Araştırma Makalesi
BibTex RIS Kaynak Göster

Kuzey Kıbrıs'ta Yetişen Corchorus olitorius L.'nin Farklı Ekstraktlarının Toplam Fenolik Madde İçeriği, Antioksidan ve Antimikrobiyal Aktivitelerinin Karşılaştırılması

Yıl 2020, Cilt: 13 Sayı: 3, 298 - 304, 15.12.2020
https://doi.org/10.46309/biodicon.2020.817146

Öz

Amaç: Bu çalışmada, Kuzey Kıbrıs'ta yetiştirilen Corchorus olitorius'un kurutulmuş yaprak ekstraktlarının antimikrobiyal ve antioksidan aktiviteleri ile toplam fenolik madde miktarı belirlenmiştir.
Methodlar: Ekstraktların toplam fenolik madde miktarı, antioksidan ve antimikrobiyal aktivitesi sırasıyla Folin-Ciocalteu, DPPH serbest radikal ve sıvı seyreltme yöntemleri kullanılarak belirlenmiştir. Ekstraktların antimikrobiyal aktivitesi, sekiz farklı mikroorganizmaya (Bacillus subtilis ATCC 6037, Listeria monocytogenes Scott A, Enterococcus faecalis ATCC 29212, Staphylococcus aureus 6538P, Bacillus cereus No 8, Escherichia coli O157:H7 ATCC 43895, Escherichia coli ATCC 1103, Salmonella Typhimurium NRRL-B-4420) karşı test edilmiştir.
Bulgular: En yüksek toplam fenolik madde miktarı etanol ekstraktından 24.61 mg GAE/g olarak belirlenmiştir. C. olitorius'un su, etanol ve metanol ekstraktları DPPH radikalini sırasıyla %17.50, %87.10 ve %86.00 oranında inhibe etmiştir. C. olitorius'un etanol ve metanol ekstraktlarının test kültürlerine karşı MIC değerleri %50.00 ile %6.25 arasında değişirken, su ekstraktının herhangi bir engelleyici etkisi gözlenmemiştir. L. monocytogenes Scott A, E. faecalis ATCC 29212 ve B. subtilis ATCC 6037 (%6.25 MIC değeri), bitkinin metanol ekstraktına karşı en duyarlı mikroorganizmalar olmuştur.
Sonuç: Tüm bu sonuçlar, C. olitorius ekstraktlarının antimikrobiyal ve antioksidan özellikler gösteren önemli kaynaklar olduğunu göstermiştir.

Kaynakça

  • [1] Hayashi, M. A., Bizerra, F. C., & Da Silva Junior, P. I. (2013). Antimicrobial compounds from natural sources. Frontiers in microbiology, 4, 195. https://doi.org/10.3389/fmicb.2013.00195
  • [2] Sabo, V. A., & Knezevic, P. (2019). Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review. Industrial crops and products, 132, 413-429. https://doi.org/10.1016/j.indcrop.2019.02.051
  • [3] Panda, S. K., Mohanta, Y. K., Padhi, L., & Luyten, W. (2019). Antimicrobial activity of select edible plants from Odisha, India against food-borne pathogens. LWT, 113, 108246. https://doi.org/10.1016/j.lwt.2019.06.013
  • [4] Tajkarimi, M. M., Ibrahim, S. A., & Cliver, D. O. (2010). Antimicrobial herb and spice compounds in food. Food control, 21(9), 1199-1218. https://doi.org/10.1016/j.foodcont.2010.02.003
  • [5] Maddox, C. E., Laur, L. M., & Tian, L. (2010). Antibacterial activity of phenolic compounds against the phytopathogen Xylella fastidiosa. Current microbiology, 60(1), 53. https://doi.org/10.1007/s00284-009-9501-0
  • [6] Karray‐Bouraoui, N. A. J. O. U. A., Ksouri, R., Falleh, H., Rabhi, M., Jaleel, C. A., Grignon, C., & Lachaal, M. (2010). Effects of environment and development stage on phenolic content and antioxidant activities of Mentha pulegium L. Journal of Food Biochemistry, 34, 79-89. https://doi.org/10.1111/j.1745-4514.2009.00303.x
  • [7] Mark, R., Lyu, X., Lee, J. J., Parra-Saldívar, R., & Chen, W. N. (2019). Sustainable production of natural phenolics for functional food applications. Journal of Functional Foods, 57, 233-254. https://doi.org/10.1016/j.jff.2019.04.008
  • [8] Zhang, L., Shamaladevi, N., Jayaprakasha, G. K., Patil, B. S., & Lokeshwar, B. L. (2015). Polyphenol-rich extract of Pimenta dioica berries (Allspice) kills breast cancer cells by autophagy and delays growth of triple negative breast cancer in athymic mice. Oncotarget, 6(18), 16379. https://doi.org/10.18632/oncotarget.3834
  • [9] Correa, L. B., Pádua, T. A., Seito, L. N., Costa, T. E. M. M., Silva, M. A., Candéa, A. L. P., ... & Henriques, M. G. (2016). Anti-inflammatory effect of methyl gallate on experimental arthritis: Inhibition of neutrophil recruitment, production of inflammatory mediators, and activation of macrophages. Journal of natural products, 79(6), 1554-1566. https://doi.org/10.1021/acs.jnatprod.5b01115
  • [10] Passamonti, S., Vrhovsek, U., Vanzo, A., & Mattivi, F. (2005). Fast access of some grape pigments to the brain. Journal of agricultural and food chemistry, 53(18), 7029-7034. https://doi.org/10.1021/jf050565k
  • [11] Alu’datt, M. H., Rababah, T., Alhamad, M. N., Al-Mahasneh, M. A., Almajwal, A., Gammoh, S., ... & Alli, I. (2017). A review of phenolic compounds in oil-bearing plants: Distribution, identification and occurrence of phenolic compounds. Food chemistry, 218, 99-106. https://doi.org/10.1016/j.foodchem.2016.09.057
  • [12] Hajipour, S., Sarkaki, A., Farbood, Y., Eidi, A., Mortazavi, P., & Valizadeh, Z. (2016). Effect of gallic acid on dementia type of Alzheimer disease in rats: electrophysiological and histological studies. Basic and clinical neuroscience, 7(2), 97. https://doi.org/10.15412/J.BCN.03070203
  • [13] Kumar, S., Gupta, A., & Pandey, A. K. (2013). Calotropis procera root extract has the capability to combat free radical mediated damage. International Scholarly Research Notices, 2013. https://doi.org/10.1155/2013/691372
  • [14] L., Hao, Y. Q., Jin, L., Xu, Z. J., McAllister, T. A., & Wang, Y. (2013). Anti-Escherichia coli O157: H7 properties of purple prairie clover and sainfoin condensed tannins. Molecules, 18(2), 2183-2199. https://doi.org/10.3390/molecules18022183
  • [15] J., & Pilz, S. (Eds.). (2011). Industrial scale natural products extraction. Germany: Wiley-VCH.
  • [16] Elfalleh, W., Kirkan, B., & Sarikurkcu, C. (2019). Antioxidant potential and phenolic composition of extracts from Stachys tmolea: An endemic plant from Turkey. Industrial Crops and Products, 127, 212-216. https://doi.org/10.1016/j.indcrop.2018.10.078
  • [17] Yang, Z., Wu, Y., Dai, Z., Chen, X., Wang, H., Yang, S., ... & Deng, C. (2020). Comprehensive transcriptome analysis and tissue-specific profiling of gene expression in jute (Corchorus olitorius L.). Industrial Crops and Products, 146, 112101. https://doi.org/10.1186/s12864-020-06805-6
  • [18] Bhandari, H. R., Bera, A., Kar, C. S., & Biswas, S. (2018). Stability assessment of jute seed production system in lower Gangetic plains of India. Industrial Crops and Products, 125, 505-510. https://doi.org/10.1016/j.indcrop.2018.09.009
  • [19] Islam, M. M. (2013). Biochemistry, medicinal and food values of jute (Corchorus capsularis L. and C. olitorius L.) leaf: a review. Int J Enhanc Res Sci Technol Eng, 2(11), 135-44.
  • [20] Yan, Y. Y., Wang, Y. W., Chen, S. L., Zhuang, S. R., & Wang, C. K. (2013). Anti-inflammatory effects of phenolic crude extracts from five fractions of Corchorus Olitorius L. Food chemistry, 138(2-3), 1008-1014. https://doi.org/10.1016/j.foodchem.2012.10.052
  • [21] Barku, V., Opoku-Boahen, Y., Owusu-Ansah, E., Dayie, N. T. K. D., & Mensah, F. (2013). In-vitro assessment of antioxidant and antimicrobial activities of methanol extracts of six wound healing medicinal plants. In-Vitro, 3(1).
  • [22] Silván, J. M., Mingo, E., Hidalgo, M., de Pascual-Teresa, S., Carrascosa, A. V., & Martinez-Rodriguez, A. J. (2013). Antibacterial activity of a grape seed extract and its fractions against Campylobacter spp. Food control, 29(1), 25-31. https://doi.org/10.1016/j.foodcont.2012.05.063
  • [23] Hassanpour, H., & Khoshamad, R. (2017). Antioxidant Capacity, Phenolic Compounds and Antioxidant Enzymes of Wild Grape Seeds from Different Accessions Grown in Iran. Erwerbs-Obstbau, 59(4), 281-290. https://doi.org/10.1007/s10341-017-0323-0
  • [24] Corrêa, R. C., Barros, L., Fernandes, Â., Sokovic, M., Bracht, A., Peralta, R. M., & Ferreira, I. C. (2018). A natural food ingredient based on ergosterol: optimization of the extraction from Agaricus blazei, evaluation of bioactive properties and incorporation in yogurts. Food & function, 9(3), 1465-1474. https://doi.org/10.1039/C7FO02007D
  • [25] Cemeroğlu, B., 2013, Gıda Analizleri, Ankara: Gıda Teknolojisi Derneği Yayınları.
  • [26] Abdelhady, M. I., Motaal, A. A., & Beerhues, L. (2011). Total phenolic content and antioxidant activity of standardized extracts from leaves and cell cultures of three Callistemon species. American Journal of Plant Sciences, 2(6), 847. https://doi.org/10.4236/ajps.2011.26100
  • [27] Naik, D., Dandge, C., & Rupanar, S. (2014). Determination of chemical composition and evaluation of antioxidant activity of essential oil from Tinospora cordifolia (Willd.) Leaf. Journal of Essential Oil Bearing Plants, 17(2), 228-236. https://doi.org/10.1080/0972060X.2013.831568
  • [28] Deng, Y., Yang, G., Yue, J., Qian, B., Liu, Z., Wang, D., ... & Zhao, Y. (2014). Influences of ripening stages and extracting solvents on the polyphenolic compounds, antimicrobial and antioxidant activities of blueberry leaf extracts. Food Control, 38, 184-191. https://doi.org/10.1016/j.foodcont.2013.10.023
  • [29] SPSS (2011). Statistical package, SPSS for Windows. Ver. 20.0, Chicago.
  • [30] Sarikurkcu, C., Andrade, J. C., Ozer, M. S., de Lima Silva, J. M. F., Ceylan, O., de Sousa, E. O., & Coutinho, H. D. M. (2020). LC-MS/MS profiles and interrelationships between the enzyme inhibition activity, total phenolic content and antioxidant potential of Micromeria nervosa extracts. Food Chemistry, 126930. https://doi.org/10.1016/j.foodchem.2020.126930
  • [31] Ademiluyi, A. O., Oboh, G., Aragbaiye, F. P., Oyeleye, S. I., & Ogunsuyi, O. B. (2015). Antioxidant properties and in vitro α-amylase and α-glucosidase inhibitory properties of phenolics constituents from different varieties of Corchorus spp. Journal of Taibah University Medical Sciences, 10(3), 278-287. https://doi.org/10.1016/j.jtumed.2014.11.005
  • [32] Yakoub, A. R. B., Abdehedi, O., Jridi, M., Elfalleh, W., Nasri, M., & Ferchichi, A. (2018). Flavonoids, phenols, antioxidant, and antimicrobial activities in various extracts from Tossa jute leave (Corchorus olitorus L.). Industrial Crops and Products, 118, 206-213. https://doi.org/10.1016/j.indcrop.2018.03.047
  • [33] Obeng, E., Kpodo, F. M., Tettey, C. O., Essuman, E. K., & Adzinyo, O. A. (2020). Antioxidant, total phenols and proximate constituents of four tropical leafy vegetables. Scientific African, 7, e00227. https://doi.org/10.1016/j.sciaf.2019.e00227
  • [34] Mohammed, R. M. O. (2016). Phytochemical Investigation of Antimicrobial and Antioxidant Activity Leaves Extracts of Corchorus olitorius. Open Access Library Journal, 3(1), 1-5. https://doi.org/10.4236/oalib.1102225
  • [35] Semra, I., Filiz, S., & Ferdag, C. (2007). Antibacterial and antifungal activity of Corchorus olitorius L. Molokhia) extracts. Inter J Natural Engineering Sci, 1, 59-61.

Comparative Study of Total Phenolic Contents, Antioxidant and Antimicrobial Activities of Different Extracts of Corchorus olitorius L. Growing in North Cyprus

Yıl 2020, Cilt: 13 Sayı: 3, 298 - 304, 15.12.2020
https://doi.org/10.46309/biodicon.2020.817146

Öz

Objective: In this study, antimicrobial and antioxidant activities as well as total phenolic content of dried leaf extracts of Corchorus olitorius grown in North Cyprus were determined.
Methods: The total phenolic content, antioxidant and antimicrobial activity of the extracts were determined using the Folin-Ciocalteu, DPPH free radical and broth dilution methods, respectively. The antimicrobial activity of the extracts was tested against eight different microorganisms (Bacillus subtilis ATCC 6037, Listeria monocytogenes Scott A, Enterococcus faecalis ATCC 29212, Staphylococcus aureus 6538P, Bacillus cereus No 8, Escherichia coli O157:H7 ATCC 43895, Escherichia coli ATCC 1103, Salmonella Typhimurium NRRL-B-4420).
Results: The highest phenolic content was obtained from ethanol extract as 24.61 mg GAE/g. Water, ethanol and methanol extracts of C. olitorius were inhibited the DPPH radical by 17.50%, 87.10% and 86.00%, respectively. MIC values of ethanol and methanol extracts of C. olitorius against test cultures were varied between 50.00% and 6.25%, while no inhibitory effect was observed for water extract. The most susceptible microorganisms to methanol extract of the plant were L. monocytogenes Scott A, E. faecalis ATCC 29212 and B. subtilis ATCC 6037 (MIC value of 6.25%).
Conclusion: All these results showed that C. olitorius extracts are important sources showing antimicrobial and antioxidant properties.

Kaynakça

  • [1] Hayashi, M. A., Bizerra, F. C., & Da Silva Junior, P. I. (2013). Antimicrobial compounds from natural sources. Frontiers in microbiology, 4, 195. https://doi.org/10.3389/fmicb.2013.00195
  • [2] Sabo, V. A., & Knezevic, P. (2019). Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review. Industrial crops and products, 132, 413-429. https://doi.org/10.1016/j.indcrop.2019.02.051
  • [3] Panda, S. K., Mohanta, Y. K., Padhi, L., & Luyten, W. (2019). Antimicrobial activity of select edible plants from Odisha, India against food-borne pathogens. LWT, 113, 108246. https://doi.org/10.1016/j.lwt.2019.06.013
  • [4] Tajkarimi, M. M., Ibrahim, S. A., & Cliver, D. O. (2010). Antimicrobial herb and spice compounds in food. Food control, 21(9), 1199-1218. https://doi.org/10.1016/j.foodcont.2010.02.003
  • [5] Maddox, C. E., Laur, L. M., & Tian, L. (2010). Antibacterial activity of phenolic compounds against the phytopathogen Xylella fastidiosa. Current microbiology, 60(1), 53. https://doi.org/10.1007/s00284-009-9501-0
  • [6] Karray‐Bouraoui, N. A. J. O. U. A., Ksouri, R., Falleh, H., Rabhi, M., Jaleel, C. A., Grignon, C., & Lachaal, M. (2010). Effects of environment and development stage on phenolic content and antioxidant activities of Mentha pulegium L. Journal of Food Biochemistry, 34, 79-89. https://doi.org/10.1111/j.1745-4514.2009.00303.x
  • [7] Mark, R., Lyu, X., Lee, J. J., Parra-Saldívar, R., & Chen, W. N. (2019). Sustainable production of natural phenolics for functional food applications. Journal of Functional Foods, 57, 233-254. https://doi.org/10.1016/j.jff.2019.04.008
  • [8] Zhang, L., Shamaladevi, N., Jayaprakasha, G. K., Patil, B. S., & Lokeshwar, B. L. (2015). Polyphenol-rich extract of Pimenta dioica berries (Allspice) kills breast cancer cells by autophagy and delays growth of triple negative breast cancer in athymic mice. Oncotarget, 6(18), 16379. https://doi.org/10.18632/oncotarget.3834
  • [9] Correa, L. B., Pádua, T. A., Seito, L. N., Costa, T. E. M. M., Silva, M. A., Candéa, A. L. P., ... & Henriques, M. G. (2016). Anti-inflammatory effect of methyl gallate on experimental arthritis: Inhibition of neutrophil recruitment, production of inflammatory mediators, and activation of macrophages. Journal of natural products, 79(6), 1554-1566. https://doi.org/10.1021/acs.jnatprod.5b01115
  • [10] Passamonti, S., Vrhovsek, U., Vanzo, A., & Mattivi, F. (2005). Fast access of some grape pigments to the brain. Journal of agricultural and food chemistry, 53(18), 7029-7034. https://doi.org/10.1021/jf050565k
  • [11] Alu’datt, M. H., Rababah, T., Alhamad, M. N., Al-Mahasneh, M. A., Almajwal, A., Gammoh, S., ... & Alli, I. (2017). A review of phenolic compounds in oil-bearing plants: Distribution, identification and occurrence of phenolic compounds. Food chemistry, 218, 99-106. https://doi.org/10.1016/j.foodchem.2016.09.057
  • [12] Hajipour, S., Sarkaki, A., Farbood, Y., Eidi, A., Mortazavi, P., & Valizadeh, Z. (2016). Effect of gallic acid on dementia type of Alzheimer disease in rats: electrophysiological and histological studies. Basic and clinical neuroscience, 7(2), 97. https://doi.org/10.15412/J.BCN.03070203
  • [13] Kumar, S., Gupta, A., & Pandey, A. K. (2013). Calotropis procera root extract has the capability to combat free radical mediated damage. International Scholarly Research Notices, 2013. https://doi.org/10.1155/2013/691372
  • [14] L., Hao, Y. Q., Jin, L., Xu, Z. J., McAllister, T. A., & Wang, Y. (2013). Anti-Escherichia coli O157: H7 properties of purple prairie clover and sainfoin condensed tannins. Molecules, 18(2), 2183-2199. https://doi.org/10.3390/molecules18022183
  • [15] J., & Pilz, S. (Eds.). (2011). Industrial scale natural products extraction. Germany: Wiley-VCH.
  • [16] Elfalleh, W., Kirkan, B., & Sarikurkcu, C. (2019). Antioxidant potential and phenolic composition of extracts from Stachys tmolea: An endemic plant from Turkey. Industrial Crops and Products, 127, 212-216. https://doi.org/10.1016/j.indcrop.2018.10.078
  • [17] Yang, Z., Wu, Y., Dai, Z., Chen, X., Wang, H., Yang, S., ... & Deng, C. (2020). Comprehensive transcriptome analysis and tissue-specific profiling of gene expression in jute (Corchorus olitorius L.). Industrial Crops and Products, 146, 112101. https://doi.org/10.1186/s12864-020-06805-6
  • [18] Bhandari, H. R., Bera, A., Kar, C. S., & Biswas, S. (2018). Stability assessment of jute seed production system in lower Gangetic plains of India. Industrial Crops and Products, 125, 505-510. https://doi.org/10.1016/j.indcrop.2018.09.009
  • [19] Islam, M. M. (2013). Biochemistry, medicinal and food values of jute (Corchorus capsularis L. and C. olitorius L.) leaf: a review. Int J Enhanc Res Sci Technol Eng, 2(11), 135-44.
  • [20] Yan, Y. Y., Wang, Y. W., Chen, S. L., Zhuang, S. R., & Wang, C. K. (2013). Anti-inflammatory effects of phenolic crude extracts from five fractions of Corchorus Olitorius L. Food chemistry, 138(2-3), 1008-1014. https://doi.org/10.1016/j.foodchem.2012.10.052
  • [21] Barku, V., Opoku-Boahen, Y., Owusu-Ansah, E., Dayie, N. T. K. D., & Mensah, F. (2013). In-vitro assessment of antioxidant and antimicrobial activities of methanol extracts of six wound healing medicinal plants. In-Vitro, 3(1).
  • [22] Silván, J. M., Mingo, E., Hidalgo, M., de Pascual-Teresa, S., Carrascosa, A. V., & Martinez-Rodriguez, A. J. (2013). Antibacterial activity of a grape seed extract and its fractions against Campylobacter spp. Food control, 29(1), 25-31. https://doi.org/10.1016/j.foodcont.2012.05.063
  • [23] Hassanpour, H., & Khoshamad, R. (2017). Antioxidant Capacity, Phenolic Compounds and Antioxidant Enzymes of Wild Grape Seeds from Different Accessions Grown in Iran. Erwerbs-Obstbau, 59(4), 281-290. https://doi.org/10.1007/s10341-017-0323-0
  • [24] Corrêa, R. C., Barros, L., Fernandes, Â., Sokovic, M., Bracht, A., Peralta, R. M., & Ferreira, I. C. (2018). A natural food ingredient based on ergosterol: optimization of the extraction from Agaricus blazei, evaluation of bioactive properties and incorporation in yogurts. Food & function, 9(3), 1465-1474. https://doi.org/10.1039/C7FO02007D
  • [25] Cemeroğlu, B., 2013, Gıda Analizleri, Ankara: Gıda Teknolojisi Derneği Yayınları.
  • [26] Abdelhady, M. I., Motaal, A. A., & Beerhues, L. (2011). Total phenolic content and antioxidant activity of standardized extracts from leaves and cell cultures of three Callistemon species. American Journal of Plant Sciences, 2(6), 847. https://doi.org/10.4236/ajps.2011.26100
  • [27] Naik, D., Dandge, C., & Rupanar, S. (2014). Determination of chemical composition and evaluation of antioxidant activity of essential oil from Tinospora cordifolia (Willd.) Leaf. Journal of Essential Oil Bearing Plants, 17(2), 228-236. https://doi.org/10.1080/0972060X.2013.831568
  • [28] Deng, Y., Yang, G., Yue, J., Qian, B., Liu, Z., Wang, D., ... & Zhao, Y. (2014). Influences of ripening stages and extracting solvents on the polyphenolic compounds, antimicrobial and antioxidant activities of blueberry leaf extracts. Food Control, 38, 184-191. https://doi.org/10.1016/j.foodcont.2013.10.023
  • [29] SPSS (2011). Statistical package, SPSS for Windows. Ver. 20.0, Chicago.
  • [30] Sarikurkcu, C., Andrade, J. C., Ozer, M. S., de Lima Silva, J. M. F., Ceylan, O., de Sousa, E. O., & Coutinho, H. D. M. (2020). LC-MS/MS profiles and interrelationships between the enzyme inhibition activity, total phenolic content and antioxidant potential of Micromeria nervosa extracts. Food Chemistry, 126930. https://doi.org/10.1016/j.foodchem.2020.126930
  • [31] Ademiluyi, A. O., Oboh, G., Aragbaiye, F. P., Oyeleye, S. I., & Ogunsuyi, O. B. (2015). Antioxidant properties and in vitro α-amylase and α-glucosidase inhibitory properties of phenolics constituents from different varieties of Corchorus spp. Journal of Taibah University Medical Sciences, 10(3), 278-287. https://doi.org/10.1016/j.jtumed.2014.11.005
  • [32] Yakoub, A. R. B., Abdehedi, O., Jridi, M., Elfalleh, W., Nasri, M., & Ferchichi, A. (2018). Flavonoids, phenols, antioxidant, and antimicrobial activities in various extracts from Tossa jute leave (Corchorus olitorus L.). Industrial Crops and Products, 118, 206-213. https://doi.org/10.1016/j.indcrop.2018.03.047
  • [33] Obeng, E., Kpodo, F. M., Tettey, C. O., Essuman, E. K., & Adzinyo, O. A. (2020). Antioxidant, total phenols and proximate constituents of four tropical leafy vegetables. Scientific African, 7, e00227. https://doi.org/10.1016/j.sciaf.2019.e00227
  • [34] Mohammed, R. M. O. (2016). Phytochemical Investigation of Antimicrobial and Antioxidant Activity Leaves Extracts of Corchorus olitorius. Open Access Library Journal, 3(1), 1-5. https://doi.org/10.4236/oalib.1102225
  • [35] Semra, I., Filiz, S., & Ferdag, C. (2007). Antibacterial and antifungal activity of Corchorus olitorius L. Molokhia) extracts. Inter J Natural Engineering Sci, 1, 59-61.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği
Bölüm Research Article
Yazarlar

İlkin Yücelşengün 0000-0002-9445-5166

Ahmet Gargı Bu kişi benim 0000-0003-4860-3241

Yayımlanma Tarihi 15 Aralık 2020
Gönderilme Tarihi 28 Ekim 2020
Kabul Tarihi 11 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 13 Sayı: 3

Kaynak Göster

APA Yücelşengün, İ., & Gargı, A. (2020). Comparative Study of Total Phenolic Contents, Antioxidant and Antimicrobial Activities of Different Extracts of Corchorus olitorius L. Growing in North Cyprus. Biological Diversity and Conservation, 13(3), 298-304. https://doi.org/10.46309/biodicon.2020.817146

18385183861838718388183892276122760