Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of Consolidation Parameters on Flexural Behavior of Polypropylene/Glass Fiber Thermoplastic Composites

Yıl 2024, Cilt: 8 Sayı: 2, 223 - 234, 30.12.2024
https://doi.org/10.47897/bilmes.1600672

Öz

In this study, the flexural behavior of glass fiber-reinforced polypropylene (GFR-PP) composites was systematically investigated under three-point bending conditions to evaluate the impact of key production parameters. Composite plates with a thickness of 4 mm were fabricated using a stepped mold under varying pressure levels (10, 20, and 30 bar) and durations under pressure (5, 10, and 20 minutes). The specimens were prepared according to ASTM standards to ensure consistency and reliability. The primary objective of this study was to understand how production parameters influence the mechanical properties of GFR-PP composites. The results indicated that the combination of low pressure (10 bar) and longer durations (20 minutes) led to superior flexural strength and enhanced fiber-matrix adhesion due to optimized consolidation, with a maximum flexural strength exceeding 500 MPa. In contrast, higher pressure levels (30 bar) resulted in fiber deformation and reduced mechanical performance. This work provides critical insights into the optimization of production parameters to achieve high-performance GFR-PP composites, with potential applications in aerospace and other lightweight structural components requiring high mechanical strength and durability.

Kaynakça

  • [1] O. Özdemir and H. Kandaş, “Cam lifi takviyeli polipropilen kompozitlerde kalınlığın ve sıcaklığın darbe davranışına etkileri,” Tekstil ve Mühendis, vol. 25, no. 110, pp. 103-112, 2018
  • [2] J. P. Jose and K. Joseph, “Advances in polymer composites: macro-and microcomposites–state of the art, new challenges, and opportunities,” Polymer Composites, pp. 1-16, 2012.
  • [3] K. Gündoğan and A. R. B. Özsarı, “Basınçlı İnfiltrasyon Yöntemiyle Üretilen AA2024 ve AA6061 Matrisli, B4C ve SiC Takviyeli Kompozit Malzemelerin Mikroyapı, Mekanik ve Isıl İletkenlik Özelliklerine Basıncın Etkisi,” International Journal of Engineering Research and Development, vol. 11, no. 2, pp. 657-669, 2019.
  • [4] S. Singh, M. Uddin, and C. Prakash, “Introduction, history, and origin of composite materials,” in Fabrication and Machining of Advanced Materials and Composites, CRC Press, pp. 1-18, 2022.
  • [5] A. Diniţă et al., “Advancements in fiber-reinforced polymer composites: a comprehensive analysis,” Polymers, vol. 16, no. 1, pp. 1-16, 2023.
  • [6] R. Hsissou, R. Seghiri, Z. Benzekri, M. Hilali, M. Rafik, and A. Elharfi, “Polymer composite materials: A comprehensive review,” Composite Structures, vol. 262, 113640, 2021.
  • [7] P. Mitschang, M. Blinzler, and A. Wöginger, “Processing technologies for continuous fibre reinforced thermoplastics with novel polymer blends,” Composites Science and Technology, vol. 63, no. 14, pp. 2099-2110, 2003.
  • [8] R. Watanabe, H. Hagihara, and H. Sato, “Structure-property relationships of polypropylene-based nanocomposites obtained by dispersing mesoporous silica into hydroxyl-functionalized polypropylene. Part 1: toughness, stiffness and transparency,” Polymer Journal, vol. 50, no. 11, pp. 1057-1065, 2018.
  • [9] J. Karger-Kocsis and T. Bárány, Polypropylene Handbook. Switzerland: Springer Nature, 2019.
  • [10] E. Karadeniz, “Poliamid/polipropilen (PA/PP) karışımlarının yapı ve özellikleri,” M.S. thesis, Marmara Univ., Istanbul, Turkey, 2006.
  • [11] S. Alwekar, R. Ogle, S. Kim, and U. Vaidya, “Manufacturing and characterization of continuous fiber-reinforced thermoplastic tape overmolded long fiber thermoplastic,” Composites Part B: Engineering, vol. 207, 108597, 2021.
  • [12] J. Bijwe, J. Indumathi, and A. K. Ghosh, “On the abrasive wear behaviour of fabric-reinforced polyetherimide composites,” Wear, vol. 253, no. 7-8, pp. 768-777, 2002.
  • [13] R. Yahaya, S. Sapuan, M. Jawaid, Z. Leman, and E. Zainudin, “Mechanical performance of woven kenaf-Kevlar hybrid composites,” Journal of Reinforced Plastics and Composites, vol. 33, no. 24, pp. 2242-2254, 2014.
  • [14] W. Obande, C. M. Ó Brádaigh, and D. Ray, “Continuous fibre-reinforced thermoplastic acrylic-matrix composites prepared by liquid resin infusion – A review,” Composites Part B: Engineering, vol. 215, 108771, 2021.
  • [15] A. P. d. Costa, E. C. Botelho, M. L. Costa, N. E. Narita, and J. R. Tarpani, “A review of welding technologies for thermoplastic composites in aerospace applications,” Journal of Aerospace Technology and Management, vol. 4, no. 3, pp. 255-265, 2012.
  • [16] M. Valente, I. Rossitti, and M. Sambucci, “Different production processes for thermoplastic composite materials: sustainability versus mechanical properties and processes parameter,” Polymers, vol. 15, no. 1, 242, 2023.
  • [17] M. W. Todd, “Carbon Fiber Reinforced PPS Thermoplastic Materials Implemented in Cost Sensitive Commercial Applications,” in Proc. of the 38th Int. SAMPE Symp., Anaheim, CA, USA, 1993, pp. 2055–2065.
  • [18] K. Van Rijswijk and H. Bersee, “Reactive processing of textile fiber-reinforced thermoplastic composites – An overview,” Composites Part A: Applied Science and Manufacturing, vol. 38, no. 3, pp. 666-681, 2007.
  • [19] A. R. Offringa, “Thermoplastic composites—rapid processing applications,” Composites Part A: Applied Science and Manufacturing, vol. 27, no. 4, pp. 329-336, 1996.
  • [20] Q. Chen, P. Boisse, C. H. Park, A. Saouab, and J. Bréard, “Intra/inter-ply shear behaviors of continuous fiber reinforced thermoplastic composites in thermoforming processes,” Composite Structures, vol. 93, no. 7, pp. 1692-1703, 2011.
  • [21] A. Wedgewood, P. Granowicz, and Z. Zhang, “Multi-scale modeling of an injection over-molded woven fabric composite beam,” CAE Design and Failure Analysis of Automotive Composites, vol. 166, pp. 19, 2014.
  • [22] M. Çakır and B. Berberoğlu, “E-Cam Elyaf Takviyeli Epoksi Matrisli Kompozit Malzemelerin Elyaf Oranındaki Artış ile Mekanik Özelliklerindeki Değişimlerin İncelenmesi,” El-Cezerî Fen ve Mühendislik Dergisi, vol. 5, no. 3, pp. 734-740, 2018.
  • [23] T. P. Sathishkumar, S. Satheeshkumar, and J. Naveen, “Glass fiber-reinforced polymer composites–a review,” Journal of Reinforced Plastics and Composites, vol. 33, no. 13, pp. 1258-1275, 2014.
  • [24] A. Kabiri et al., “Glass fiber/polypropylene composites with potential of bone fracture fixation plates: manufacturing process and mechanical characterization,” Journal of Composite Materials, vol. 54, no. 30, pp. 4903-4919, 2020.

Effects of Consolidation Parameters on Flexural Behavior of Polypropylene/Glass Fiber Thermoplastic Composites

Yıl 2024, Cilt: 8 Sayı: 2, 223 - 234, 30.12.2024
https://doi.org/10.47897/bilmes.1600672

Öz

In this study, the flexural behavior of glass fiber-reinforced polypropylene (GFR-PP) composites was systematically investigated under three-point bending conditions to evaluate the impact of key production parameters. Composite plates with a thickness of 4 mm were fabricated using a stepped mold under varying pressure levels (10, 20, and 30 bar) and durations under pressure (5, 10, and 20 minutes). The specimens were prepared according to ASTM standards to ensure consistency and reliability. The primary objective of this study was to understand how production parameters influence the mechanical properties of GFR-PP composites. The results indicated that the combination of low pressure (10 bar) and longer durations (20 minutes) led to superior flexural strength and enhanced fiber-matrix adhesion due to optimized consolidation, with a maximum flexural strength exceeding 500 MPa. In contrast, higher pressure levels (30 bar) resulted in fiber deformation and reduced mechanical performance. This work provides critical insights into the optimization of production parameters to achieve high-performance GFR-PP composites, with potential applications in aerospace and other lightweight structural components requiring high mechanical strength and durability.

Kaynakça

  • [1] O. Özdemir and H. Kandaş, “Cam lifi takviyeli polipropilen kompozitlerde kalınlığın ve sıcaklığın darbe davranışına etkileri,” Tekstil ve Mühendis, vol. 25, no. 110, pp. 103-112, 2018
  • [2] J. P. Jose and K. Joseph, “Advances in polymer composites: macro-and microcomposites–state of the art, new challenges, and opportunities,” Polymer Composites, pp. 1-16, 2012.
  • [3] K. Gündoğan and A. R. B. Özsarı, “Basınçlı İnfiltrasyon Yöntemiyle Üretilen AA2024 ve AA6061 Matrisli, B4C ve SiC Takviyeli Kompozit Malzemelerin Mikroyapı, Mekanik ve Isıl İletkenlik Özelliklerine Basıncın Etkisi,” International Journal of Engineering Research and Development, vol. 11, no. 2, pp. 657-669, 2019.
  • [4] S. Singh, M. Uddin, and C. Prakash, “Introduction, history, and origin of composite materials,” in Fabrication and Machining of Advanced Materials and Composites, CRC Press, pp. 1-18, 2022.
  • [5] A. Diniţă et al., “Advancements in fiber-reinforced polymer composites: a comprehensive analysis,” Polymers, vol. 16, no. 1, pp. 1-16, 2023.
  • [6] R. Hsissou, R. Seghiri, Z. Benzekri, M. Hilali, M. Rafik, and A. Elharfi, “Polymer composite materials: A comprehensive review,” Composite Structures, vol. 262, 113640, 2021.
  • [7] P. Mitschang, M. Blinzler, and A. Wöginger, “Processing technologies for continuous fibre reinforced thermoplastics with novel polymer blends,” Composites Science and Technology, vol. 63, no. 14, pp. 2099-2110, 2003.
  • [8] R. Watanabe, H. Hagihara, and H. Sato, “Structure-property relationships of polypropylene-based nanocomposites obtained by dispersing mesoporous silica into hydroxyl-functionalized polypropylene. Part 1: toughness, stiffness and transparency,” Polymer Journal, vol. 50, no. 11, pp. 1057-1065, 2018.
  • [9] J. Karger-Kocsis and T. Bárány, Polypropylene Handbook. Switzerland: Springer Nature, 2019.
  • [10] E. Karadeniz, “Poliamid/polipropilen (PA/PP) karışımlarının yapı ve özellikleri,” M.S. thesis, Marmara Univ., Istanbul, Turkey, 2006.
  • [11] S. Alwekar, R. Ogle, S. Kim, and U. Vaidya, “Manufacturing and characterization of continuous fiber-reinforced thermoplastic tape overmolded long fiber thermoplastic,” Composites Part B: Engineering, vol. 207, 108597, 2021.
  • [12] J. Bijwe, J. Indumathi, and A. K. Ghosh, “On the abrasive wear behaviour of fabric-reinforced polyetherimide composites,” Wear, vol. 253, no. 7-8, pp. 768-777, 2002.
  • [13] R. Yahaya, S. Sapuan, M. Jawaid, Z. Leman, and E. Zainudin, “Mechanical performance of woven kenaf-Kevlar hybrid composites,” Journal of Reinforced Plastics and Composites, vol. 33, no. 24, pp. 2242-2254, 2014.
  • [14] W. Obande, C. M. Ó Brádaigh, and D. Ray, “Continuous fibre-reinforced thermoplastic acrylic-matrix composites prepared by liquid resin infusion – A review,” Composites Part B: Engineering, vol. 215, 108771, 2021.
  • [15] A. P. d. Costa, E. C. Botelho, M. L. Costa, N. E. Narita, and J. R. Tarpani, “A review of welding technologies for thermoplastic composites in aerospace applications,” Journal of Aerospace Technology and Management, vol. 4, no. 3, pp. 255-265, 2012.
  • [16] M. Valente, I. Rossitti, and M. Sambucci, “Different production processes for thermoplastic composite materials: sustainability versus mechanical properties and processes parameter,” Polymers, vol. 15, no. 1, 242, 2023.
  • [17] M. W. Todd, “Carbon Fiber Reinforced PPS Thermoplastic Materials Implemented in Cost Sensitive Commercial Applications,” in Proc. of the 38th Int. SAMPE Symp., Anaheim, CA, USA, 1993, pp. 2055–2065.
  • [18] K. Van Rijswijk and H. Bersee, “Reactive processing of textile fiber-reinforced thermoplastic composites – An overview,” Composites Part A: Applied Science and Manufacturing, vol. 38, no. 3, pp. 666-681, 2007.
  • [19] A. R. Offringa, “Thermoplastic composites—rapid processing applications,” Composites Part A: Applied Science and Manufacturing, vol. 27, no. 4, pp. 329-336, 1996.
  • [20] Q. Chen, P. Boisse, C. H. Park, A. Saouab, and J. Bréard, “Intra/inter-ply shear behaviors of continuous fiber reinforced thermoplastic composites in thermoforming processes,” Composite Structures, vol. 93, no. 7, pp. 1692-1703, 2011.
  • [21] A. Wedgewood, P. Granowicz, and Z. Zhang, “Multi-scale modeling of an injection over-molded woven fabric composite beam,” CAE Design and Failure Analysis of Automotive Composites, vol. 166, pp. 19, 2014.
  • [22] M. Çakır and B. Berberoğlu, “E-Cam Elyaf Takviyeli Epoksi Matrisli Kompozit Malzemelerin Elyaf Oranındaki Artış ile Mekanik Özelliklerindeki Değişimlerin İncelenmesi,” El-Cezerî Fen ve Mühendislik Dergisi, vol. 5, no. 3, pp. 734-740, 2018.
  • [23] T. P. Sathishkumar, S. Satheeshkumar, and J. Naveen, “Glass fiber-reinforced polymer composites–a review,” Journal of Reinforced Plastics and Composites, vol. 33, no. 13, pp. 1258-1275, 2014.
  • [24] A. Kabiri et al., “Glass fiber/polypropylene composites with potential of bone fracture fixation plates: manufacturing process and mechanical characterization,” Journal of Composite Materials, vol. 54, no. 30, pp. 4903-4919, 2020.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Katı Mekanik, Kompozit ve Hibrit Malzemeler
Bölüm Makaleler
Yazarlar

Abdullah Saar 0009-0000-4467-3176

Cihan Bezen 0009-0008-3054-8401

Umut Caliskan 0000-0002-8043-2799

Zeynep Gül Apalak 0000-0002-5777-0239

Erken Görünüm Tarihi 30 Aralık 2024
Yayımlanma Tarihi 30 Aralık 2024
Gönderilme Tarihi 13 Aralık 2024
Kabul Tarihi 23 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 8 Sayı: 2

Kaynak Göster

APA Saar, A., Bezen, C., Caliskan, U., Apalak, Z. G. (2024). Effects of Consolidation Parameters on Flexural Behavior of Polypropylene/Glass Fiber Thermoplastic Composites. International Scientific and Vocational Studies Journal, 8(2), 223-234. https://doi.org/10.47897/bilmes.1600672
AMA Saar A, Bezen C, Caliskan U, Apalak ZG. Effects of Consolidation Parameters on Flexural Behavior of Polypropylene/Glass Fiber Thermoplastic Composites. ISVOS. Aralık 2024;8(2):223-234. doi:10.47897/bilmes.1600672
Chicago Saar, Abdullah, Cihan Bezen, Umut Caliskan, ve Zeynep Gül Apalak. “Effects of Consolidation Parameters on Flexural Behavior of Polypropylene/Glass Fiber Thermoplastic Composites”. International Scientific and Vocational Studies Journal 8, sy. 2 (Aralık 2024): 223-34. https://doi.org/10.47897/bilmes.1600672.
EndNote Saar A, Bezen C, Caliskan U, Apalak ZG (01 Aralık 2024) Effects of Consolidation Parameters on Flexural Behavior of Polypropylene/Glass Fiber Thermoplastic Composites. International Scientific and Vocational Studies Journal 8 2 223–234.
IEEE A. Saar, C. Bezen, U. Caliskan, ve Z. G. Apalak, “Effects of Consolidation Parameters on Flexural Behavior of Polypropylene/Glass Fiber Thermoplastic Composites”, ISVOS, c. 8, sy. 2, ss. 223–234, 2024, doi: 10.47897/bilmes.1600672.
ISNAD Saar, Abdullah vd. “Effects of Consolidation Parameters on Flexural Behavior of Polypropylene/Glass Fiber Thermoplastic Composites”. International Scientific and Vocational Studies Journal 8/2 (Aralık 2024), 223-234. https://doi.org/10.47897/bilmes.1600672.
JAMA Saar A, Bezen C, Caliskan U, Apalak ZG. Effects of Consolidation Parameters on Flexural Behavior of Polypropylene/Glass Fiber Thermoplastic Composites. ISVOS. 2024;8:223–234.
MLA Saar, Abdullah vd. “Effects of Consolidation Parameters on Flexural Behavior of Polypropylene/Glass Fiber Thermoplastic Composites”. International Scientific and Vocational Studies Journal, c. 8, sy. 2, 2024, ss. 223-34, doi:10.47897/bilmes.1600672.
Vancouver Saar A, Bezen C, Caliskan U, Apalak ZG. Effects of Consolidation Parameters on Flexural Behavior of Polypropylene/Glass Fiber Thermoplastic Composites. ISVOS. 2024;8(2):223-34.


Creative Commons License
Creative Commons Atıf 4.0 It is licensed under an International License