Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of some treatments on seed dormancy in branched asphodel (Asphodelus ramosus L.)

Yıl 2024, Cilt: 64 Sayı: 4, 41 - 49
https://doi.org/10.16955/bitkorb.1473289

Öz

Branched asphodel (Asphodelus ramosus L.) is an unpalatable geophyte that has been increasing spreading in the pastures of Aegean region of Türkiye. To formulate effective management strategies at various growth phases, it is necessary to initiate the germination of dormant seeds. Preliminary experiments indicated that branched asphodel seeds germinated better in darkness than in light. Several dormancy-release techniques were tested to develop a rapid, uniform and better germination protocol for branched asphodel seeds including cold stratification at +4 and -18 °C, mechanical scarification with sandpaper, chemical scarification with sulfuric acid, ethanol or hydrogen peroxide and application of chemicals, i.e., gibberellic acid or potassium nitrate. Chemical scarification with 95% sulfuric acid (for 1 min) or 20 mM or 40 mM hydrogen peroxide (for 24 hours) resulted in the highest germination percentages (over 81.3%) and adequately reduced Mean Germination Time (MGT). While chemical scarification with sulfuric acid for 5, 15, and 30 min also reduced MGT, extending scarification duration beyond one-minute decreased germination rates. Lower germination rates with gibberellic acid treatment and increased germination with scarification methods suggest that the seeds have physical dormancy rather than physiological dormancy. Manual scarification with sandpaper achieved germination rates over 75% and reduced MGT by more than 57%. In conclusion, manual sandpaper application considered to be preferable for avoiding the adverse effects of chemical treatments while providing an acceptable germination rate.

Proje Numarası

-

Kaynakça

  • Adkins S.W., Naylor J.M., Simpson G.M., 1984. The physiological basis of seed dormancy in Avena fatua V. Action of ethanol and other organic compounds. Physiologia Plantarum, 62 (1), 18-24. https://doi.org/10.1111/j.1399-3054.1984.tb05917.x
  • Alatürk F., Gökkuş A., 2019. Farklı ıslah yöntemlerinin Hıdırellez kamçısı (Asphodelus aestivus Brot.)’nın oranı ile meranın verimi ve ot kalitesine etkileri (The effects of different improvement methods on the ratio of Asphodelus aestivus Brot. yield and quality of hay in rangelands). Çanakkale Onsekiz Mart Üniversitesi Ziraat Fakültesi Dergisi 7 (1), 109-117. https://doi.org/10.33202/comuagri.528972
  • Anonymous 2022. Asphodelus ramosus L. https://www.gbif.org/species/144101133 (accessed date: 21.12.2022)
  • Anosheh H.P., Sadeghi H., Emam Y., 2011. Chemical priming with urea and KNO3 enhances maize hybrids (Zea mays L.) seed viability under abiotic stress. Journal of Crop Science and Biotechnology 14, 289–295. doi.org/10.1007/s12892-011-0039-x
  • Apaydin E., Arabaci G., 2017. Antioxidant capacity and phenolic compounds with HPLC of Asphodelus ramosus and comparison of the results with Allium cepa L. and Allium porrum L. extracts. Turkish Journal of Agricultural and Natural Sciences, 4 (4), 499-505.
  • • Barba-Espín G., Hernández J.A., Diaz-Vivancos P., 2012. Role of H2O2 in pea seed germination. Plant Signaling and Behavior, 7 (2), 193-195. doi:10.4161/psb.18881 • Bewley J.D., 1997. Seed germination and dormancy. The Plant Cell, 9 (7), 1055-1066. https://doi.org/10.1105/tpc.9.7.1055
  • Chahtane H., Kim W., Lopez-Molina L., 2017. Primary seed dormancy: a temporally multilayered riddle waiting to be unlocked. Journal of Experimental Botany, 68 (4), 857–869. doi.org/10.1093/jxb/erw377
  • Corbineau F., Gouble B., Lecat S., Come D., 1991. Stimulation of germination of dormant oat (Avena sativa L.) seeds by ethanol and other alcohols. Seed Science Research, 1 (1), 21-28. doi:10.1017/
  • da Silva E.A., Toorop P.E., Nijsse J., Bewley J.D., Hilhorst H.W., 2005. Exogenous gibberellins inhibit coffee (Coffea arabica cv. Rubi) seed germination and cause cell death in the embryo. Journal of Experimental Botany, 56 (413), 1029–1038. DOI: 10.1093/jxb/eri096
  • • Debska K., Krasuska U., Budnicka K., Bogatek R., Gniazdowsk A., 2013. Dormancy removal of apple seeds by cold stratification is associated with fluctuation in H2O2, NO production and protein carbonylation level. Journal of Plant Physiology, 170 (5), 480-488. doi:10.1016/j.jplph.2012.11.018 • Eisvand H., Arefi H.M., Afshari R.T., 2006. Effects of various treatments on breaking seed dormancy of Astragalus siliquosus. Seed Science and Technology, 34 (3), 747-752. https://doi.org/10.15258/sst.2006.34.3.22
  • Eltez S., 1995. İzmir ilinde çiriş otu (Asphodelus microcarpus Viv.) üzerinde yaşayan Capsodes infuscatus (Brul.) (Heteroptera: Miridae)’un morfolojisi, biyolojisi ve zarar şekilleri üzerinde araştırmalar (Studies on the morphology, biology and damage patterns of Capsodes infuscatus (Brul.) (Heteroptera: Miridae) living on Asphodelus microcarpus Viv.) in Izmir province). Ege Üniversitesi, Doktora Tezi, 84 p., İzmir, Türkiye
  • • Footitt S., Huang Z., Clay H.A., Mead A., Finch-Savage W.E., 2013. Temperature, light and nitrate sensing coordinate Arabidopsis seed dormancy cycling, resulting in winter and summer annual phenotypes. The Plant Journal: For Cell and Molecular Biology, 74 (6), 1003-1015. doi:10.1111/tpj.12186 •
  • Henson I.E.,.1970. The effects of light, potassium nitrate and temperature on the germination of Chenopodium album L. Weed Research, 10 (1), 27-39. https://doi.org/10.1111/j.1365-3180.1970.tb00920.x
  • Hernandez J.A., Díaz-Vivancos P., Acosta-Motos J.R., Barba-Espín G., 2022. Potassium nitrate treatment is associated with modulation of seed water uptake, antioxidative metabolism and phytohormone levels of pea seedlings. Seeds, 1 (1), 5-15. https://doi.org/10.3390/seeds1010002
  • Jordan L.S., Jordan J.L., 1982. Effects of pre-chilling on Convolvulus arvensis L. seed coat and germination. Annals of Botany, 49 (3), 421-423. https://doi.org/10.1093/oxfordjournals.aob.a086266
  • • Matakiadis T., Alboresi A., Jikumaru Y., Tatematsu K., Pichon O., Renou J.P., Kamiya Y., Nambara E., Truong H.N., 2009. The Arabidopsis abscisic acid catabolic gene CYP707A2 plays a key role in nitrate control of seed dormancy. Plant Physiology, 149 (2), 949-960. doi:10.1104/pp.108.126938 • Milberg P., Andersson L., Thompson K., 2000. Large-seeded species are less dependent on light for germination than small-seeded. Seed Science Research, 10, 99-104. doi:10.1017/S0960258500000118
  • Miyoshi K., Sato T., 1997. The effects of ethanol on the germination of seeds of Japonica and Indica rice (Oryza sativa L.) under anaerobic and aerobic conditions. Annals of Botany, 79 (4), 391-395. https://doi.org/10.1006/anbo.1996.0364
  • Noy-Meir I., Oron T., 2001. Effects of grazing on geophytes in Mediterranean vegetation. Journal of Vegetation Science, 12 (6), 749-760. https://doi.org/10.2307/3236862
  • • Ogawa K., Iwabuchi M., 2001. A mechanism for promoting the germination of Zinnia elegans seeds by hydrogen peroxide. Plant and Cell Physiology, 42 (3), 286-291. doi:10.1093/pcp/pce032 • Olvera-Carrillo Y., Ma´rquez-Guzma´n J., Barradas V.L., Sa´nchez-Coronado M.E., Orozco-Segovia A., 2003. Germination of the hard seed coated Opuntia tomentosa S.D., a cacti from the Mexico valley. Journal of Arid Environments, 55 (1), 29-42. doi:10.1016/S0140-1963(02)00268-9
  • Öztürk M., Pirdal M., 1986. Studies on the germination of Asphodelus aestivus Brot. Biotronics, 15, 55-60.
  • Pantis J.D., Sgardelis S.P., Stamou G.P., 1994. Asphodelus aestivus, an example of synchronization with the climate periodicity. International Journal of Biometeorology, 38, 29-32. https://doi.org/10.1007/BF01241801
  • Reynaud J., Flament M.M., Lussignol M., Becchi M., 1997. Flavonoid content of Asphodelus ramosus (Liliaceae). Canadian Journal of Botany, 75 (12), 2105-2107. https://doi.org/10.1139/b97-92
  • Rezvani M., Zaefarian F., Vajihe A., 2014. Effects of chemical treatments and environmental factors on seed dormancy and germination of shepherd's purse (Capsella bursa-pastoris (L.) Medic.). Acta Botanica Brasilica, 28 (4), 495-501. https://doi.org/10.1590/0102-33062014abb3337
  • Roberts E.H., Totterdell S., 1981. Seed dormancy in Rumex species in response to environmental factors. Plant, Cell and Environment, 4 (2), 97-106. https://doi.org/10.1111/j.1365-3040.1981.tb01044.x
  • Sawidis T., Kalyva S., Delivopoulos S., 2005. The root-tuber anatomy of Asphodelus aestivus. Flora, 200, 332-338.
  • Sternberg M., Gutman M., Perevolotsky A., Ungar E.D., Kigel J., 2000. Vegetation response to grazing management in a Mediterranean herbaceous community: a functional group approach. Journal of Applied Ecology, 37, 224-237. https://doi.org/10.1046/j.1365-2664.2000.00491.x
  • Sürmen M., Kara E., 2022. Effects of suppression applications on summer asphodel (Asphodelus aestivus Brot.) density, botanical composition, forage yield and quality of Aegean rangelands. Turkish Journal of Field Crops, 27 (1), 61-70. https://doi.org/10.17557/tjfc.1051111
  • Tanveer A., Sibtain M., Javaid M.M., Ali H.H., 2014. Germination ecology of wild onion: a rainfed crop weed. Planta Daninha, Viçosa-MG, 32 (1), 69-80.
  • Taylorson R.B., Hendricks S.B., 1979. Overcoming dormancy in seeds with ethanol and other anesthetics. Planta, 145, 507-510. https://doi.org/10.1007/BF00380106
  • Terzi M., 2023. A new Asphodelus ramous-dominated association from the Murge Plateau (SE Italy). Hacquetia, 22 (2), 1-17. https://orcid.org/0000-0001-8801-6733
  • Tesei G., D’Ottavio P., Toderi M., Ottaviani C., Pesaresi S., Francioni M., Trozzo L., Allegrezza M., 2020. Restoration strategies for grasslands colonized by Asphodel-dominant communities. Grassland Science, 66 (1), 54-63. https://doi.org/10.1111/grs.12252
  • Vincent E.M., Roberts E.H., 1977. The interaction of light, nitrate and alternating temperature in promoting the germination of dormant seeds of common weed species. Seed Science and Technology, 5, 659-670.
  • Wang Y.R., Hanson J., Mariam Y.W., 2007. Effect of sulfuric acid pretreatment on breaking hard seed dormancy in diverse accessions of five wild Vigna species. Seed Science and Technology, 35 (3), 550-559. doi:10.15258/sst.2007.35.3.03

Bazı uygulamaların çirişağusu (Asphodelus ramosus L.) dormansisi üzerine etkisi

Yıl 2024, Cilt: 64 Sayı: 4, 41 - 49
https://doi.org/10.16955/bitkorb.1473289

Öz

Çirişağusu (Asphodelus ramosus L.), Ege bölgesi meralarında giderek artan, yenmeyen bir geofittir. Farklı büyüme aşamalarında kontrol stratejileri geliştirebilmek için dormant tohumlarının çimlendirilmesine ihtiyaç duyulmuştur. Ön deneylerde çirişağusu tohumlarının karanlıkta ışıktan daha iyi çimlendiği görülmüştür. Tohumlarında hızlı, tekdüze ve daha iyi çimlenme sağlamak için, çeşitli dormansi kırma yöntemleri (+4 ve -18 °C'de soğutma, zımpara kağıdı, sülfürik asit, etanol veya hidrojen peroksit ile aşındırma ve gibberellik asit veya potasyum nitrat ile işlemler) uygulanmıştır. Tohumların %95 sülfürik asitte (1 dakika boyunca) veya 20 mM veya 40 mM hidrojen peroksitte (24 saat boyunca) bekletilmesi, en yüksek çimlenme yüzdelerini (%81.3'ün üzerinde) sağlamış ve ortalama çimlenme zamanını (OÇZ) kısaltmıştır. Sülfürik asit diğer sürelerde de (5, 15 ve 30 dakika) OÇZ’yi kısaltmış, ancak sürenin bir dakikadan fazla arttırılması çimlenme oranını azaltmıştır. Gibberellik asite duyarsızlık ve aşındırma yöntemleriyle çimlenmenin artması, tohumların fizyolojik bir dormansi yerine fiziksel dormanside olduğunu göstermiştir. Sonuç olarak, çimlenmeyi %75'in üzerinde sağlayan ve OÇZ'yi >%57 kısaltan zımpara kağıdı ile mekanik aşındırmanın, kimyasalların olumsuz etkilerinden kaçınmak ve kabul edilebilir çimlenmeyi sağlamak açısından tercih edilebilir olduğu düşünülmektedir.

Proje Numarası

-

Kaynakça

  • Adkins S.W., Naylor J.M., Simpson G.M., 1984. The physiological basis of seed dormancy in Avena fatua V. Action of ethanol and other organic compounds. Physiologia Plantarum, 62 (1), 18-24. https://doi.org/10.1111/j.1399-3054.1984.tb05917.x
  • Alatürk F., Gökkuş A., 2019. Farklı ıslah yöntemlerinin Hıdırellez kamçısı (Asphodelus aestivus Brot.)’nın oranı ile meranın verimi ve ot kalitesine etkileri (The effects of different improvement methods on the ratio of Asphodelus aestivus Brot. yield and quality of hay in rangelands). Çanakkale Onsekiz Mart Üniversitesi Ziraat Fakültesi Dergisi 7 (1), 109-117. https://doi.org/10.33202/comuagri.528972
  • Anonymous 2022. Asphodelus ramosus L. https://www.gbif.org/species/144101133 (accessed date: 21.12.2022)
  • Anosheh H.P., Sadeghi H., Emam Y., 2011. Chemical priming with urea and KNO3 enhances maize hybrids (Zea mays L.) seed viability under abiotic stress. Journal of Crop Science and Biotechnology 14, 289–295. doi.org/10.1007/s12892-011-0039-x
  • Apaydin E., Arabaci G., 2017. Antioxidant capacity and phenolic compounds with HPLC of Asphodelus ramosus and comparison of the results with Allium cepa L. and Allium porrum L. extracts. Turkish Journal of Agricultural and Natural Sciences, 4 (4), 499-505.
  • • Barba-Espín G., Hernández J.A., Diaz-Vivancos P., 2012. Role of H2O2 in pea seed germination. Plant Signaling and Behavior, 7 (2), 193-195. doi:10.4161/psb.18881 • Bewley J.D., 1997. Seed germination and dormancy. The Plant Cell, 9 (7), 1055-1066. https://doi.org/10.1105/tpc.9.7.1055
  • Chahtane H., Kim W., Lopez-Molina L., 2017. Primary seed dormancy: a temporally multilayered riddle waiting to be unlocked. Journal of Experimental Botany, 68 (4), 857–869. doi.org/10.1093/jxb/erw377
  • Corbineau F., Gouble B., Lecat S., Come D., 1991. Stimulation of germination of dormant oat (Avena sativa L.) seeds by ethanol and other alcohols. Seed Science Research, 1 (1), 21-28. doi:10.1017/
  • da Silva E.A., Toorop P.E., Nijsse J., Bewley J.D., Hilhorst H.W., 2005. Exogenous gibberellins inhibit coffee (Coffea arabica cv. Rubi) seed germination and cause cell death in the embryo. Journal of Experimental Botany, 56 (413), 1029–1038. DOI: 10.1093/jxb/eri096
  • • Debska K., Krasuska U., Budnicka K., Bogatek R., Gniazdowsk A., 2013. Dormancy removal of apple seeds by cold stratification is associated with fluctuation in H2O2, NO production and protein carbonylation level. Journal of Plant Physiology, 170 (5), 480-488. doi:10.1016/j.jplph.2012.11.018 • Eisvand H., Arefi H.M., Afshari R.T., 2006. Effects of various treatments on breaking seed dormancy of Astragalus siliquosus. Seed Science and Technology, 34 (3), 747-752. https://doi.org/10.15258/sst.2006.34.3.22
  • Eltez S., 1995. İzmir ilinde çiriş otu (Asphodelus microcarpus Viv.) üzerinde yaşayan Capsodes infuscatus (Brul.) (Heteroptera: Miridae)’un morfolojisi, biyolojisi ve zarar şekilleri üzerinde araştırmalar (Studies on the morphology, biology and damage patterns of Capsodes infuscatus (Brul.) (Heteroptera: Miridae) living on Asphodelus microcarpus Viv.) in Izmir province). Ege Üniversitesi, Doktora Tezi, 84 p., İzmir, Türkiye
  • • Footitt S., Huang Z., Clay H.A., Mead A., Finch-Savage W.E., 2013. Temperature, light and nitrate sensing coordinate Arabidopsis seed dormancy cycling, resulting in winter and summer annual phenotypes. The Plant Journal: For Cell and Molecular Biology, 74 (6), 1003-1015. doi:10.1111/tpj.12186 •
  • Henson I.E.,.1970. The effects of light, potassium nitrate and temperature on the germination of Chenopodium album L. Weed Research, 10 (1), 27-39. https://doi.org/10.1111/j.1365-3180.1970.tb00920.x
  • Hernandez J.A., Díaz-Vivancos P., Acosta-Motos J.R., Barba-Espín G., 2022. Potassium nitrate treatment is associated with modulation of seed water uptake, antioxidative metabolism and phytohormone levels of pea seedlings. Seeds, 1 (1), 5-15. https://doi.org/10.3390/seeds1010002
  • Jordan L.S., Jordan J.L., 1982. Effects of pre-chilling on Convolvulus arvensis L. seed coat and germination. Annals of Botany, 49 (3), 421-423. https://doi.org/10.1093/oxfordjournals.aob.a086266
  • • Matakiadis T., Alboresi A., Jikumaru Y., Tatematsu K., Pichon O., Renou J.P., Kamiya Y., Nambara E., Truong H.N., 2009. The Arabidopsis abscisic acid catabolic gene CYP707A2 plays a key role in nitrate control of seed dormancy. Plant Physiology, 149 (2), 949-960. doi:10.1104/pp.108.126938 • Milberg P., Andersson L., Thompson K., 2000. Large-seeded species are less dependent on light for germination than small-seeded. Seed Science Research, 10, 99-104. doi:10.1017/S0960258500000118
  • Miyoshi K., Sato T., 1997. The effects of ethanol on the germination of seeds of Japonica and Indica rice (Oryza sativa L.) under anaerobic and aerobic conditions. Annals of Botany, 79 (4), 391-395. https://doi.org/10.1006/anbo.1996.0364
  • Noy-Meir I., Oron T., 2001. Effects of grazing on geophytes in Mediterranean vegetation. Journal of Vegetation Science, 12 (6), 749-760. https://doi.org/10.2307/3236862
  • • Ogawa K., Iwabuchi M., 2001. A mechanism for promoting the germination of Zinnia elegans seeds by hydrogen peroxide. Plant and Cell Physiology, 42 (3), 286-291. doi:10.1093/pcp/pce032 • Olvera-Carrillo Y., Ma´rquez-Guzma´n J., Barradas V.L., Sa´nchez-Coronado M.E., Orozco-Segovia A., 2003. Germination of the hard seed coated Opuntia tomentosa S.D., a cacti from the Mexico valley. Journal of Arid Environments, 55 (1), 29-42. doi:10.1016/S0140-1963(02)00268-9
  • Öztürk M., Pirdal M., 1986. Studies on the germination of Asphodelus aestivus Brot. Biotronics, 15, 55-60.
  • Pantis J.D., Sgardelis S.P., Stamou G.P., 1994. Asphodelus aestivus, an example of synchronization with the climate periodicity. International Journal of Biometeorology, 38, 29-32. https://doi.org/10.1007/BF01241801
  • Reynaud J., Flament M.M., Lussignol M., Becchi M., 1997. Flavonoid content of Asphodelus ramosus (Liliaceae). Canadian Journal of Botany, 75 (12), 2105-2107. https://doi.org/10.1139/b97-92
  • Rezvani M., Zaefarian F., Vajihe A., 2014. Effects of chemical treatments and environmental factors on seed dormancy and germination of shepherd's purse (Capsella bursa-pastoris (L.) Medic.). Acta Botanica Brasilica, 28 (4), 495-501. https://doi.org/10.1590/0102-33062014abb3337
  • Roberts E.H., Totterdell S., 1981. Seed dormancy in Rumex species in response to environmental factors. Plant, Cell and Environment, 4 (2), 97-106. https://doi.org/10.1111/j.1365-3040.1981.tb01044.x
  • Sawidis T., Kalyva S., Delivopoulos S., 2005. The root-tuber anatomy of Asphodelus aestivus. Flora, 200, 332-338.
  • Sternberg M., Gutman M., Perevolotsky A., Ungar E.D., Kigel J., 2000. Vegetation response to grazing management in a Mediterranean herbaceous community: a functional group approach. Journal of Applied Ecology, 37, 224-237. https://doi.org/10.1046/j.1365-2664.2000.00491.x
  • Sürmen M., Kara E., 2022. Effects of suppression applications on summer asphodel (Asphodelus aestivus Brot.) density, botanical composition, forage yield and quality of Aegean rangelands. Turkish Journal of Field Crops, 27 (1), 61-70. https://doi.org/10.17557/tjfc.1051111
  • Tanveer A., Sibtain M., Javaid M.M., Ali H.H., 2014. Germination ecology of wild onion: a rainfed crop weed. Planta Daninha, Viçosa-MG, 32 (1), 69-80.
  • Taylorson R.B., Hendricks S.B., 1979. Overcoming dormancy in seeds with ethanol and other anesthetics. Planta, 145, 507-510. https://doi.org/10.1007/BF00380106
  • Terzi M., 2023. A new Asphodelus ramous-dominated association from the Murge Plateau (SE Italy). Hacquetia, 22 (2), 1-17. https://orcid.org/0000-0001-8801-6733
  • Tesei G., D’Ottavio P., Toderi M., Ottaviani C., Pesaresi S., Francioni M., Trozzo L., Allegrezza M., 2020. Restoration strategies for grasslands colonized by Asphodel-dominant communities. Grassland Science, 66 (1), 54-63. https://doi.org/10.1111/grs.12252
  • Vincent E.M., Roberts E.H., 1977. The interaction of light, nitrate and alternating temperature in promoting the germination of dormant seeds of common weed species. Seed Science and Technology, 5, 659-670.
  • Wang Y.R., Hanson J., Mariam Y.W., 2007. Effect of sulfuric acid pretreatment on breaking hard seed dormancy in diverse accessions of five wild Vigna species. Seed Science and Technology, 35 (3), 550-559. doi:10.15258/sst.2007.35.3.03
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Herboloji
Bölüm Araştırma Makalesi
Yazarlar

Filiz Erbaş 0000-0001-7490-1280

Proje Numarası -
Erken Görünüm Tarihi 25 Aralık 2024
Yayımlanma Tarihi
Gönderilme Tarihi 25 Nisan 2024
Kabul Tarihi 9 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 64 Sayı: 4

Kaynak Göster

APA Erbaş, F. (2024). Effects of some treatments on seed dormancy in branched asphodel (Asphodelus ramosus L.). Plant Protection Bulletin, 64(4), 41-49. https://doi.org/10.16955/bitkorb.1473289
AMA Erbaş F. Effects of some treatments on seed dormancy in branched asphodel (Asphodelus ramosus L.). Plant Protection Bulletin. Aralık 2024;64(4):41-49. doi:10.16955/bitkorb.1473289
Chicago Erbaş, Filiz. “Effects of Some Treatments on Seed Dormancy in Branched Asphodel (Asphodelus Ramosus L.)”. Plant Protection Bulletin 64, sy. 4 (Aralık 2024): 41-49. https://doi.org/10.16955/bitkorb.1473289.
EndNote Erbaş F (01 Aralık 2024) Effects of some treatments on seed dormancy in branched asphodel (Asphodelus ramosus L.). Plant Protection Bulletin 64 4 41–49.
IEEE F. Erbaş, “Effects of some treatments on seed dormancy in branched asphodel (Asphodelus ramosus L.)”, Plant Protection Bulletin, c. 64, sy. 4, ss. 41–49, 2024, doi: 10.16955/bitkorb.1473289.
ISNAD Erbaş, Filiz. “Effects of Some Treatments on Seed Dormancy in Branched Asphodel (Asphodelus Ramosus L.)”. Plant Protection Bulletin 64/4 (Aralık 2024), 41-49. https://doi.org/10.16955/bitkorb.1473289.
JAMA Erbaş F. Effects of some treatments on seed dormancy in branched asphodel (Asphodelus ramosus L.). Plant Protection Bulletin. 2024;64:41–49.
MLA Erbaş, Filiz. “Effects of Some Treatments on Seed Dormancy in Branched Asphodel (Asphodelus Ramosus L.)”. Plant Protection Bulletin, c. 64, sy. 4, 2024, ss. 41-49, doi:10.16955/bitkorb.1473289.
Vancouver Erbaş F. Effects of some treatments on seed dormancy in branched asphodel (Asphodelus ramosus L.). Plant Protection Bulletin. 2024;64(4):41-9.

134351364813650136491344113445