. J. (2016). Cultivation in wastewaters for energy: A microalgae platform. Applied Energy, 178, 609-625. https://doi.org/10.1016/j.apenergy.2016.07.015.
  • [2]. Kligerman, D. C., & Bouwer, E.J. (2015). Prospects for biodiesel production from algae-based wastewater treatment in Brazil: A review. Renewable and Sustainable Energy Reviews, 52, 1834–1846. https://doi.org/10.1016/j.rser.2015.08.030.
  • [3]. Seyitoğlu, S. S., & Avcıoğlu, E. (2021). An Investigation for the Potential of Biogas to be Produced from Animal Waste in Corum. Gazi University Journal of Science PART C: Design and Technology, 9(2), 246-261. https://doi.org/10.29109/gujsc.889846.
  • [4]. Choi, W., Yoo, E., Seol, E., Kim, M., and Song, H. H. (2020). Greenhouse gas emissions of conventional and alternative vehicles: Predictions based on energy policy analysis in South Korea, Applied Energy, 265, 1, 114754, 1-17. https://doi.org/10.1016/j.apenergy.2020.114754.
  • [5]. Stagnaro, C., Amenta, C., Di Croce, G., and Lavecchia, L. (2020). Managing the liberalization of Italy's retail electricity market: A policy proposal. Energy Policy, 137, 111150, 1-6. https://doi.org/10.1016/j.enpol.2019.111150.
  • [6]. Safarzadeh, S., Rasti-Barzoki, M., and Hejazi, S.R. (2020). A review of optimal energy policy instruments on industrial energy efficiency programs, rebound effects, and government policies. Energy Policy, 139, 111342, 1-25. https://doi.org/10.1016/j.enpol.2020.111342.
  • [7]. Austvik, O.G., & Rzayeva, G. (2017). Turkey in the geopolitics of energy. Energy Policy, 107, 539-547. https://doi.org/10.1016/j.enpol.2017.05.008.
  • [8]. Kulińska, E., & Gruszka, M. D. (2019) Green cities- problems and solutions in Turkey. Transportation Research Procedia, 39, 242-251. https://doi.org/10.1016/j.trpro.2019.06.026.
  • [9]. Gençyılmaz, O., & Seçkin, G. (2020). Determination of Animal Source Biogas Potential of Çankırı Province. International Journal of Life Sciences and Biotechnology, 3(3), 325-341. https://doi.org/10.38001/ijlsb.756288.
  • [10]. Rawat, I., Ranjith Kumar, R., Mutanda, T., and Bux, F. (2011). Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88(10), 3411-3424. https://doi.org/10.1016/j.apenergy.2010.11.025.
  • [11]. Kumaş, K., Temiz, D., Akyüz, A. Ö., and Güngör, A. (2019). Biomass to Energy: The Potential of Biogas in Turkey and World, Mesleki Bilimler Dergisi, 8 (2), 64-69. https://dergipark.org.tr/tr/pub/mbd/issue/50202/568785.
  • [12 Zabed, H.M., Akter, S., Yun, J., Zhang, G., Zhang, Y., and Qi, X. (2020) Biogas from microalgae: Technologies, challenges and opportunities. Renewable and Sustainable Energy Reviews,117, 109503,1-21. https://doi.org/10.1016/j.rser.2019.109503.
  • [13]. Abdeshahian, P., Lim, J. S., Ho, W. S., Hashim, H., and Lee, C.T. (2016). Potential of biogas production from farm animal waste in Malaysia. Renewable and Sustainable Energy Reviews, 60, 714–723. https://doi.org/10.1016/j.rser.2016.01.117.
  • [14]. Taşova, M. (2017). Determination of Biogas Production Potential of Poultry Wastes: Tokat Province Example. Kafkas University Institute of Natural and Applied Science Journal, 10(2), 296-303. https://dergipark.org.tr/tr/pub/kujs/issue/33872/344577.
  • [15]. Doruk, İ., & Bozdeveci, A. (2017). Determination of animal resource wastes from Biogas Potential in Rural Areas of Denizli. Iğdır Unıversity Journal of the Institute of Science and Technology, 7(3),181-186. https://dergipark.org.tr/tr/pub/jist/issue/34626/389934.
  • [16]. Meyer, A.K.P., Ehimen, E.A., & Holm-Nielsen, J. B. (2018). Future European biogas: Animal manure, straw and grass potentials for a sustainable European biogas production. Biomass and Bioenergy, 111, 154–164. https://doi.org/10.1016/j.biombioe.2017.05.013.
  • [17]. Kandemir, S.Y., & Açıkkalp, E. (2019) Investigation of Biogas Potential of Animal Wastes in Bilecik. BSEU Journal of Science, 6 (1),104-108. https://doi.org/10.35193/bseufbd.567938
  • [18]. Can, A. (2020). The statistical modeling of potential biogas production capacity from solid waste disposal sites in Turkey. Journal of Cleaner Production, 243, 118501,1-13. https://doi.org/10.1016/j.jclepro.2019.11850.
  • [19]. Çağlayan, G. H. (2020). Investigation of Biogas Potential of Cattle and Sheep Waste in Eastern Anatolia Region. Turkish Journal of Agricultural and Natural Sciences, 7(3), 672–681. https://doi.org/10.30910/turkjans.699879.
  • [20]. Ay, Ö. F., & Kaya, A. (2020). Determination of Biogas Potential of Kahramanmaraş Province Using Different Models. Journal of Agricultural Faculty of Bursa Uludag University, 34(2), 351-364. https://dergipark.org.tr/tr/pub/bursauludagziraat/issue/57889/723957.
  • [21]. Aslan, M., Ulum, T., and Türkmenler, H. (2021). An Evaluation on Dete rmination of Renewable Energy Potential of Adıyaman Province. Fırat Üniversitesi Müh. Bil. Dergisi, 33(1), 263-274. https://doi.org/10.35234/fumbd.791647.
  • [22]. Kurnuç Seyhan, A., & Badem, A. (2021). Biogas plant scenarios for evaluating biogas potential from animal waste of Erzincan province Gümüşhane University Journal of Science and Technology Institute, 11 (1): 245-256. https://doi.org/10.17714/gumusfenbil.743724.
  • [23]. Anonim2021a. https://tokat.csb.gov.tr/cografi-yapi-i-1211. (Accessed date: 25.06.2021).
  • [24]. Türkiye İstatistik Kurumu, Hayvan İstatistik Raporu https://biruni.tuik.gov.tr/medas/?kn= 101&locale=tr (Accessed date: 25.06.2021).
  • [25]. Ekinci, K., Kulcu, R., Kaya, D., Yaldιz, O., Ertekin, C.,and Ozturk, H.H., 2010. The Prospective of Potential Biogas Plants that can Utilize Animal Manure in Turkey. Energy Exploration & Exploitation, 28(3), 187-205. https://doi.org/10.1260/0144-5987.28.3.187.
  • [26] Yağlı H., & Koç Y. (2019). Determination of Biogas Production Potential from Animal Manure: A Case Calculation for Adana Province. Çukurova University Journal of the Faculty of Engineering and Architecture, 34(3), 35-48. https://doi.org/10.21605/cukurovaummfd.637603.
  • [27]. Anonim 2021b. https://www.epdk.gov.tr/Detay/Icerik/3-0-158/akaryak%C4%B1tfiyat (Accessed date: 25.06.2021)
  • [28]. Anonim 2021c. https://www.enerjiportali.com/elektrik-fiyatlari-8/
  • [29]. Türkiye İstatistik Kurumu Nüfus ve Demografi https://data.tuik.gov.tr/Kategori/GetKategori?p=nufus-ve-demografi-109&dil=1 (Accessed date: 25.06.2021)

Methane, Diesel Fuel, Electrical Energy, CO2 Emissions and Economical Equavialent from Animal Manure of Tokat, Turkey

Yıl 2021, Cilt: 5 Sayı: 2, 144 - 153, 31.12.2021
https://doi.org/10.47897/bilmes.969372

Öz

The animal husbandry sector is becoming a rapidly developing sector in Turkey and more waste is emerging in animal husbandry enterprises. It is necessary to dispose of these wastes that have a negative environmental impact. In search of new energy sources, it is becoming increasingly important to dispose of organic waste and use it in biogas production as an alternative energy source. Expanding the production of biogas will be very effective both in reducing external dependence on energy and in reducing the carbon emissions that cause global warming. There are various studies in the literature on biogas potential calculations in Tokat province. In this study, animal species were given in detail, and district-based calculations were made and total biogas production potential was determined for Tokat, Turkey by taking into account different animal types according to 2020 Turkish Statistical Institute (TUIK) data. Different energy equivalent transformations that can be obtained depending on the biogas potential have been studied. The amount of benefits in TL that can be obtained for conversions has been determined. According to the total number of animals, the total amount of waste in the province was determined to be 249596 tons per year. The annual amount of biogas that can be obtained from waste is 49.92 x 106 m3 . It has been determined that this amount can be converted into 1133 x103 GJ thermal energy, 234.62 GWh electrical energy, and 32.95 x 106 liters. It has been calculated that 85636252 TL will be used for the conversion of biogas to electrical energy and 215822500 TL will be used for the conversion of diesel fuel.

Kaynakça

  • [1]. Cheah, W. Y., Ling, T. C., Show, J.C., Juan, J.C., Chang, J. S., and Lee, D. J. (2016). Cultivation in wastewaters for energy: A microalgae platform. Applied Energy, 178, 609-625. https://doi.org/10.1016/j.apenergy.2016.07.015.
  • [2]. Kligerman, D. C., & Bouwer, E.J. (2015). Prospects for biodiesel production from algae-based wastewater treatment in Brazil: A review. Renewable and Sustainable Energy Reviews, 52, 1834–1846. https://doi.org/10.1016/j.rser.2015.08.030.
  • [3]. Seyitoğlu, S. S., & Avcıoğlu, E. (2021). An Investigation for the Potential of Biogas to be Produced from Animal Waste in Corum. Gazi University Journal of Science PART C: Design and Technology, 9(2), 246-261. https://doi.org/10.29109/gujsc.889846.
  • [4]. Choi, W., Yoo, E., Seol, E., Kim, M., and Song, H. H. (2020). Greenhouse gas emissions of conventional and alternative vehicles: Predictions based on energy policy analysis in South Korea, Applied Energy, 265, 1, 114754, 1-17. https://doi.org/10.1016/j.apenergy.2020.114754.
  • [5]. Stagnaro, C., Amenta, C., Di Croce, G., and Lavecchia, L. (2020). Managing the liberalization of Italy's retail electricity market: A policy proposal. Energy Policy, 137, 111150, 1-6. https://doi.org/10.1016/j.enpol.2019.111150.
  • [6]. Safarzadeh, S., Rasti-Barzoki, M., and Hejazi, S.R. (2020). A review of optimal energy policy instruments on industrial energy efficiency programs, rebound effects, and government policies. Energy Policy, 139, 111342, 1-25. https://doi.org/10.1016/j.enpol.2020.111342.
  • [7]. Austvik, O.G., & Rzayeva, G. (2017). Turkey in the geopolitics of energy. Energy Policy, 107, 539-547. https://doi.org/10.1016/j.enpol.2017.05.008.
  • [8]. Kulińska, E., & Gruszka, M. D. (2019) Green cities- problems and solutions in Turkey. Transportation Research Procedia, 39, 242-251. https://doi.org/10.1016/j.trpro.2019.06.026.
  • [9]. Gençyılmaz, O., & Seçkin, G. (2020). Determination of Animal Source Biogas Potential of Çankırı Province. International Journal of Life Sciences and Biotechnology, 3(3), 325-341. https://doi.org/10.38001/ijlsb.756288.
  • [10]. Rawat, I., Ranjith Kumar, R., Mutanda, T., and Bux, F. (2011). Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88(10), 3411-3424. https://doi.org/10.1016/j.apenergy.2010.11.025.
  • [11]. Kumaş, K., Temiz, D., Akyüz, A. Ö., and Güngör, A. (2019). Biomass to Energy: The Potential of Biogas in Turkey and World, Mesleki Bilimler Dergisi, 8 (2), 64-69. https://dergipark.org.tr/tr/pub/mbd/issue/50202/568785.
  • [12 Zabed, H.M., Akter, S., Yun, J., Zhang, G., Zhang, Y., and Qi, X. (2020) Biogas from microalgae: Technologies, challenges and opportunities. Renewable and Sustainable Energy Reviews,117, 109503,1-21. https://doi.org/10.1016/j.rser.2019.109503.
  • [13]. Abdeshahian, P., Lim, J. S., Ho, W. S., Hashim, H., and Lee, C.T. (2016). Potential of biogas production from farm animal waste in Malaysia. Renewable and Sustainable Energy Reviews, 60, 714–723. https://doi.org/10.1016/j.rser.2016.01.117.
  • [14]. Taşova, M. (2017). Determination of Biogas Production Potential of Poultry Wastes: Tokat Province Example. Kafkas University Institute of Natural and Applied Science Journal, 10(2), 296-303. https://dergipark.org.tr/tr/pub/kujs/issue/33872/344577.
  • [15]. Doruk, İ., & Bozdeveci, A. (2017). Determination of animal resource wastes from Biogas Potential in Rural Areas of Denizli. Iğdır Unıversity Journal of the Institute of Science and Technology, 7(3),181-186. https://dergipark.org.tr/tr/pub/jist/issue/34626/389934.
  • [16]. Meyer, A.K.P., Ehimen, E.A., & Holm-Nielsen, J. B. (2018). Future European biogas: Animal manure, straw and grass potentials for a sustainable European biogas production. Biomass and Bioenergy, 111, 154–164. https://doi.org/10.1016/j.biombioe.2017.05.013.
  • [17]. Kandemir, S.Y., & Açıkkalp, E. (2019) Investigation of Biogas Potential of Animal Wastes in Bilecik. BSEU Journal of Science, 6 (1),104-108. https://doi.org/10.35193/bseufbd.567938
  • [18]. Can, A. (2020). The statistical modeling of potential biogas production capacity from solid waste disposal sites in Turkey. Journal of Cleaner Production, 243, 118501,1-13. https://doi.org/10.1016/j.jclepro.2019.11850.
  • [19]. Çağlayan, G. H. (2020). Investigation of Biogas Potential of Cattle and Sheep Waste in Eastern Anatolia Region. Turkish Journal of Agricultural and Natural Sciences, 7(3), 672–681. https://doi.org/10.30910/turkjans.699879.
  • [20]. Ay, Ö. F., & Kaya, A. (2020). Determination of Biogas Potential of Kahramanmaraş Province Using Different Models. Journal of Agricultural Faculty of Bursa Uludag University, 34(2), 351-364. https://dergipark.org.tr/tr/pub/bursauludagziraat/issue/57889/723957.
  • [21]. Aslan, M., Ulum, T., and Türkmenler, H. (2021). An Evaluation on Dete rmination of Renewable Energy Potential of Adıyaman Province. Fırat Üniversitesi Müh. Bil. Dergisi, 33(1), 263-274. https://doi.org/10.35234/fumbd.791647.
  • [22]. Kurnuç Seyhan, A., & Badem, A. (2021). Biogas plant scenarios for evaluating biogas potential from animal waste of Erzincan province Gümüşhane University Journal of Science and Technology Institute, 11 (1): 245-256. https://doi.org/10.17714/gumusfenbil.743724.
  • [23]. Anonim2021a. https://tokat.csb.gov.tr/cografi-yapi-i-1211. (Accessed date: 25.06.2021).
  • [24]. Türkiye İstatistik Kurumu, Hayvan İstatistik Raporu https://biruni.tuik.gov.tr/medas/?kn= 101&locale=tr (Accessed date: 25.06.2021).
  • [25]. Ekinci, K., Kulcu, R., Kaya, D., Yaldιz, O., Ertekin, C.,and Ozturk, H.H., 2010. The Prospective of Potential Biogas Plants that can Utilize Animal Manure in Turkey. Energy Exploration & Exploitation, 28(3), 187-205. https://doi.org/10.1260/0144-5987.28.3.187.
  • [26] Yağlı H., & Koç Y. (2019). Determination of Biogas Production Potential from Animal Manure: A Case Calculation for Adana Province. Çukurova University Journal of the Faculty of Engineering and Architecture, 34(3), 35-48. https://doi.org/10.21605/cukurovaummfd.637603.
  • [27]. Anonim 2021b. https://www.epdk.gov.tr/Detay/Icerik/3-0-158/akaryak%C4%B1tfiyat (Accessed date: 25.06.2021)
  • [28]. Anonim 2021c. https://www.enerjiportali.com/elektrik-fiyatlari-8/
  • [29]. Türkiye İstatistik Kurumu Nüfus ve Demografi https://data.tuik.gov.tr/Kategori/GetKategori?p=nufus-ve-demografi-109&dil=1 (Accessed date: 25.06.2021)
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Makaleler
Yazarlar

Kazım Kumaş 0000-0002-2348-4664

Ali Özhan Akyüz

Yayımlanma Tarihi 31 Aralık 2021
Kabul Tarihi 13 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 5 Sayı: 2

Kaynak Göster

APA Kumaş, K., & Akyüz, A. Ö. (2021). Methane, Diesel Fuel, Electrical Energy, CO2 Emissions and Economical Equavialent from Animal Manure of Tokat, Turkey. International Scientific and Vocational Studies Journal, 5(2), 144-153. https://doi.org/10.47897/bilmes.969372
AMA Kumaş K, Akyüz AÖ. Methane, Diesel Fuel, Electrical Energy, CO2 Emissions and Economical Equavialent from Animal Manure of Tokat, Turkey. ISVOS. Aralık 2021;5(2):144-153. doi:10.47897/bilmes.969372
Chicago Kumaş, Kazım, ve Ali Özhan Akyüz. “Methane, Diesel Fuel, Electrical Energy, CO2 Emissions and Economical Equavialent from Animal Manure of Tokat, Turkey”. International Scientific and Vocational Studies Journal 5, sy. 2 (Aralık 2021): 144-53. https://doi.org/10.47897/bilmes.969372.
EndNote Kumaş K, Akyüz AÖ (01 Aralık 2021) Methane, Diesel Fuel, Electrical Energy, CO2 Emissions and Economical Equavialent from Animal Manure of Tokat, Turkey. International Scientific and Vocational Studies Journal 5 2 144–153.
IEEE K. Kumaş ve A. Ö. Akyüz, “Methane, Diesel Fuel, Electrical Energy, CO2 Emissions and Economical Equavialent from Animal Manure of Tokat, Turkey”, ISVOS, c. 5, sy. 2, ss. 144–153, 2021, doi: 10.47897/bilmes.969372.
ISNAD Kumaş, Kazım - Akyüz, Ali Özhan. “Methane, Diesel Fuel, Electrical Energy, CO2 Emissions and Economical Equavialent from Animal Manure of Tokat, Turkey”. International Scientific and Vocational Studies Journal 5/2 (Aralık 2021), 144-153. https://doi.org/10.47897/bilmes.969372.
JAMA Kumaş K, Akyüz AÖ. Methane, Diesel Fuel, Electrical Energy, CO2 Emissions and Economical Equavialent from Animal Manure of Tokat, Turkey. ISVOS. 2021;5:144–153.
MLA Kumaş, Kazım ve Ali Özhan Akyüz. “Methane, Diesel Fuel, Electrical Energy, CO2 Emissions and Economical Equavialent from Animal Manure of Tokat, Turkey”. International Scientific and Vocational Studies Journal, c. 5, sy. 2, 2021, ss. 144-53, doi:10.47897/bilmes.969372.
Vancouver Kumaş K, Akyüz AÖ. Methane, Diesel Fuel, Electrical Energy, CO2 Emissions and Economical Equavialent from Animal Manure of Tokat, Turkey. ISVOS. 2021;5(2):144-53.


Creative Commons License
Creative Commons Atıf 4.0 It is licensed under an International License