Research Article
BibTex RIS Cite

Synthesis of various DNA hybrid nanocomposites and investigation of peroxidase mimic activity

Year 2026, Volume: 19 Issue: 1, 1 - 9, 16.02.2026
https://doi.org/10.46309/biodicon.2026.1794117
https://izlik.org/JA75NW46RH

Abstract

Abstract

Purpose: The aim of this study is to synthesize hybrid nanocomposites from various DNA sequences and to investigate their peroxidase mimic activities.
Method: The DNA sequences were used as the organic component and the copper (II) ions were used as the inorganic component for the synthesis. The effect of different synthesis conditions (pH and concentration) on morphology was investigated using a scanning electron microscope. Additionally, the peroxidase mimic activity of nanocomposites was examined.
Findings: DNA sequences coded as C20, C20A and C20AA were used at various concentrations within three synthesis environments with different pH levels. This resulted in the formation of flower-like hybrid nanocomposite structures. These structures also exhibited effective peroxidase mimic activity.
Conclusion: Various DNA hybrid nanocomposites can be synthesised successfully. These nanocomposites could be used in DNA-related drug delivery systems.

Supporting Institution

This study is financially supported by grants awarded from the The Scientific and Technological Research Council of Türkiye with 1919B011802128 project code.

Project Number

1919B011802128

References

  • [1] Camargo, P. H. C., Satyanarayana, K. G. & Wypych, F. (2009). Nanocomposites: synthesis, structure, properties and new application opportunities. Materials Research, 12(1), 1–39. https://doi.org/10.1590/S1516-14392009000100002
  • [2] Loy, D. A. & Shea, K. J. (1995). Bridged polysilsesquioxanes: Highly porous hybrid organic-inorganic materials. Chemical Reviews, 95(5), 1431–1442. https://doi.org/10.1021/cr00037a013
  • [3] Díaz, U. & Corma, A. (2018). Organic-inorganic hybrid materials: Multi-functional solids for multi-step reaction processes. Chemistry – A European Journal, 24(16), 3944–3958. https://doi.org/10.1002/chem.201704185
  • [4] Meroni, D., Ardizzone, S., Schubert, U. S. & Hoeppener, S. (2012). Probe-based electro-oxidative lithography of OTS SAMs deposited onto transparent ITO substrates. Advanced Functional Materials, 22(20), 4376–4382. https://doi.org/10.1002/adfm.201200673
  • [5] Sanchez, C., Belleville, P., Popall, M. & Nicole, L. (2011). Applications of advanced hybrid organic–inorganic nanomaterials: From laboratory to market. Chemical Society Reviews, 40(2), 696–753. https://doi.org/10.1039/c0cs00136h
  • [6] Dragonetti, C., Colombo, A., Magni, M., et al. (2013). Thiocyanate-free ruthenium(II) sensitizer with a pyrid-2-yltetrazolate ligand for dye-sensitized solar cells. Inorganic Chemistry, 52(19), 10723–10725. https://doi.org/10.1021/ic401843f
  • [7] Zhuo-Fu, W., Zhi, W., Ye, Z., et al. (2016). Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity. Scientific Reports, 6, 22412. https://doi.org/10.1038/srep22412
  • [8] Ge, J., Lei, J. & Zare, R. N. (2012). Protein–inorganic hybrid nanoflowers. Nature Nanotechnology, 7, 428–432. https://doi.org/10.1038/nnano.2012.80
  • [9] Cui, J., Zhao, Y., Liu, R., Zhong, C. & Jia, S. (2016). Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance. Scientific Reports, 6(1), 27928. https://doi.org/10.1038/srep27928
  • [10] Ocsoy, I., Dogru, E. & Usta, S. (2015). A new generation of flowerlike horseradish peroxidases as a nanobiocatalyst for superior enzymatic activity. Enzyme and Microbial Technology, 75, 25–29. https://doi.org/10.1016/j.enzmictec.2015.04.010
  • [11] Altinkaynak, C., Tavlasoglu, S., Özdemir, N. & Ocsoy, I. (2016). A new generation approach in enzyme immobilization: Organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability. Enzyme and Microbial Technology, 93, 105–112. https://doi.org/10.1016/j.enzmictec.2016.10.003
  • [12] Yilmaz, S. G., Demirbas, A., Karaagac, Z., et al. (2022). Synthesis of taurine-Cu₃(PO₄)₂ hybrid nanoflower and their peroxidase-mimic and antimicrobial properties. Journal of Biotechnology, 343, 96–101. https://doi.org/10.1016/j.jbiotec.2021.11.009
  • [13] Celik, C., Ildiz, N. & Ocsoy, I. (2020). Building block and rapid synthesis of catecholamines-inorganic nanoflowers with their peroxidase-mimicking and antimicrobial activities. Scientific Reports, 10(1), 2903. https://doi.org/10.1038/s41598-020-59803-8
  • [14] Dadi, S., Celik, C., Mandal, A. K. & Ocsoy, I. (2021). Dopamine and norepinephrine assistant-synthesized nanoflowers immobilized membrane with peroxidase mimic activity for efficient detection of model substrates. Applied Nanoscience, 11(1), 117–125. https://doi.org/10.1007/s13204-020-01459-y
  • [15] Seeman, N. C. & Sleiman, H. F. (2017). DNA nanotechnology. Nature Reviews Materials, 3(1), 17068. https://doi.org/10.1038/natrevmats.2017.68
  • [16] Lu, S., Shen, J., Fan, C., Li, Q. & Yang, X. (2021). DNA assembly-based stimuli-responsive systems. Advanced Science, 8(13), 2100328. https://doi.org/10.1002/advs.202100328
  • [17] Liu, B., Zhang, J. & Li, L. (2019). Metal-DNA coordination-driven self-assembly: A conceptual methodology to expand the repertoire of DNA nanobiotechnology. Chemistry – A European Journal, 25(59), 13452–13457. https://doi.org/10.1002/chem.201904472
  • [18] Yuan, Y., Gu, Z., Yao, C., Luo, D. & Yang, D. (2019). Nucleic acid–based functional nanomaterials as advanced cancer therapeutics. Small, 15(26), 1900172. https://doi.org/10.1002/smll.201900172
  • [19] Lin, C., Jungmann, R., Leifer, A. M., Li, C., Levner, D. & Church, G. M. (2012). Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA. Nature Chemistry, 4(10), 832–839. https://doi.org/10.1038/nchem.1446
  • [20] Lutsenko, S., Roy, S. & Tsvetkov, P. (2025). Mammalian copper homeostasis: Physiological roles and molecular mechanisms. Physiological Reviews, 105(1), 441–491. https://doi.org/10.1152/physrev.00011.2024
  • [21] Li, H., Hou, J., Duan, L., Ji, C., Zhang, Y. & Chen, V. (2017). Graphene oxide-enzyme hybrid nanoflowers for efficient water soluble dye removal. Journal of Hazardous Materials, 338, 93–101. https://doi.org/10.1016/j.jhazmat.2017.05.037
  • [22] Baldemir, A., Köse, N. B., Ildiz, N., et al. (2017). Synthesis and characterization of green tea (Camellia sinensis (L.) Kuntze) extract and its major components-based nanoflowers: A new strategy to enhance antimicrobial activity. RSC Advances, 7, 44303–44312. https://doi.org/10.1039/C7RA06786H
  • [23] Nhung, T. T., Bu, Y. & Lee, S. W. (2013). Facile synthesis of chitosan-mediated gold nanoflowers as surface-enhanced Raman scattering (SERS) substrates. Journal of Crystal Growth, 373, 132–137. https://doi.org/10.1016/j.jcrysgro.2013.01.024
  • [24] Nisari, M. (2025). Apple peel extract based formation of organic-inorganic nanoflower with ıntrinsic peroxidase mimic and antimcrobial activities. Biological Diversity and Conservation, 18, 403-409. https://doi.org/10.46309/biodicon.2025.1660959
  • [25] Ildiz, N., Baldemir, A., Altinkaynak, C., Özdemir, N., Yilmaz, V. & Ocsoy, I. (2017). Self-assembled snowball-like hybrid nanostructures comprising Viburnum opulus L. extract and metal ions for antimicrobial and catalytic applications. Enzyme and Microbial Technology, 102, 60–66. https://doi.org/10.1016/j.enzmictec.2017.05.006

Çeşitli DNA hibrit nanokompozitlerin sentezlenmesi ve enzimatik aktivitenin incelenmesi

Year 2026, Volume: 19 Issue: 1, 1 - 9, 16.02.2026
https://doi.org/10.46309/biodicon.2026.1794117
https://izlik.org/JA75NW46RH

Abstract

Özet

Amaç: Bu çalışmanın amacı çeşitli DNA sekanslarından hibrit nanokompozitler sentezlenmesi ve peroksidaz benzeri aktivitelerinin araştırılmasıdır.
Metod: Sentez için organik kısım olarak DNA sekansları, inorganik kısım olarak bakır (II) iyonları kullanılmıştır. Taramalı elektron mikroskobu ile farklı sentez şartlarının (pH, konsantrasyon) morfolojiye olan etkisi incelenmiştir. Ayrıca nanokompozitlerin peroksidaz benzeri aktivitesi araştırılmıştır.
Bulgular: C20, C20A ve C20AA kodlu DNA sekansları farklı konsantrasyonlarda kullanılarak farklı pH değerine sahip üç farklı sentez ortamında istenilen çiçek benzeri hibrit nanokompozit yapılar oluşmuştur. Bu yapılar etkili peroksidaz enzim benzeri aktivite de sergilemişlerdir.
Sonuç: Çeşitli DNA sekanslarından DNA hibrit nanokompozitler başarıyla sentezlenebilmektedir. Bu nanokompozitler DNA ilişkili ilaç taşıyıcı sistemlerde kullanılabilme potansiyeli taşımaktadır.

Ethical Statement

Conflicts of interest: No Conflict of Interest. Funding: This study is financially supported by grants awarded from the The Scientific and Technological Research Council of Türkiye with 1919B011802128 project code. Ethical statement: This study does not require ethical approval. Author contributions: Conception: Cagla Celik Yoldas, Ismail Ocsoy; Design: Cagla Celik Yoldas, Ali Demir, Asena Elif Nacar, Ismail Ocsoy; Supervision and Providing: Cagla Celik Yoldas, Ismail Ocsoy; Materials: Cagla Celik Yoldas, Ali Demir, Asena Elif Nacar; Data collection and Data analysis: Cagla Celik Yoldas, Ali Demir, Asena Elif Nacar, Ismail Ocsoy; Literature review: Cagla Celik Yoldas, Ali Demir, Asena Elif Nacar; Article writing: Cagla Celik Yoldas, Ismail Ocsoy; Critical review: Cagla Celik Yoldas, Ali Demir, Asena Elif Nacar, Ismail Ocsoy. The final version of this article was read and approved by all authors.

Supporting Institution

Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu'nun 1919B011802128 proje koduyla verdiği hibelerle finansal olarak desteklenmiştir.

Project Number

1919B011802128

References

  • [1] Camargo, P. H. C., Satyanarayana, K. G. & Wypych, F. (2009). Nanocomposites: synthesis, structure, properties and new application opportunities. Materials Research, 12(1), 1–39. https://doi.org/10.1590/S1516-14392009000100002
  • [2] Loy, D. A. & Shea, K. J. (1995). Bridged polysilsesquioxanes: Highly porous hybrid organic-inorganic materials. Chemical Reviews, 95(5), 1431–1442. https://doi.org/10.1021/cr00037a013
  • [3] Díaz, U. & Corma, A. (2018). Organic-inorganic hybrid materials: Multi-functional solids for multi-step reaction processes. Chemistry – A European Journal, 24(16), 3944–3958. https://doi.org/10.1002/chem.201704185
  • [4] Meroni, D., Ardizzone, S., Schubert, U. S. & Hoeppener, S. (2012). Probe-based electro-oxidative lithography of OTS SAMs deposited onto transparent ITO substrates. Advanced Functional Materials, 22(20), 4376–4382. https://doi.org/10.1002/adfm.201200673
  • [5] Sanchez, C., Belleville, P., Popall, M. & Nicole, L. (2011). Applications of advanced hybrid organic–inorganic nanomaterials: From laboratory to market. Chemical Society Reviews, 40(2), 696–753. https://doi.org/10.1039/c0cs00136h
  • [6] Dragonetti, C., Colombo, A., Magni, M., et al. (2013). Thiocyanate-free ruthenium(II) sensitizer with a pyrid-2-yltetrazolate ligand for dye-sensitized solar cells. Inorganic Chemistry, 52(19), 10723–10725. https://doi.org/10.1021/ic401843f
  • [7] Zhuo-Fu, W., Zhi, W., Ye, Z., et al. (2016). Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity. Scientific Reports, 6, 22412. https://doi.org/10.1038/srep22412
  • [8] Ge, J., Lei, J. & Zare, R. N. (2012). Protein–inorganic hybrid nanoflowers. Nature Nanotechnology, 7, 428–432. https://doi.org/10.1038/nnano.2012.80
  • [9] Cui, J., Zhao, Y., Liu, R., Zhong, C. & Jia, S. (2016). Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance. Scientific Reports, 6(1), 27928. https://doi.org/10.1038/srep27928
  • [10] Ocsoy, I., Dogru, E. & Usta, S. (2015). A new generation of flowerlike horseradish peroxidases as a nanobiocatalyst for superior enzymatic activity. Enzyme and Microbial Technology, 75, 25–29. https://doi.org/10.1016/j.enzmictec.2015.04.010
  • [11] Altinkaynak, C., Tavlasoglu, S., Özdemir, N. & Ocsoy, I. (2016). A new generation approach in enzyme immobilization: Organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability. Enzyme and Microbial Technology, 93, 105–112. https://doi.org/10.1016/j.enzmictec.2016.10.003
  • [12] Yilmaz, S. G., Demirbas, A., Karaagac, Z., et al. (2022). Synthesis of taurine-Cu₃(PO₄)₂ hybrid nanoflower and their peroxidase-mimic and antimicrobial properties. Journal of Biotechnology, 343, 96–101. https://doi.org/10.1016/j.jbiotec.2021.11.009
  • [13] Celik, C., Ildiz, N. & Ocsoy, I. (2020). Building block and rapid synthesis of catecholamines-inorganic nanoflowers with their peroxidase-mimicking and antimicrobial activities. Scientific Reports, 10(1), 2903. https://doi.org/10.1038/s41598-020-59803-8
  • [14] Dadi, S., Celik, C., Mandal, A. K. & Ocsoy, I. (2021). Dopamine and norepinephrine assistant-synthesized nanoflowers immobilized membrane with peroxidase mimic activity for efficient detection of model substrates. Applied Nanoscience, 11(1), 117–125. https://doi.org/10.1007/s13204-020-01459-y
  • [15] Seeman, N. C. & Sleiman, H. F. (2017). DNA nanotechnology. Nature Reviews Materials, 3(1), 17068. https://doi.org/10.1038/natrevmats.2017.68
  • [16] Lu, S., Shen, J., Fan, C., Li, Q. & Yang, X. (2021). DNA assembly-based stimuli-responsive systems. Advanced Science, 8(13), 2100328. https://doi.org/10.1002/advs.202100328
  • [17] Liu, B., Zhang, J. & Li, L. (2019). Metal-DNA coordination-driven self-assembly: A conceptual methodology to expand the repertoire of DNA nanobiotechnology. Chemistry – A European Journal, 25(59), 13452–13457. https://doi.org/10.1002/chem.201904472
  • [18] Yuan, Y., Gu, Z., Yao, C., Luo, D. & Yang, D. (2019). Nucleic acid–based functional nanomaterials as advanced cancer therapeutics. Small, 15(26), 1900172. https://doi.org/10.1002/smll.201900172
  • [19] Lin, C., Jungmann, R., Leifer, A. M., Li, C., Levner, D. & Church, G. M. (2012). Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA. Nature Chemistry, 4(10), 832–839. https://doi.org/10.1038/nchem.1446
  • [20] Lutsenko, S., Roy, S. & Tsvetkov, P. (2025). Mammalian copper homeostasis: Physiological roles and molecular mechanisms. Physiological Reviews, 105(1), 441–491. https://doi.org/10.1152/physrev.00011.2024
  • [21] Li, H., Hou, J., Duan, L., Ji, C., Zhang, Y. & Chen, V. (2017). Graphene oxide-enzyme hybrid nanoflowers for efficient water soluble dye removal. Journal of Hazardous Materials, 338, 93–101. https://doi.org/10.1016/j.jhazmat.2017.05.037
  • [22] Baldemir, A., Köse, N. B., Ildiz, N., et al. (2017). Synthesis and characterization of green tea (Camellia sinensis (L.) Kuntze) extract and its major components-based nanoflowers: A new strategy to enhance antimicrobial activity. RSC Advances, 7, 44303–44312. https://doi.org/10.1039/C7RA06786H
  • [23] Nhung, T. T., Bu, Y. & Lee, S. W. (2013). Facile synthesis of chitosan-mediated gold nanoflowers as surface-enhanced Raman scattering (SERS) substrates. Journal of Crystal Growth, 373, 132–137. https://doi.org/10.1016/j.jcrysgro.2013.01.024
  • [24] Nisari, M. (2025). Apple peel extract based formation of organic-inorganic nanoflower with ıntrinsic peroxidase mimic and antimcrobial activities. Biological Diversity and Conservation, 18, 403-409. https://doi.org/10.46309/biodicon.2025.1660959
  • [25] Ildiz, N., Baldemir, A., Altinkaynak, C., Özdemir, N., Yilmaz, V. & Ocsoy, I. (2017). Self-assembled snowball-like hybrid nanostructures comprising Viburnum opulus L. extract and metal ions for antimicrobial and catalytic applications. Enzyme and Microbial Technology, 102, 60–66. https://doi.org/10.1016/j.enzmictec.2017.05.006
There are 25 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Research Article
Authors

Çağla Çelik Yoldaş 0000-0002-5703-2375

Ali Demir 0009-0000-3635-5573

Asena Elif Nacar 0009-0007-3040-091X

İsmail Öçsoy 0000-0002-5991-3934

Project Number 1919B011802128
Submission Date September 30, 2025
Acceptance Date November 15, 2025
Publication Date February 16, 2026
DOI https://doi.org/10.46309/biodicon.2026.1794117
IZ https://izlik.org/JA75NW46RH
Published in Issue Year 2026 Volume: 19 Issue: 1

Cite

APA Çelik Yoldaş, Ç., Demir, A., Nacar, A. E., & Öçsoy, İ. (2026). Synthesis of various DNA hybrid nanocomposites and investigation of peroxidase mimic activity. Biological Diversity and Conservation, 19(1), 1-9. https://doi.org/10.46309/biodicon.2026.1794117

❖  Indexes
Additional Web of Science Indexes: Zoological Record, TR Dizin, Medical Reads (RRS), CrossRef;10.46309/biodicon.

❖  Libraries
Aberystwyth University; All libraries; Bath University; Birmingham University; Cardiff University; City University London; CONSER (Not UK Holdings); Edinburgh University; Essex University;Eskisehir Technical University Library, Exeter University; EZB Electronic Journals Library; Feng Chia University Library; GAZİ Gazi University Library; Glasgow University; HEC-National Digital Library; Hull University; Imperial College London; Kaohsiung Medical University Library; ANKOS; Anadolu University Library; Lancaster University; Libros PDF; Liverpool University; London Metropolitan University; London School of Economics and Political Science; Manchester University; National Cheng Kung University Library; National ILAN University Library; Nottingham University; Open University; Oxford University; Queen Mary, University of London; Robert Gordon University; Royal Botanic Gardens, Kew; Sheffield Hallam University; Sheffield University; Shih Hsin University Library; Smithsonian Institution Libraries; Southampton University; Stirling University; Strathclyde University; Sussex University; The National Agricultural Library (NAL); The Ohio Library and Information NetWork; Trinity College Dublin; University of Washington Libraries; Vaughan Memorial Library; York University.

❖ Articles published in the journal “Biological Diversity and Conservation” are freely accessible. No article processing charge (APC) is charged.

❖ Additional Web of Science Indexes: Zoological Record
❖ This journal is a member of CrossRef;10.46309/biodicon.
❖ For published articles and full details about the journal, please visit http://www.biodicon.com; https://dergipark.org.tr/tr/yayin/biodicon.


❖  Correspondence Address:: Prof. Ersin YÜCEL, Sazova Mahallesi, Ziraat Caddesi, No.277 F Blok, 26005 Tepebaşı-Eskişehir/Türkiye
E-mail: biodicon@gmail.com;
❖ Web Address: http://www.biodicon.com;  https://dergipark.org.tr/tr/pub/biodicon
❖ Biological Diversity and Conservation
❖ ISSN 1308-5301 Print; ISSN 1308-8084 Online
Publication Start Date 2008
© Copyright by Biological Diversity and Conservation/Biyolojik Çeşitlilik ve Koruma;  Available online at www.biodicon.com. All rights reserved.
. ❖ Publisher: ERSİN YÜCEL (https://www.ersinyucel.com.tr)
❖ This Journal is published three times a year. It is printed in Eskişehir, Türkiye.
❖ The authors are solely responsible for the articles published in this Journal .
Editör-in Chief  : Prof.Dr. Ersin YÜCEL, https://orcid.org/0000-0001-8274-7578