Araştırma Makalesi
BibTex RIS Kaynak Göster

The Descriptive Analysis of the Articles Published in the Web of Science Database Between the Years 2016-2019 Context on Learning Analytics

Yıl 2021, Cilt: 3 Sayı: 1, 42 - 76, 30.06.2021

Öz

Big data is regarded as one of the fundamental factors that can play a role in the future of education. While the data can reveal what the underlying reasons for the student's failure are; It can also provide guidance on what paths successful students should follow to be even more successful. While the concept of analytics in education can be interpreted as understanding learning and optimizing it for education in 2008; Since 2010, learning analytics (LA) has been considered as an independent field within the analytics field within the concept of learning analytics. In this study, articles published in the field of Education / Educational research in SSCI, SCI-Expanded, and A&HCI indexes of the keyword "Learning Analytics" published in Web of Science between 2016-2019 were evaluated. In this context, 575 articles were identified. After the book chapter, the studies that could not be found on the internet and were not considered as articles, 529 articles were examined. Among the review criteria, parameters such as the type of the article, research method, data collection techniques, sample profiles, fields of study, frequently used keywords, suggestions, dependent / independent variables, number of authors / the distribution of languages in which they were written were considered. After the examination, it was determined that the number of experimental studies in the field of learning analytics is high and the field of computer / informatics is preferred primarily as a field of study. The determination of keywords along with the most frequently used dependent and independent variables provided an idea of which subjects the LA studies focused on.

Kaynakça

  • Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education, 10(1), 61-75.
  • Ahn, J. Y., Mun, G. S., Han, K. S., & Choi, S. H. (2016). An online authoring tool for creating activity-based learning objects. Education and Information Technologies, 22(6), 3005–3015. https://doi.org/10.1007/s10639-016-9567-9
  • Alexander, J., & McLachlan, S., & Barcellona, M., & Sackley, C. (2019). Technology-enhanced learning in physiotherapy education: Student satisfaction and knowledge acquisition of entry-level students in the United Kingdom. Research in Learning Technology. 27. https://doi.org/10.25304/rlt.v27.2073
  • AlJarrah, A., Thomas, M. K., & Shehab, M. (2018). Investigating temporal access in a flipped classroom: procrastination persists. International Journal of Educational Technology in Higher Education, 15(1). https://doi.org/10.1186/s41239-017-0083-9
  • Almeda, M. (2018). Comparing the factors that predict completion and grades among for-credit and open/mooc students in online learning. Online Learning, 22(1), 1-18.
  • Alonso‐Fernández, C., Martínez‐Ortiz, I., Caballero, R., Freire, M., & Fernández‐Manjón, B. (2019). Predicting students’ knowledge after playing a serious game based on learning analytics data: A case study. Journal of Computer Assisted Learning. https://doi.org/10.1111/jcal.12405
  • Atherton, M., & Shah, M., Vazquez, J., Griffiths, Z., Jackson, B., Burgess, C. (2017). Using learning analytics to assess student engagement and academic outcomes in open access enabling programmes. Open Learning: The Journal of Open, Distance and e-Learning. 32. 1-18. https://doi.org/10.1080/02680513.2017.1309646
  • Banihashem, S. K., Aliabadi, K., Pourroostaei Ardakani, S., Delaver, A., & Nili A. M. (2018). Learning analytics: A systematic literature review. Interdisciplinary Journal of Virtual Learning in Medical Sciences, 9(2).
  • Bahçeci, F. (2015). Öğrenme yönetim sistemlerinde kullanılan öğrenme analitikleri araçlarının incelenmesi. Turkish Journal of Educational Studies, 2 (1) , 41-58.
  • Barbosa, G., Nunes, J., & Chaves, J. (2019). Ação dos tutores e sua relação com o desempenho dos estudantes em curso de Licenciatura em Química sob a perspectiva da analítica da aprendizagem. Revista Iberoamericana de Educación. 80. 167-191. https://doi.org/10.35362/rie8013469
  • Berland, M., Baker, R. S., & Blikstein, P. (2014). Educational data mining and learning analytics: Applications to constructionist research. Technology, Knowledge and Learning, 19(1-2), 205-220.
  • Bharara, S., Sabitha, S., & Bansal, A. (2017). Application of learning analytics using clustering data Mining for Students’ disposition analysis. Education and Information Technologies, 23(2), 957–984. https://doi.org/10.1007/s10639-017-9645-7
  • Blikstein, P. (2011). Using learning analytics to assess students' behavior in open-ended programming tasks. In Proceedings of the 1st international Conference on Learning Analytics and Knowledge (pp. 110-116). Edmonton, AB: ACM.https://doi.org/110-116. 10.1145/2090116.2090132
  • Bodong, C., Monica, R., Ching, S. C., & Huang-Yao, H. (2017) Two tales of time: uncovering the significance of sequential patterns among contribution types in knowledge-building discourse, Interactive Learning Environments, 25:2, 162-175, https://doi.org/10.1080/10494820.2016.1276081
  • Bronnimann, J., West, D., Huijser, H., & Heath, D. (2018). Applying learning analytics to the scholarship of teaching and learning. Innovative Higher Education. 43. https://doi.org/10.1007/s10755-018-9431-5
  • Büyüköztürk, Ş., Kılıç, E., Akgün, Ö., Karadeniz, Ş., & Demirel, F. (2014). Bilimsel araştırma yöntemleri. Ankara: Pegem Yayınları ISBN: 978-9944-919-28-9
  • Cano, A. R., Fernández‐Manjón, B. & García‐Tejedor, Á.J. (2018), Using game learning analytics for validating the design of a learning game for adults with intellectual disabilities. British Journal of Educational Technology, 49: 659-672. https://doi.org/10.1111/bjet.12632
  • Cano, A., & Leonard II, J. (2019). Interpretable multiview early warning system adapted to underrepresented student populations. IEEE Transactions on Learning Technologies. 12. 198-211. https://doi.org/10.1109/TLT.2019.2911079
  • Chatti, M. A., Dyckhoff, A. L., Schroeder, U., & Thüs, H. (2012). A reference model for learning analytics. International Journal of Technology Enhanced Learning, 4(5-6), 318-331.
  • Chatti, M. A., & Muslim, A. (2019). The PERLA framework: Blending personalization and learning analytics. The International Review of Research in Open and Distributed Learning, 20(1). https://doi.org/10.19173/irrodl.v20i1.3936.
  • Cohen, A., Shimony, U., Nachmias, R., & Soffer, T. (2018). Active learners' characterization in MOOC forums and their generated knowledge. British Journal of Educational Technology. 50. https://doi.org/10.1111/bjet.12670
  • Coll, C., Engel, A., & Niño, S. (2017). A learning analytic based on the distributed educational influence model. Revista de Educación a Distancia. 2. 31-34. https://doi.org/10.6018/red/53/2
  • Clow, D. (2012). The learning analytics cycle. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge - LAK ’12 (s. 134). http://doi.org/10.1145/2330601.2330636
  • Cooper, A. (2012). A Brief History of Analytics. JISC CETIS Analytics Series, 1(9), 1–21
  • De Medio, C., Limongelli, C., Sciarrone, F., & Temperini, M. (2020). Moodle REC: A recommendation system for creating courses using the moodle e-learning platform. Computers in Human Behavior, 104, 106168.
  • De Santis, A., Sannicandro, K., Bellini, C., & Minerva, T. (2019). Predictive model selection for completion rate in Massive Open Online Courses. Journal of E-Learning and Knowledge Society, 15(3), 145-159. https://doi.org/10.20368/1971-8829/1135034
  • Dipace, A., Fazlagic, B., & Minerva, T. (2019), The design of a learning analytics dashboard: eduopen mooc platform redefinition procedures. Journal of e-Learning and Knowledge Society, v.15, n.3, 29-47. ISSN: 1826-6223, e-ISSN:1971-8829. https://doi.org/10.20368/1971-8829/1135044
  • Dixon-Román, E., Nichols, T. P., & Nyame-Mensah, A. (2019). The racializing forces of/in AI educational technologies. Learning, Media and Technology, 1–15. https://doi.org/10.1080/17439884.2020.1667825
  • Dollinger, M., Liu, D., Arthars, N., & Lodge, J. (2019). Working together in learning analytics towards the co-creation of value. Journal of Learning Analytics. 6. 10-26. https://doi.org/10.18608/jla.2019.62.2.
  • Dounas, L., Salinesi, C., & El Beqqali, O. (2019). Requirements monitoring and diagnosis for improving adaptive e-learning systems design. Journal of Information Technology Education: Research. https://doi.org/10.28945/4270
  • Dyckhoff, A. L., Zielke, D., Bültmann, M., Chatti, M. A., & Schroeder, U. (2012). Design and implementation of a learning analytics toolkit for teachers. Educational Technology & Society, 15(3), 58-76.
  • Elouazizi, N. (2014). Critical factors in data governance for learning analytics. Journal of Learning Analytics, 1(3), 211-222.
  • Ferreira, A. C., Altamirano, M., Ortega, M. d. I. Á. L., & González, O. A. G. (2019). Analítica del aprendizaje y las neurociencias educativas: Nuevos retos en la integración tecnológica. Revista Iberoamericana de Educación, 80(1).
  • Ferguson, R. (2012). Learning analytics: drivers, developments and challenges. International Journal of Technology Enhanced Learning, 4(5-6), 304-317.
  • Fırat, M., Sakar, N., & Kabakcı Yurdakul, İ. (2016). Web interface design principles for adults’ self-directed learning. Turkish Online Journal of Distance Education, 17 (4), 0-0 . https://doi.org/10.17718/tojde.47086
  • Fiaidhi, J. (2014). The next step for learning analytics. IT Professional, 16(5), 4-8.
  • Foung, D., & Chen, J. (2019). A learning analytics approach to the evaluation of an online learning package in a hong kong university. Electronic Journal of e-Learning, 17, 11-24.
  • Gall, M. D., Borg, W. R., & Gall, J. P. (1996). Education research: An introduction (6th edn). White Plains, NY: Longman.
  • Gash, S. (1999). Effective Literature Searching for Research (2nd edn). Aldershot: Gower Publishing Ltd.
  • Graf, S. T., & Carlsen, D. (2016). Systematic, digital student feedback for differentiated teaching. IARTEM e-Journal. 8. 2-25.
  • Gray, C. C., Perkins, D., & Ritsos, P. D. (2019). Degree pictures: Visualizing the university student journey. Assessment & Evaluation in Higher Education, 1–11. https://doi.org/10.1080/02602938.2019.1676397
  • Guo, P., Saab, N., Post, L. S., & Admiraal, W. (2020). A review of project-based learning in higher education: Student outcomes and measures. International Journal of Educational Research, 102, 101586.
  • Guenaga, M., & Garaizar, P. (2016). From analysis to improvement: Challenges and opportunities for learning analytics. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 11(3), 146-147.
  • Hernandez N. N., Garcia M. A. & Rienties, B. (2016). Making the most of “external” group members in blended and online environments. Interactive Learning Environments. https://doi.org/10.1080/10494820.2016.1140656
  • Hershkovitz, A., Sitman, R., Israel-Fishelson, R., Eguíluz, A., Garaizar, P., & Guenaga, M. (2019). Creativity in the acquisition of computational thinking. Interactive Learning Environments, 27. 1-17. https://doi.org/10.1080/10494820.2019.1610451
  • Hsiao, C. C., Huang, J. C. H., Huang, A. Y. Q., Lu, O. H. T., Yin, C. J., & Yang, S. J. H. (2018). Exploring the effects of online learning behaviors on short-term and long-term learning outcomes in flipped classrooms. Interactive Learning Environments, 1–18. https://doi.org/10.1080/10494820.2018.1522651
  • Howard, E., Meehan, M., & Parnell, A. (2018). Contrasting prediction methods for early warning systems at undergraduate level. The Internet and Higher Education, 37. https://doi.org/10.1016/j.iheduc.2018.02.001
  • Hui, Y. K., Mai, B., Qian, S., & Kwok, L. F. (2018). Cultivating better learning attitudes: A preliminary longitudinal study. Open Learning: The Journal of Open, Distance and e-Learning, 33(2), 155–170. https://doi.org/10.1080/02680513.2018.1454830
  • Iglesia-Villasol, M. C. (2019). Learning analytics para una visión tipificada del aprendizaje de los estudiantes. Un estudio de caso. Revista Iberoamericana de Educación. 80, 55-88. https://doi.org/10.35362/rie8013444
  • Israel-Fishelson, R., & Hershkovitz, A. (2019). Persistence in a game-based learning environment: The case of elementary school students learning computational thinking. Journal of Educational Computing Research, 58. https://doi.org/10.1177/0735633119887187
  • Karaoğlan Yılmaz, F. G., Ustun, A. B. & Yılmaz, R. (2020). Investigation of pre-service teachers' opinions on advantages and disadvantages of online formative assessment: an example of online multiple-choice exam. Journal of Teacher Education and Lifelong Learning, 10-19.
  • Kent, C., Rechavi, A., & Rafaeli, S. (2019). Networked learning analytics: a theoretically informed methodology for analytics of collaborative learning. Learning In a Networked Society, doi: https://doi.org/10.1007/978-3-030-14610-8_9
  • Khalil, M., Prinsloo, P., & Slade, S. (2018). User consent in MOOCS – micro, meso, and macro perspectives. The International Review of Research in Open and Distributed Learning, 19. https://doi.org/10.19173/irrodl.v19i5.3908
  • Khanlari, A., Zhu, G., & Scardamalia, M. (2019). Knowledge building analytics to explore crossing disciplinary and grade-level boundaries. Journal of Learning Analytics, 6(3), 60–75. https://doi.org/10.18608/jla.2019.63.9
  • Kim, D., Park, Y., Yoon, M., & Jo, I. (2016). Toward evidence-based learning analytics: Using proxy variables to improve asynchronous online discussion environments. The Internet and Higher Education, 30. https://doi.org/10.1016/j.iheduc.2016.03.002
  • Kitto, K., Lupton, M., Davis, K., & Waters, Z. (2017). Designing for student-facing learning analytics. Australasian Journal of Educational Technology, 33, 152-168. https://doi.org/10.14742/ajet.3607
  • Kühbeck, F., Berberat, P. O., Engelhardt, S., & Sarikas, A. (2019). Correlation of online assessment parameters with summative exam performance in undergraduate medical education of pharmacology: a prospective cohort study. BMC Medical Education, 19(1). https://doi.org/10.1186/s12909-019-1814-5
  • Laakso, M., & Kaila, E., & Rajala, T. (2018). ViLLE – collaborative education tool: Designing and utilizing an exercise-based learning environment. Education and Information Technologies, 23. https://doi.org/10.1007/s10639-017-9659-1
  • Liu, S., Peng, X., Cheng, H., Liu, Z., Sun, J., & Chongyang, Y. (2018). Unfolding sentimental and behavioral tendencies of learners' concerned topics from course reviews in a MOOC. Journal of Educational Computing Research. 57. 073563311875718. https://doi.org/10.1177/0735633118757181
  • Ma, J., Han, X., Yang, J., & Cheng, J. (2015). Examining the necessary condition for engagement in an online learning environment based on learning analytics approach: The role of the instructor. The Internet and Higher Education, 24, 26-34.
  • Maier, U., Ramsteck, C. & Hoffmann, K. (2017). Formative leistungsdiagnostik und learning analytics: Entwicklung, nutzung und optimierung eines onlinebasierten kurses für die diagnostik und förderung von grundwissen im kompetenzbereich sprachbetrachtung. Z Erziehungswiss 20, 728–747. https://doi.org/10.1007/s11618-017-0776-9
  • Manuel, P., José, P., Manuel, F., Iván, M., & Baltasar, F. (2019). Simplifying the creation of adventure serious games with educational-oriented features. Journal of Educational Technology & Society, 22(3), 32-46. https://doi.org/10.2307/26896708
  • McKee, H. (2017). An instructor learning analytics implementation model. Online Learning, 21(3), 87–102. https://dx.doi.org/10.24059/olj.v21i3.1230
  • Mirriahi, N., Liaqat, D., Dawson, S. & Gasevic, D. (2016). Uncovering student learning profiles with a video annotation tool: Reflective learning with and without instructional norms. Educational Technology Research and Development, 64, 1083–1106 . https://doi.org/10.1007/s11423-016-9449-2
  • Mittelmeier, J., Long, D., Cin, F. M., Reedy, K., Gunter, A., Raghuram, P., & Rienties, B. (2018). Learning design in diverse institutional and cultural contexts: suggestions from a participatory workshop with higher education professionals in Africa. Open Learning: The Journal of Open, Distance and e-Learning, 33(3), 250–266. https://doi.org/10.1080/02680513.2018.1486185
  • Montgomery, A., Mousavi, A., Carbonaro, M., Hayward, D., Dunn, W. (2017). Using learning analytics to explore self‐regulated learning in flipped blended learning music teacher education. British Journal of Educational Technology. 50. https://doi.org/10.1111/bjet.12590
  • Mørch, A., Engeness, I., Cheng, V., Cheung, K., & Wong, K. (2017). Essaycritic: writing to learn with a knowledge-based design critiquing system. Educational Technology and Society. 20. 213-223.
  • Mouri, K., Uosaki, N., & Ogata, H. (2018). Learning analytics for supporting seamless language learning using e-book with ubiquitous learning system. Educational Technology and Society. 21. 150-163.
  • Mouri, K., Suzuki, F., Shimada, A., Uosaki, N., Yin, C., Kaneko, K., & Ogata, H. (2019). Educational data mining for discovering hidden browsing patterns using non-negative matrix factorization. Interactive Learning Environments. https://doi.org/10.1080/10494820.2019.1619594
  • Nallaya, S., Delaney, L., Savelsberg, H. & Lancione, C. (2018). Developing a self-regulated curricula of scaffolded academic and information literacies in a digital learning environment. Journal of Academic Language and Learning, 12(1), 179-192.
  • Nistor, N., Dascalu, M., Trausan-Matu, S. (2019). Joining informal learning in online knowledge communities and formal learning in higher education: Instructional design and evaluation of a blended-learning seminar with learning analytics support. Interaction Design and Architecture(s) Journal 43: 110-127.
  • Papamitsiou, Z., & Economides, A. (2019). Exploring autonomous learning capacity from a self-regulated learning perspective using learning analytics. British Journal of Educational Technology. 50. https://doi.org/10.1111/bjet.12747
  • Paquette, L., & Baker, R. S. (2019) Comparing machine learning to knowledge engineering for student behavior modeling: a case study in gaming the system. Interactive Learning Environments, 27:5-6, 585-597. https://doi.org/10.1080/10494820.2019.1610450
  • Petit, J., Roura, S., Carmona, J., Cortadella, J., Duch, A., Gimenez, O., Mani, A., Mas, J., Rodriguez-Carbonella, E., Rubio, A., Pedro, J., & Venkataramani, D. (2017). Jutge.org: Characteristics and Experiences. IEEE Transactions on Learning Technologies. https://doi.org/10.1109/TLT.2017.2723389
  • Prieto, L., Sharma, K., Kidziński, Ł., Rodríguez-Triana, M., & Dillenbourg, P. (2018). Multimodal teaching analytics: Automated extraction of orchestration graphs from wearable sensor data. Journal of Computer Assisted Learning, 34. https://doi.org/10.1111/jcal.12232
  • Polyzou, A., & Karypis, G. (2019). Feature extraction for next-term prediction of poor student performance. IEEE Transactions on Learning Technologies. PP. 1-1. https://doi.org/10.1109/TLT.2019.2913358.
  • Qin, J., Jia, Z., & Ma, P. (2019). Analysing learning behaviours of advanced mathematics in MOOCs. International Journal of Continuing Engineering Education and Life-Long Learning, 29. 113. https://doi.org/10.1504/IJCEELL.2019.099251
  • Redondo, E., Regot, J., Fonseca, D., Valls, F., & Mateu, L. (2016). One picture or a thousand words? Influence of question length and illustration support on the success and skip rates on online tests. Education in the Knowledge Society. 17. 111. https://doi.org/10.14201/eks2016174111128
  • Rehrey, G., Shepard, L., Hostetter, C., Reynolds, A., & Groth, D. (2019). Engaging faculty in learning analytics: Agents of ınstitutional culture change. Journal of Learning Analytics, 6. 86-94. https://doi.org/10.18608/jla.2019.62.6
  • Reid-Martinez, K., & Mathews, M. (2015). Big data in education: Harnessing data for better educational outcomes. Center for Digital Education, 100, 33.
  • Ross, S. R., Volz, V., Lancaster, M. K., & Divan, A. (2018). A generalizable framework for multi-scale auditing of digital learning provision in higher education. Online Learning, 22(2), 249-270.
  • Schwarz, B.B., Prusak, N., Swidan, O., Livny, A., Gal, Y., & Segal, A. (2018). Orchestrating the emergence of conceptual learning: A case study in a geometry class. International Journal of Computer-Supported Collaborative Learning, 13, 189-211.
  • Shadiev, R., Wu, T., & Huang, Y. (2017). Enhancing learning performance, attention, and meditation using a speech-to-text recognition application: evidence from multiple data sources. Interactive Learning Environments. 25. 249-261. https://doi.org/10.1080/10494820.2016.1276079
  • Shibani, A., Koh, E., Lai, V. & Shim, K.J. (2017). Assessing the language of chat for teamwork dialogue. Educational Technology and Society. 20. 224-237.
  • Shoukry, L., & Göbel, S. (2019). Realizing a mobile multimodal platform for serious games analytics. International Journal of Serious Games, 6(4), 19 - 48. https://doi.org/10.17083/ijsg.v6i4.323
  • Shum, S. J. B. (2019). Critical data studies, abstraction and learning analytics: Editorial to selwyn's lak keynote and ınvited commentaries, 6(3), 5-10. Journal of Learning Analytics.
  • Siemens, G., & Long, P. (2011). Penetrating the fog: Analytics in learning and education. Educause Review, 46(5), 30-32
  • Siemens, G. (2013). Learning analytics the emergence of a discipline. American Behavioral Scientist, 57(10), 1380-1400 https://doi.org/10.1177/0002764213498851
  • Soffer, T., Cohen, A. (2019). Students' engagement characteristics predict success and completion of online courses. Journal of Computer Assisted Learning. 35. https://doi.org/10.1111/jcal.12340
  • Swan, K., Bloemer, W., Bogle, L., & Day, S. (2018). Digging deeper into the data: The role of gateway courses in online student retention. Online Learning. 22. https://doi.org/10.24059/olj.v22i4.1515
  • Takev, M., Rodriguez-Artacho, M., & Somova, E. (2019). Creating interactive and traceable epub learning content from moodle courses. 62.
  • Takev, M., Somova, E., & Rodriguez-Artacho, M. (2019). Converter from moodle lessons to interactive epub ebooks. 62. 616-625.
  • Tempelaar, D. (2019). Supporting the less-adaptive student: the role of learning analytics, formative assessment and blended learning. Assessment & Evaluation in Higher Education, 1–15. https://doi.org/10.1080/02602938.2019.1677855
  • Tempelaar, D. T., Rienties, B. & Nguyen, Q. (2017). Towards actionable learning analytics using dispositions. IEEE Transactions on Learning Technologies, 10 (1), 6-16.
  • Terras, M., Boyle, E., Ramsay, J., & Jarrett, D. (2018). The opportunities and challenges of serious games for people with an intellectual disability. British Journal of Educational Technology. 49. 690-700. https://doi.org/10.1111/bjet.12638
  • Trezise, K., Ryan, T., de Barba, P., & Kennedy, G. (2019). Detecting contract cheating using learning analytics, Journal of Learning Analytics, v6 n3 p90-104
  • Truong, H. M. (2016). Integrating learning styles and adaptive e-learning system: Current developments, problems and opportunities. Computers in human behavior, 55, 1185-1193.
  • Vaz-Fernandes, P., & Caeiro, S. (2019). Students’ perceptions of a food safety and quality e-learning course: a CASE study for a MSC in food consumption. International Journal of Educational Technology in Higher Education, 16(1). https://doi.org/10.1186/s41239-019-0168-8
  • Vidal, E. C. E., Ty, J. F., Caluya, N. R., & Rodrigo, M. M. T. (2018). MAGIS: mobile augmented-reality games for instructional support. Interactive Learning Environments, 1–13. https://doi.org/10.1080/10494820.2018.1504305
  • Walsh, J., O'Brien, M., & Slattery, D. (2019). Video viewing patterns using different teaching treatments: A case study using youtube analytics. Research in Education and Learning Innovation Archives. 78. https://doi.org/10.7203/realia.22.15389
  • Wang, S. P., & Chen, Y. L. (2018). Effects of multimodal learning analytics with concept maps on college students' vocabulary and reading performance. Journal of Educational Technology & Society, 21(4), 12-25.
  • Xing, W., Pei, B., Li, S., Chen, G., & Xie C. (2019): Using learning analytics to support students’ engineering design: the angle of prediction, Interactive Learning Environments, https://doi.org/10.1080/10494820.2019.1680391
  • Watson, C., Wilson, A., Drew, V., & Thompson, T. L. (2016). Small data, online learning and assessment practices in higher education: a case study of failure?. Assessment & Evaluation in Higher Education. 42. 1-16. https://doi.org/10.1080/02602938.2016.1223834
  • Weintrop, D., & Wilensky, U. (2019). Transitioning from introductory block-based and text-based environments to professional programming languages in high school computer science classrooms. Computers & Education, 103646. https://doi.org/10.1016/j.compedu.2019.103646
  • Wilson, M., Gochyyev, P. & Scalise, K. (2016). Assessment of learning in digital interactive social networks: A learning analytics approach. Online Learning. 20. https://doi.org/10.24059/olj.v20i2.799
  • Wong, B. (2017). Learning analytics in higher education: an analysis of case studies. Asian Association of Open Universities Journal. 12. 21-40. https://doi.org/10.1108/AAOUJ-01-2017-0009
  • Wu, Y., Guo, S., & Zhu, L. (2019). Design and implementation of data collection mechanism for 3D design course based on xAPI standard. Interactive Learning Environments, 1–18. https://doi.org/10.1080/10494820.2019.1696842
  • Yiling, H., Bian, W. & Xiaoqing, G. (2017). Learning analysis of K-12 students’ online problem solving: a three-stage assessment approach. Interactive Learning Environments, 25:2, 262-279, https://doi.org/10.1080/10494820.2016.1276080

Öğrenme Analitikleri Kapsamında 2016-2019 Yıllar Arasında Web of Science Veritabanında Yayınlanan Makalelerin Betimsel Analizi

Yıl 2021, Cilt: 3 Sayı: 1, 42 - 76, 30.06.2021

Öz

Büyük veri, eğitimin geleceğinde, rol oynayabilecek temel faktörlerden kabul edilmektedir. Veriler, sınıf tekrarına kalan öğrencinin başarısızlığının altında yatan sebeplerin neler olduğunu gün yüzüne çıkarabilirken; aynı zamanda başarılı öğrencilerin daha da başarılı olması için hangi yolları izlemeleri gerektiğine dair yol gösterebilmektedir. Eğitimde analitik kavramı 2008 yılında, eğitime yönelik olarak öğrenmeyi anlama ve onu optimize etme olarak ifade edilirken; 2010 yılından günümüze ise öğrenme analitikleri (ÖA), konsepti dahilinde, bağımsız bir alan olarak değerlendirilmektedir. Bu çalışmada, 2016-2019 yılları arasında “Learning Analytics” anahtar kelimesinin Web of Science’da yayınlanan SSCI, SCI-Expanded, ve A&HCI indekslerinde Eğitim/Eğitim araştırmaları alanında yayınlanan makaleler değerlendirilmiştir. Bu kapsamda 575 makale tespit edilmiştir. Kitap bölümü, internet ortamında bulunamayan ve makale olarak ele alınmayan çalışmalar çıkartıldıktan sonra 529 makale incelenmiştir. İnceleme kriterleri arasında makalenin türü, araştırma yöntemi, veri toplama teknikleri, örneklem profilleri, çalışma alanları, sık kullanılan anahtar kelimeler, öneriler, bağımlı/bağımsız değişkenler, yazar sayıları/yazıldığı dillerin dağılımı gibi parametreler ele alınmıştır. İnceleme sonrasında öğrenme analitikleri alanında deneysel çalışma sayısının yüksek olduğu, bilgisayar/bilişim alanının öncelikle çalışma alanı olarak tercih edildiği tespit edilmiştir. En sık kullanılan bağımlı ve bağımsız değişkenlerle birlikte anahtar kelimelerin tespiti de ÖA çalışmalarının hangi konular üzerine yoğunlaştığına dair bilgi sahibi olunmasını sağlamıştır.

Kaynakça

  • Adejo, O. W., & Connolly, T. (2018). Predicting student academic performance using multi-model heterogeneous ensemble approach. Journal of Applied Research in Higher Education, 10(1), 61-75.
  • Ahn, J. Y., Mun, G. S., Han, K. S., & Choi, S. H. (2016). An online authoring tool for creating activity-based learning objects. Education and Information Technologies, 22(6), 3005–3015. https://doi.org/10.1007/s10639-016-9567-9
  • Alexander, J., & McLachlan, S., & Barcellona, M., & Sackley, C. (2019). Technology-enhanced learning in physiotherapy education: Student satisfaction and knowledge acquisition of entry-level students in the United Kingdom. Research in Learning Technology. 27. https://doi.org/10.25304/rlt.v27.2073
  • AlJarrah, A., Thomas, M. K., & Shehab, M. (2018). Investigating temporal access in a flipped classroom: procrastination persists. International Journal of Educational Technology in Higher Education, 15(1). https://doi.org/10.1186/s41239-017-0083-9
  • Almeda, M. (2018). Comparing the factors that predict completion and grades among for-credit and open/mooc students in online learning. Online Learning, 22(1), 1-18.
  • Alonso‐Fernández, C., Martínez‐Ortiz, I., Caballero, R., Freire, M., & Fernández‐Manjón, B. (2019). Predicting students’ knowledge after playing a serious game based on learning analytics data: A case study. Journal of Computer Assisted Learning. https://doi.org/10.1111/jcal.12405
  • Atherton, M., & Shah, M., Vazquez, J., Griffiths, Z., Jackson, B., Burgess, C. (2017). Using learning analytics to assess student engagement and academic outcomes in open access enabling programmes. Open Learning: The Journal of Open, Distance and e-Learning. 32. 1-18. https://doi.org/10.1080/02680513.2017.1309646
  • Banihashem, S. K., Aliabadi, K., Pourroostaei Ardakani, S., Delaver, A., & Nili A. M. (2018). Learning analytics: A systematic literature review. Interdisciplinary Journal of Virtual Learning in Medical Sciences, 9(2).
  • Bahçeci, F. (2015). Öğrenme yönetim sistemlerinde kullanılan öğrenme analitikleri araçlarının incelenmesi. Turkish Journal of Educational Studies, 2 (1) , 41-58.
  • Barbosa, G., Nunes, J., & Chaves, J. (2019). Ação dos tutores e sua relação com o desempenho dos estudantes em curso de Licenciatura em Química sob a perspectiva da analítica da aprendizagem. Revista Iberoamericana de Educación. 80. 167-191. https://doi.org/10.35362/rie8013469
  • Berland, M., Baker, R. S., & Blikstein, P. (2014). Educational data mining and learning analytics: Applications to constructionist research. Technology, Knowledge and Learning, 19(1-2), 205-220.
  • Bharara, S., Sabitha, S., & Bansal, A. (2017). Application of learning analytics using clustering data Mining for Students’ disposition analysis. Education and Information Technologies, 23(2), 957–984. https://doi.org/10.1007/s10639-017-9645-7
  • Blikstein, P. (2011). Using learning analytics to assess students' behavior in open-ended programming tasks. In Proceedings of the 1st international Conference on Learning Analytics and Knowledge (pp. 110-116). Edmonton, AB: ACM.https://doi.org/110-116. 10.1145/2090116.2090132
  • Bodong, C., Monica, R., Ching, S. C., & Huang-Yao, H. (2017) Two tales of time: uncovering the significance of sequential patterns among contribution types in knowledge-building discourse, Interactive Learning Environments, 25:2, 162-175, https://doi.org/10.1080/10494820.2016.1276081
  • Bronnimann, J., West, D., Huijser, H., & Heath, D. (2018). Applying learning analytics to the scholarship of teaching and learning. Innovative Higher Education. 43. https://doi.org/10.1007/s10755-018-9431-5
  • Büyüköztürk, Ş., Kılıç, E., Akgün, Ö., Karadeniz, Ş., & Demirel, F. (2014). Bilimsel araştırma yöntemleri. Ankara: Pegem Yayınları ISBN: 978-9944-919-28-9
  • Cano, A. R., Fernández‐Manjón, B. & García‐Tejedor, Á.J. (2018), Using game learning analytics for validating the design of a learning game for adults with intellectual disabilities. British Journal of Educational Technology, 49: 659-672. https://doi.org/10.1111/bjet.12632
  • Cano, A., & Leonard II, J. (2019). Interpretable multiview early warning system adapted to underrepresented student populations. IEEE Transactions on Learning Technologies. 12. 198-211. https://doi.org/10.1109/TLT.2019.2911079
  • Chatti, M. A., Dyckhoff, A. L., Schroeder, U., & Thüs, H. (2012). A reference model for learning analytics. International Journal of Technology Enhanced Learning, 4(5-6), 318-331.
  • Chatti, M. A., & Muslim, A. (2019). The PERLA framework: Blending personalization and learning analytics. The International Review of Research in Open and Distributed Learning, 20(1). https://doi.org/10.19173/irrodl.v20i1.3936.
  • Cohen, A., Shimony, U., Nachmias, R., & Soffer, T. (2018). Active learners' characterization in MOOC forums and their generated knowledge. British Journal of Educational Technology. 50. https://doi.org/10.1111/bjet.12670
  • Coll, C., Engel, A., & Niño, S. (2017). A learning analytic based on the distributed educational influence model. Revista de Educación a Distancia. 2. 31-34. https://doi.org/10.6018/red/53/2
  • Clow, D. (2012). The learning analytics cycle. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge - LAK ’12 (s. 134). http://doi.org/10.1145/2330601.2330636
  • Cooper, A. (2012). A Brief History of Analytics. JISC CETIS Analytics Series, 1(9), 1–21
  • De Medio, C., Limongelli, C., Sciarrone, F., & Temperini, M. (2020). Moodle REC: A recommendation system for creating courses using the moodle e-learning platform. Computers in Human Behavior, 104, 106168.
  • De Santis, A., Sannicandro, K., Bellini, C., & Minerva, T. (2019). Predictive model selection for completion rate in Massive Open Online Courses. Journal of E-Learning and Knowledge Society, 15(3), 145-159. https://doi.org/10.20368/1971-8829/1135034
  • Dipace, A., Fazlagic, B., & Minerva, T. (2019), The design of a learning analytics dashboard: eduopen mooc platform redefinition procedures. Journal of e-Learning and Knowledge Society, v.15, n.3, 29-47. ISSN: 1826-6223, e-ISSN:1971-8829. https://doi.org/10.20368/1971-8829/1135044
  • Dixon-Román, E., Nichols, T. P., & Nyame-Mensah, A. (2019). The racializing forces of/in AI educational technologies. Learning, Media and Technology, 1–15. https://doi.org/10.1080/17439884.2020.1667825
  • Dollinger, M., Liu, D., Arthars, N., & Lodge, J. (2019). Working together in learning analytics towards the co-creation of value. Journal of Learning Analytics. 6. 10-26. https://doi.org/10.18608/jla.2019.62.2.
  • Dounas, L., Salinesi, C., & El Beqqali, O. (2019). Requirements monitoring and diagnosis for improving adaptive e-learning systems design. Journal of Information Technology Education: Research. https://doi.org/10.28945/4270
  • Dyckhoff, A. L., Zielke, D., Bültmann, M., Chatti, M. A., & Schroeder, U. (2012). Design and implementation of a learning analytics toolkit for teachers. Educational Technology & Society, 15(3), 58-76.
  • Elouazizi, N. (2014). Critical factors in data governance for learning analytics. Journal of Learning Analytics, 1(3), 211-222.
  • Ferreira, A. C., Altamirano, M., Ortega, M. d. I. Á. L., & González, O. A. G. (2019). Analítica del aprendizaje y las neurociencias educativas: Nuevos retos en la integración tecnológica. Revista Iberoamericana de Educación, 80(1).
  • Ferguson, R. (2012). Learning analytics: drivers, developments and challenges. International Journal of Technology Enhanced Learning, 4(5-6), 304-317.
  • Fırat, M., Sakar, N., & Kabakcı Yurdakul, İ. (2016). Web interface design principles for adults’ self-directed learning. Turkish Online Journal of Distance Education, 17 (4), 0-0 . https://doi.org/10.17718/tojde.47086
  • Fiaidhi, J. (2014). The next step for learning analytics. IT Professional, 16(5), 4-8.
  • Foung, D., & Chen, J. (2019). A learning analytics approach to the evaluation of an online learning package in a hong kong university. Electronic Journal of e-Learning, 17, 11-24.
  • Gall, M. D., Borg, W. R., & Gall, J. P. (1996). Education research: An introduction (6th edn). White Plains, NY: Longman.
  • Gash, S. (1999). Effective Literature Searching for Research (2nd edn). Aldershot: Gower Publishing Ltd.
  • Graf, S. T., & Carlsen, D. (2016). Systematic, digital student feedback for differentiated teaching. IARTEM e-Journal. 8. 2-25.
  • Gray, C. C., Perkins, D., & Ritsos, P. D. (2019). Degree pictures: Visualizing the university student journey. Assessment & Evaluation in Higher Education, 1–11. https://doi.org/10.1080/02602938.2019.1676397
  • Guo, P., Saab, N., Post, L. S., & Admiraal, W. (2020). A review of project-based learning in higher education: Student outcomes and measures. International Journal of Educational Research, 102, 101586.
  • Guenaga, M., & Garaizar, P. (2016). From analysis to improvement: Challenges and opportunities for learning analytics. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 11(3), 146-147.
  • Hernandez N. N., Garcia M. A. & Rienties, B. (2016). Making the most of “external” group members in blended and online environments. Interactive Learning Environments. https://doi.org/10.1080/10494820.2016.1140656
  • Hershkovitz, A., Sitman, R., Israel-Fishelson, R., Eguíluz, A., Garaizar, P., & Guenaga, M. (2019). Creativity in the acquisition of computational thinking. Interactive Learning Environments, 27. 1-17. https://doi.org/10.1080/10494820.2019.1610451
  • Hsiao, C. C., Huang, J. C. H., Huang, A. Y. Q., Lu, O. H. T., Yin, C. J., & Yang, S. J. H. (2018). Exploring the effects of online learning behaviors on short-term and long-term learning outcomes in flipped classrooms. Interactive Learning Environments, 1–18. https://doi.org/10.1080/10494820.2018.1522651
  • Howard, E., Meehan, M., & Parnell, A. (2018). Contrasting prediction methods for early warning systems at undergraduate level. The Internet and Higher Education, 37. https://doi.org/10.1016/j.iheduc.2018.02.001
  • Hui, Y. K., Mai, B., Qian, S., & Kwok, L. F. (2018). Cultivating better learning attitudes: A preliminary longitudinal study. Open Learning: The Journal of Open, Distance and e-Learning, 33(2), 155–170. https://doi.org/10.1080/02680513.2018.1454830
  • Iglesia-Villasol, M. C. (2019). Learning analytics para una visión tipificada del aprendizaje de los estudiantes. Un estudio de caso. Revista Iberoamericana de Educación. 80, 55-88. https://doi.org/10.35362/rie8013444
  • Israel-Fishelson, R., & Hershkovitz, A. (2019). Persistence in a game-based learning environment: The case of elementary school students learning computational thinking. Journal of Educational Computing Research, 58. https://doi.org/10.1177/0735633119887187
  • Karaoğlan Yılmaz, F. G., Ustun, A. B. & Yılmaz, R. (2020). Investigation of pre-service teachers' opinions on advantages and disadvantages of online formative assessment: an example of online multiple-choice exam. Journal of Teacher Education and Lifelong Learning, 10-19.
  • Kent, C., Rechavi, A., & Rafaeli, S. (2019). Networked learning analytics: a theoretically informed methodology for analytics of collaborative learning. Learning In a Networked Society, doi: https://doi.org/10.1007/978-3-030-14610-8_9
  • Khalil, M., Prinsloo, P., & Slade, S. (2018). User consent in MOOCS – micro, meso, and macro perspectives. The International Review of Research in Open and Distributed Learning, 19. https://doi.org/10.19173/irrodl.v19i5.3908
  • Khanlari, A., Zhu, G., & Scardamalia, M. (2019). Knowledge building analytics to explore crossing disciplinary and grade-level boundaries. Journal of Learning Analytics, 6(3), 60–75. https://doi.org/10.18608/jla.2019.63.9
  • Kim, D., Park, Y., Yoon, M., & Jo, I. (2016). Toward evidence-based learning analytics: Using proxy variables to improve asynchronous online discussion environments. The Internet and Higher Education, 30. https://doi.org/10.1016/j.iheduc.2016.03.002
  • Kitto, K., Lupton, M., Davis, K., & Waters, Z. (2017). Designing for student-facing learning analytics. Australasian Journal of Educational Technology, 33, 152-168. https://doi.org/10.14742/ajet.3607
  • Kühbeck, F., Berberat, P. O., Engelhardt, S., & Sarikas, A. (2019). Correlation of online assessment parameters with summative exam performance in undergraduate medical education of pharmacology: a prospective cohort study. BMC Medical Education, 19(1). https://doi.org/10.1186/s12909-019-1814-5
  • Laakso, M., & Kaila, E., & Rajala, T. (2018). ViLLE – collaborative education tool: Designing and utilizing an exercise-based learning environment. Education and Information Technologies, 23. https://doi.org/10.1007/s10639-017-9659-1
  • Liu, S., Peng, X., Cheng, H., Liu, Z., Sun, J., & Chongyang, Y. (2018). Unfolding sentimental and behavioral tendencies of learners' concerned topics from course reviews in a MOOC. Journal of Educational Computing Research. 57. 073563311875718. https://doi.org/10.1177/0735633118757181
  • Ma, J., Han, X., Yang, J., & Cheng, J. (2015). Examining the necessary condition for engagement in an online learning environment based on learning analytics approach: The role of the instructor. The Internet and Higher Education, 24, 26-34.
  • Maier, U., Ramsteck, C. & Hoffmann, K. (2017). Formative leistungsdiagnostik und learning analytics: Entwicklung, nutzung und optimierung eines onlinebasierten kurses für die diagnostik und förderung von grundwissen im kompetenzbereich sprachbetrachtung. Z Erziehungswiss 20, 728–747. https://doi.org/10.1007/s11618-017-0776-9
  • Manuel, P., José, P., Manuel, F., Iván, M., & Baltasar, F. (2019). Simplifying the creation of adventure serious games with educational-oriented features. Journal of Educational Technology & Society, 22(3), 32-46. https://doi.org/10.2307/26896708
  • McKee, H. (2017). An instructor learning analytics implementation model. Online Learning, 21(3), 87–102. https://dx.doi.org/10.24059/olj.v21i3.1230
  • Mirriahi, N., Liaqat, D., Dawson, S. & Gasevic, D. (2016). Uncovering student learning profiles with a video annotation tool: Reflective learning with and without instructional norms. Educational Technology Research and Development, 64, 1083–1106 . https://doi.org/10.1007/s11423-016-9449-2
  • Mittelmeier, J., Long, D., Cin, F. M., Reedy, K., Gunter, A., Raghuram, P., & Rienties, B. (2018). Learning design in diverse institutional and cultural contexts: suggestions from a participatory workshop with higher education professionals in Africa. Open Learning: The Journal of Open, Distance and e-Learning, 33(3), 250–266. https://doi.org/10.1080/02680513.2018.1486185
  • Montgomery, A., Mousavi, A., Carbonaro, M., Hayward, D., Dunn, W. (2017). Using learning analytics to explore self‐regulated learning in flipped blended learning music teacher education. British Journal of Educational Technology. 50. https://doi.org/10.1111/bjet.12590
  • Mørch, A., Engeness, I., Cheng, V., Cheung, K., & Wong, K. (2017). Essaycritic: writing to learn with a knowledge-based design critiquing system. Educational Technology and Society. 20. 213-223.
  • Mouri, K., Uosaki, N., & Ogata, H. (2018). Learning analytics for supporting seamless language learning using e-book with ubiquitous learning system. Educational Technology and Society. 21. 150-163.
  • Mouri, K., Suzuki, F., Shimada, A., Uosaki, N., Yin, C., Kaneko, K., & Ogata, H. (2019). Educational data mining for discovering hidden browsing patterns using non-negative matrix factorization. Interactive Learning Environments. https://doi.org/10.1080/10494820.2019.1619594
  • Nallaya, S., Delaney, L., Savelsberg, H. & Lancione, C. (2018). Developing a self-regulated curricula of scaffolded academic and information literacies in a digital learning environment. Journal of Academic Language and Learning, 12(1), 179-192.
  • Nistor, N., Dascalu, M., Trausan-Matu, S. (2019). Joining informal learning in online knowledge communities and formal learning in higher education: Instructional design and evaluation of a blended-learning seminar with learning analytics support. Interaction Design and Architecture(s) Journal 43: 110-127.
  • Papamitsiou, Z., & Economides, A. (2019). Exploring autonomous learning capacity from a self-regulated learning perspective using learning analytics. British Journal of Educational Technology. 50. https://doi.org/10.1111/bjet.12747
  • Paquette, L., & Baker, R. S. (2019) Comparing machine learning to knowledge engineering for student behavior modeling: a case study in gaming the system. Interactive Learning Environments, 27:5-6, 585-597. https://doi.org/10.1080/10494820.2019.1610450
  • Petit, J., Roura, S., Carmona, J., Cortadella, J., Duch, A., Gimenez, O., Mani, A., Mas, J., Rodriguez-Carbonella, E., Rubio, A., Pedro, J., & Venkataramani, D. (2017). Jutge.org: Characteristics and Experiences. IEEE Transactions on Learning Technologies. https://doi.org/10.1109/TLT.2017.2723389
  • Prieto, L., Sharma, K., Kidziński, Ł., Rodríguez-Triana, M., & Dillenbourg, P. (2018). Multimodal teaching analytics: Automated extraction of orchestration graphs from wearable sensor data. Journal of Computer Assisted Learning, 34. https://doi.org/10.1111/jcal.12232
  • Polyzou, A., & Karypis, G. (2019). Feature extraction for next-term prediction of poor student performance. IEEE Transactions on Learning Technologies. PP. 1-1. https://doi.org/10.1109/TLT.2019.2913358.
  • Qin, J., Jia, Z., & Ma, P. (2019). Analysing learning behaviours of advanced mathematics in MOOCs. International Journal of Continuing Engineering Education and Life-Long Learning, 29. 113. https://doi.org/10.1504/IJCEELL.2019.099251
  • Redondo, E., Regot, J., Fonseca, D., Valls, F., & Mateu, L. (2016). One picture or a thousand words? Influence of question length and illustration support on the success and skip rates on online tests. Education in the Knowledge Society. 17. 111. https://doi.org/10.14201/eks2016174111128
  • Rehrey, G., Shepard, L., Hostetter, C., Reynolds, A., & Groth, D. (2019). Engaging faculty in learning analytics: Agents of ınstitutional culture change. Journal of Learning Analytics, 6. 86-94. https://doi.org/10.18608/jla.2019.62.6
  • Reid-Martinez, K., & Mathews, M. (2015). Big data in education: Harnessing data for better educational outcomes. Center for Digital Education, 100, 33.
  • Ross, S. R., Volz, V., Lancaster, M. K., & Divan, A. (2018). A generalizable framework for multi-scale auditing of digital learning provision in higher education. Online Learning, 22(2), 249-270.
  • Schwarz, B.B., Prusak, N., Swidan, O., Livny, A., Gal, Y., & Segal, A. (2018). Orchestrating the emergence of conceptual learning: A case study in a geometry class. International Journal of Computer-Supported Collaborative Learning, 13, 189-211.
  • Shadiev, R., Wu, T., & Huang, Y. (2017). Enhancing learning performance, attention, and meditation using a speech-to-text recognition application: evidence from multiple data sources. Interactive Learning Environments. 25. 249-261. https://doi.org/10.1080/10494820.2016.1276079
  • Shibani, A., Koh, E., Lai, V. & Shim, K.J. (2017). Assessing the language of chat for teamwork dialogue. Educational Technology and Society. 20. 224-237.
  • Shoukry, L., & Göbel, S. (2019). Realizing a mobile multimodal platform for serious games analytics. International Journal of Serious Games, 6(4), 19 - 48. https://doi.org/10.17083/ijsg.v6i4.323
  • Shum, S. J. B. (2019). Critical data studies, abstraction and learning analytics: Editorial to selwyn's lak keynote and ınvited commentaries, 6(3), 5-10. Journal of Learning Analytics.
  • Siemens, G., & Long, P. (2011). Penetrating the fog: Analytics in learning and education. Educause Review, 46(5), 30-32
  • Siemens, G. (2013). Learning analytics the emergence of a discipline. American Behavioral Scientist, 57(10), 1380-1400 https://doi.org/10.1177/0002764213498851
  • Soffer, T., Cohen, A. (2019). Students' engagement characteristics predict success and completion of online courses. Journal of Computer Assisted Learning. 35. https://doi.org/10.1111/jcal.12340
  • Swan, K., Bloemer, W., Bogle, L., & Day, S. (2018). Digging deeper into the data: The role of gateway courses in online student retention. Online Learning. 22. https://doi.org/10.24059/olj.v22i4.1515
  • Takev, M., Rodriguez-Artacho, M., & Somova, E. (2019). Creating interactive and traceable epub learning content from moodle courses. 62.
  • Takev, M., Somova, E., & Rodriguez-Artacho, M. (2019). Converter from moodle lessons to interactive epub ebooks. 62. 616-625.
  • Tempelaar, D. (2019). Supporting the less-adaptive student: the role of learning analytics, formative assessment and blended learning. Assessment & Evaluation in Higher Education, 1–15. https://doi.org/10.1080/02602938.2019.1677855
  • Tempelaar, D. T., Rienties, B. & Nguyen, Q. (2017). Towards actionable learning analytics using dispositions. IEEE Transactions on Learning Technologies, 10 (1), 6-16.
  • Terras, M., Boyle, E., Ramsay, J., & Jarrett, D. (2018). The opportunities and challenges of serious games for people with an intellectual disability. British Journal of Educational Technology. 49. 690-700. https://doi.org/10.1111/bjet.12638
  • Trezise, K., Ryan, T., de Barba, P., & Kennedy, G. (2019). Detecting contract cheating using learning analytics, Journal of Learning Analytics, v6 n3 p90-104
  • Truong, H. M. (2016). Integrating learning styles and adaptive e-learning system: Current developments, problems and opportunities. Computers in human behavior, 55, 1185-1193.
  • Vaz-Fernandes, P., & Caeiro, S. (2019). Students’ perceptions of a food safety and quality e-learning course: a CASE study for a MSC in food consumption. International Journal of Educational Technology in Higher Education, 16(1). https://doi.org/10.1186/s41239-019-0168-8
  • Vidal, E. C. E., Ty, J. F., Caluya, N. R., & Rodrigo, M. M. T. (2018). MAGIS: mobile augmented-reality games for instructional support. Interactive Learning Environments, 1–13. https://doi.org/10.1080/10494820.2018.1504305
  • Walsh, J., O'Brien, M., & Slattery, D. (2019). Video viewing patterns using different teaching treatments: A case study using youtube analytics. Research in Education and Learning Innovation Archives. 78. https://doi.org/10.7203/realia.22.15389
  • Wang, S. P., & Chen, Y. L. (2018). Effects of multimodal learning analytics with concept maps on college students' vocabulary and reading performance. Journal of Educational Technology & Society, 21(4), 12-25.
  • Xing, W., Pei, B., Li, S., Chen, G., & Xie C. (2019): Using learning analytics to support students’ engineering design: the angle of prediction, Interactive Learning Environments, https://doi.org/10.1080/10494820.2019.1680391
  • Watson, C., Wilson, A., Drew, V., & Thompson, T. L. (2016). Small data, online learning and assessment practices in higher education: a case study of failure?. Assessment & Evaluation in Higher Education. 42. 1-16. https://doi.org/10.1080/02602938.2016.1223834
  • Weintrop, D., & Wilensky, U. (2019). Transitioning from introductory block-based and text-based environments to professional programming languages in high school computer science classrooms. Computers & Education, 103646. https://doi.org/10.1016/j.compedu.2019.103646
  • Wilson, M., Gochyyev, P. & Scalise, K. (2016). Assessment of learning in digital interactive social networks: A learning analytics approach. Online Learning. 20. https://doi.org/10.24059/olj.v20i2.799
  • Wong, B. (2017). Learning analytics in higher education: an analysis of case studies. Asian Association of Open Universities Journal. 12. 21-40. https://doi.org/10.1108/AAOUJ-01-2017-0009
  • Wu, Y., Guo, S., & Zhu, L. (2019). Design and implementation of data collection mechanism for 3D design course based on xAPI standard. Interactive Learning Environments, 1–18. https://doi.org/10.1080/10494820.2019.1696842
  • Yiling, H., Bian, W. & Xiaoqing, G. (2017). Learning analysis of K-12 students’ online problem solving: a three-stage assessment approach. Interactive Learning Environments, 25:2, 262-279, https://doi.org/10.1080/10494820.2016.1276080
Toplam 108 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Ekrem Gülcüoğlu 0000-0002-1009-3496

Fatma Gizem Karaoğlan Yılmaz 0000-0003-4963-8083

Gökhan Gökkaya 0000-0003-0048-284X

Yayımlanma Tarihi 30 Haziran 2021
Gönderilme Tarihi 8 Şubat 2021
Kabul Tarihi 7 Mart 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 3 Sayı: 1

Kaynak Göster

APA Gülcüoğlu, E., Karaoğlan Yılmaz, F. G., & Gökkaya, G. (2021). Öğrenme Analitikleri Kapsamında 2016-2019 Yıllar Arasında Web of Science Veritabanında Yayınlanan Makalelerin Betimsel Analizi. Bilgi Ve İletişim Teknolojileri Dergisi, 3(1), 42-76.


2365323652 23655 23656



Bilgi ve İletişim Teknolojileri Dergisi (BİTED)

Journal of Information and Communication Technologies