BibTex RIS Kaynak Göster

Diversity of microfungi in acid mine drainages

Yıl 2017, Cilt: 10 Sayı: 3, 190 - 198, 15.04.2017

Öz

Acid mine drainage AMD is an anthropogenic system having lower acidic pH value and high specific conductivity. In this study, from two different acidic environments, the AMDs of Çan Çanakkale pH 2.85 and of Balya Balıkesir pH 2.75 the microfungi was isolated and identification. Morphological and molecular techniques were used to identify microfungi. Then fifteen species belonging to nine genera were identified. They are listed as follows: Aspergillus awamori, A. repens, Cladosporium herbarum, C. oxysporum, Penicillium citrinum, P. montanense, P. ochrochloron, P. spinulosum, P. verrucosum, Penidiella sp., Phialophora sp., Talaromyces aculeatus, T. helicus, Trichoderma harzianum, ve Umbelopsis autotrophica. Most of these species have been commonly found in acidic and/or heavy metal-rich environments. Consequently, such isolates from AMDs, which represents an extreme environment, are important because of revealing the fungal diversity and their potential biotechnological applications

Kaynakça

  • Akyol, Z. (2012). Balıkesir-Balya cevherli sahalarının jeolojisi, mineralojisi ve maden potansiyelinin değerlendirilmesi. İstanbul Yerbilimleri Dergisi, 3(1-2).
  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. Journal of molecular biology, 215(3), 403-410.
  • Asan, A. (2004). Aspergillus, Penicillium and related species reported from Turkey. Mycotaxon, 89(1), 155-157.
  • Auld, R. R., Myre, M., Mykytczuk, N. C., Leduc, L. G., and Merritt, T. J. (2013). Characterization of the microbial acid mine drainage microbial community using culturing and direct sequencing techniques. Journal of Microbiological Methods, 93(2), 108-115.
  • Aytar, P., Kay, C. M., Mutlu, M. B., and Çabuk, A. (2013). Coal Desulphurization with Acidithiobacillus ferrivorans, from Balya Acidic Mine Drainage. Energy and Fuels.
  • Bååth, E., Lundgren, B., and Söderström, B. (1984). Fungal populations in podzolic soil experimentally acidified to simulate acid rain. Microbial ecology, 10(3), 197-203.
  • Baba, A., Gurdal, G., Sengunalp, F., and Ozay, O. (2008). Effects of leachant temperature and pH on leachability of metals from fly ash. A case study: Can thermal power plant, province of Canakkale, Turkey. Environmental Monitoring and Assessment, 139(1-3), 287-298. doi:10.1007/s10661-007-9834-8
  • Baker, B. J., and Banfield, J. F. (2003). Microbial communities in acid mine drainage. FEMS microbiology ecology, 44(2), 139-152.
  • Baker, B. J., Lutz, M. A., Dawson, S. C., Bond, P. L., and Banfield, J. F. (2004). Metabolically active eukaryotic communities in extremely acidic mine drainage. Applied and Environmental Microbiology, 70(10), 6264-6271.
  • Barnett, H., and Hunter, B. (1999). Illustrated genera of imperfect fungi (p. 218). St. Paul: APS.
  • Brake, S., Hasiotis, S., Dannelly, H., and Connors, K. (2002). Eukaryotic stromatolite builders in acid mine drainage: Implications for Precambrian iron formations and oxygenation of the atmosphere? Geology, 30(7), 599-602.
  • Cooke, W. B. (1976). Fungi in and near streams carrying acid mine-drainage.
  • Çabuk, A., Aytar, P., Gedikli, S., Özel, Y., and Kocabıyık, E. (2013). Biosorption of acidic textile dyestuffs from aqueous solution by Paecilomyces sp. isolated from acidic mine drainage. Environmental Science and Pollution Research, 20(7), 4540-4550. doi:10.1007/s11356-012-1396-9
  • Das, B., Roy, A., Singh, S., and Bhattacharya, J. (2009). Eukaryotes in acidic mine drainage environments: potential applications in bioremediation. Reviews in Environmental Science and Bio/Technology, 8(3), 257-274. doi:10.1007/s11157-009-9161-3
  • Domsch, K. H., Gams, W., and Anderson, T. H. (1993). Compendium of soil fungi (Vol. 1): Eching, Germany: IHW-Verlag.
  • Ellis, M. (1971). Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew. Links.
  • Fukami, M., Yamazaki, S., and Toda, S. (1983). Distribution of copper in the cells of heavy metal tolerant fungus, Penicillium ochrochloron, cultured in concentrated copper medium. Agricultural and biological chemistry, 47(6), 1367-1369.
  • Gould, W., Fujikawa, J., and Cook, F. (1974). A soil fungus tolerant to extreme acidity and high salt concentrations. Canadian Journal of Microbiology, 20(7), 1023-1027.
  • Graham, G., Mayers, P., and Henry, R. (1994). A simplified method for the preparation of fungal genomic DNA for PCR and RAPD analysis. Biotechniques, 16(1), 48.
  • Gross, S., and Robbins, E. I. (2000). Acidophilic and acid-tolerant fungi and yeasts. Hydrobiologia, 433(1-3), 91-109.
  • Hawksworth, D. L. (2001). The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycological Research, 105(12), 1422-1432.
  • He, Y., Li, J., Wang, J., Rao, J., and Mao, H. (2011). Separation and purification of β-glucosidase from Penidiella sp. HEY-1 and its properties. Chemistry and Industry of Forest Products, 31(3), 110-114.
  • Hujslová, M., Kubátová, A., Chudíčková, M., and Kolařík, M. (2010). Diversity of fungal communities in saline and acidic soils in the Soos National Natural Reserve, Czech Republic. Mycological Progress, 9(1), 1-15.
  • Klich, M. (2002). Identification of common Aspergillus species. 122 pp. Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands.
  • Méndez-García, C., Peláez, A. I., Mesa, V., Sánchez, J., Golyshina, O. V., and Ferrer, M. (2015). Microbial diversity and metabolic networks in acid mine drainage habitats. Frontiers in microbiology, 6.
  • Mueller, G. M., and Schmit, J. P. (2007). Fungal biodiversity: what do we know? What can we predict? Biodiversity and Conservation, 16(1), 1-5.
  • Petrovic, U., Gunde-Cimerman, N., and Zalar, P. (2000). Xerotolerant mycobiota from high altitude Anapurna soil, Nepal. FEMS Microbiol Lett, 182(2), 339-342. doi:S0378-1097(99)00614-X [pii]
  • Pitt, J., and Hocking, A. (2009). Fungi and food spoilage: Springer Verlag.
  • Prasad, M. N. V., and Jeeva, S. (2009). Coal mining and its leachate are potential threats to Nepenthes khasiana Hook. f.(Nepenthaceae) that preys on insects-an endemic plant in North Eastern India. Biol Div Con, 2, 29-33.
  • Raper, K., and Thom, C. (1949). A manual of the Penicillia. 875 pp. Williams and Wilkins, Baltimore: Maryland, USA.
  • Rawlings, D. E., and Johnson, D. B. (2007). The microbiology of biomining: development and optimization of mineral- oxidizing microbial consortia. Microbiology, 153(2), 315-324.
  • Samson, R. A., Hoekstra, E. S., and Frisvad, J. C. (2004). Introduction to food-and airborne fungi: Centraalbureau voor Schimmelcultures (CBS).
  • Sonjak, S., Frisvad, J. C., and Gunde-Cimerman, N. (2006). Penicillium mycobiota in arctic subglacial ice. Microb Ecol, 52(2), 207-216. doi:10.1007/s00248-006-9086-0
  • Starkey, R., and Waksman, S. (1943). Fungi tolerant to extreme acidity and high concentrations of copper sulfate. Journal of Bacteriology, 45(5), 509-519.
  • Stokes, P., and Lindsay, J. (1979). Copper tolerance and accumulation in Penicillium ochro-chloron isolated from copper- plating solution. Mycologia, 796-806.
  • Watson, e. (1994). Official and Standardized Methods of Analysis: Royal Society of Chemistry.
  • Yucel, D. S., Yucel, M. A., and Baba, A. (2014). Change detection and visualization of acid mine lakes using time series satellite image data in geographic information systems (GIS): Can (Canakkale) County, NW Turkey. Environmental Earth Sciences, 72(11), 4311-4323.
  • Zhang, F., Shi, P., Bai, Y., Luo, H., Yuan, T., Huang, H., Yao, B. (2011). An acid and highly thermostable xylanase from Phialophora sp. G5. Applied Microbiology and Biotechnology, 89(6), 1851-1858.

Asit maden drenajlarında mikrofungus çeşitliliği

Yıl 2017, Cilt: 10 Sayı: 3, 190 - 198, 15.04.2017

Öz

Asit maden drenajı AMD , daha düşük asidik pH değerine ve yüksek spesifik iletkenliğe sahip olan bir antropojenik sistemdir. Bu çalışmada, Çanakkale pH 2.85 ve Balya Balıkesir pH 2.75 AMD'leri olmak üzere iki farklı asidik ortamdan mikrofunguslar izole edildi ve tanılandı. Asidik maden drenaj sularından izole edilen mikrofungusları belirlemek için morfolojik ve moleküler teknikler kullanılmış ve listelendiği gibi dokuz cinse ait on beş tür tespit edilmiştir; Aspergillus awamori, A. repens, Cladosporium herbarum, C. oxysporum, Penicillium citrinum, P. montanense, P. ochrochloron, P. spinulosum, P. verrucosum, Penidiella sp., Phialophora sp., Talaromyces aculeatus, T. helicus, Trichoderma harzianum, ve Umbelopsis autotrophica. Bu türlerin çoğu asidik ve/veya ağır metal açısından zengin ortamlarda bulunur. Sonuç olarak, ekstrem çevreyi temsil eden AMD'lerinden elde edilen bu izolatlar bu ortamlardaki fungus çeşitliliğinin ortaya çıkarılması ve potansiyel biyoteknolojik uygulamaları nedeniyle önemlidir

Kaynakça

  • Akyol, Z. (2012). Balıkesir-Balya cevherli sahalarının jeolojisi, mineralojisi ve maden potansiyelinin değerlendirilmesi. İstanbul Yerbilimleri Dergisi, 3(1-2).
  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. Journal of molecular biology, 215(3), 403-410.
  • Asan, A. (2004). Aspergillus, Penicillium and related species reported from Turkey. Mycotaxon, 89(1), 155-157.
  • Auld, R. R., Myre, M., Mykytczuk, N. C., Leduc, L. G., and Merritt, T. J. (2013). Characterization of the microbial acid mine drainage microbial community using culturing and direct sequencing techniques. Journal of Microbiological Methods, 93(2), 108-115.
  • Aytar, P., Kay, C. M., Mutlu, M. B., and Çabuk, A. (2013). Coal Desulphurization with Acidithiobacillus ferrivorans, from Balya Acidic Mine Drainage. Energy and Fuels.
  • Bååth, E., Lundgren, B., and Söderström, B. (1984). Fungal populations in podzolic soil experimentally acidified to simulate acid rain. Microbial ecology, 10(3), 197-203.
  • Baba, A., Gurdal, G., Sengunalp, F., and Ozay, O. (2008). Effects of leachant temperature and pH on leachability of metals from fly ash. A case study: Can thermal power plant, province of Canakkale, Turkey. Environmental Monitoring and Assessment, 139(1-3), 287-298. doi:10.1007/s10661-007-9834-8
  • Baker, B. J., and Banfield, J. F. (2003). Microbial communities in acid mine drainage. FEMS microbiology ecology, 44(2), 139-152.
  • Baker, B. J., Lutz, M. A., Dawson, S. C., Bond, P. L., and Banfield, J. F. (2004). Metabolically active eukaryotic communities in extremely acidic mine drainage. Applied and Environmental Microbiology, 70(10), 6264-6271.
  • Barnett, H., and Hunter, B. (1999). Illustrated genera of imperfect fungi (p. 218). St. Paul: APS.
  • Brake, S., Hasiotis, S., Dannelly, H., and Connors, K. (2002). Eukaryotic stromatolite builders in acid mine drainage: Implications for Precambrian iron formations and oxygenation of the atmosphere? Geology, 30(7), 599-602.
  • Cooke, W. B. (1976). Fungi in and near streams carrying acid mine-drainage.
  • Çabuk, A., Aytar, P., Gedikli, S., Özel, Y., and Kocabıyık, E. (2013). Biosorption of acidic textile dyestuffs from aqueous solution by Paecilomyces sp. isolated from acidic mine drainage. Environmental Science and Pollution Research, 20(7), 4540-4550. doi:10.1007/s11356-012-1396-9
  • Das, B., Roy, A., Singh, S., and Bhattacharya, J. (2009). Eukaryotes in acidic mine drainage environments: potential applications in bioremediation. Reviews in Environmental Science and Bio/Technology, 8(3), 257-274. doi:10.1007/s11157-009-9161-3
  • Domsch, K. H., Gams, W., and Anderson, T. H. (1993). Compendium of soil fungi (Vol. 1): Eching, Germany: IHW-Verlag.
  • Ellis, M. (1971). Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew. Links.
  • Fukami, M., Yamazaki, S., and Toda, S. (1983). Distribution of copper in the cells of heavy metal tolerant fungus, Penicillium ochrochloron, cultured in concentrated copper medium. Agricultural and biological chemistry, 47(6), 1367-1369.
  • Gould, W., Fujikawa, J., and Cook, F. (1974). A soil fungus tolerant to extreme acidity and high salt concentrations. Canadian Journal of Microbiology, 20(7), 1023-1027.
  • Graham, G., Mayers, P., and Henry, R. (1994). A simplified method for the preparation of fungal genomic DNA for PCR and RAPD analysis. Biotechniques, 16(1), 48.
  • Gross, S., and Robbins, E. I. (2000). Acidophilic and acid-tolerant fungi and yeasts. Hydrobiologia, 433(1-3), 91-109.
  • Hawksworth, D. L. (2001). The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycological Research, 105(12), 1422-1432.
  • He, Y., Li, J., Wang, J., Rao, J., and Mao, H. (2011). Separation and purification of β-glucosidase from Penidiella sp. HEY-1 and its properties. Chemistry and Industry of Forest Products, 31(3), 110-114.
  • Hujslová, M., Kubátová, A., Chudíčková, M., and Kolařík, M. (2010). Diversity of fungal communities in saline and acidic soils in the Soos National Natural Reserve, Czech Republic. Mycological Progress, 9(1), 1-15.
  • Klich, M. (2002). Identification of common Aspergillus species. 122 pp. Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands.
  • Méndez-García, C., Peláez, A. I., Mesa, V., Sánchez, J., Golyshina, O. V., and Ferrer, M. (2015). Microbial diversity and metabolic networks in acid mine drainage habitats. Frontiers in microbiology, 6.
  • Mueller, G. M., and Schmit, J. P. (2007). Fungal biodiversity: what do we know? What can we predict? Biodiversity and Conservation, 16(1), 1-5.
  • Petrovic, U., Gunde-Cimerman, N., and Zalar, P. (2000). Xerotolerant mycobiota from high altitude Anapurna soil, Nepal. FEMS Microbiol Lett, 182(2), 339-342. doi:S0378-1097(99)00614-X [pii]
  • Pitt, J., and Hocking, A. (2009). Fungi and food spoilage: Springer Verlag.
  • Prasad, M. N. V., and Jeeva, S. (2009). Coal mining and its leachate are potential threats to Nepenthes khasiana Hook. f.(Nepenthaceae) that preys on insects-an endemic plant in North Eastern India. Biol Div Con, 2, 29-33.
  • Raper, K., and Thom, C. (1949). A manual of the Penicillia. 875 pp. Williams and Wilkins, Baltimore: Maryland, USA.
  • Rawlings, D. E., and Johnson, D. B. (2007). The microbiology of biomining: development and optimization of mineral- oxidizing microbial consortia. Microbiology, 153(2), 315-324.
  • Samson, R. A., Hoekstra, E. S., and Frisvad, J. C. (2004). Introduction to food-and airborne fungi: Centraalbureau voor Schimmelcultures (CBS).
  • Sonjak, S., Frisvad, J. C., and Gunde-Cimerman, N. (2006). Penicillium mycobiota in arctic subglacial ice. Microb Ecol, 52(2), 207-216. doi:10.1007/s00248-006-9086-0
  • Starkey, R., and Waksman, S. (1943). Fungi tolerant to extreme acidity and high concentrations of copper sulfate. Journal of Bacteriology, 45(5), 509-519.
  • Stokes, P., and Lindsay, J. (1979). Copper tolerance and accumulation in Penicillium ochro-chloron isolated from copper- plating solution. Mycologia, 796-806.
  • Watson, e. (1994). Official and Standardized Methods of Analysis: Royal Society of Chemistry.
  • Yucel, D. S., Yucel, M. A., and Baba, A. (2014). Change detection and visualization of acid mine lakes using time series satellite image data in geographic information systems (GIS): Can (Canakkale) County, NW Turkey. Environmental Earth Sciences, 72(11), 4311-4323.
  • Zhang, F., Shi, P., Bai, Y., Luo, H., Yuan, T., Huang, H., Yao, B. (2011). An acid and highly thermostable xylanase from Phialophora sp. G5. Applied Microbiology and Biotechnology, 89(6), 1851-1858.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

Bükay Yenıce Gürsu Bu kişi benim

Pınar Aytar Bu kişi benim

Semra İlhan Bu kişi benim

Yaşar Erçin Kocabıyık Bu kişi benim

Serap Gedıklı Bu kişi benim

Ahmet Çabuk Bu kişi benim

Yayımlanma Tarihi 15 Nisan 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 10 Sayı: 3

Kaynak Göster

APA Yenıce Gürsu, B., Aytar, P., İlhan, S., Kocabıyık, Y. E., vd. (2017). Diversity of microfungi in acid mine drainages. Biyolojik Çeşitlilik Ve Koruma, 10(3), 190-198.

18385183861838718388183892276122760