Araştırma Makalesi
BibTex RIS Kaynak Göster

Agro-morphological traits and some bacterial leaf pathogens susceptibility in local super tomato genotypes

Yıl 2025, Cilt: 65 Sayı: 1, 5 - 19, 01.04.2025
https://doi.org/10.16955/bitkorb.1528556

Öz

This study aimed to characterize the morphological traits of Super tomato genotypes grown widely in Iğdır plain and to determine the reaction of the Super tomato genotype to bacterial diseases caused by Pseudomonas syringae pv. tomato (Pst) and Xanthomonas euvesicatoria pv. perforans (Xep). Super tomato genotypes were collected from 20 different regions in the harvest season in 2021-2022. Morphological and physiological measurements in the laboratory were taken on tomato genotypes to characterize plant traits. Also, pot experiments were carried out in a plant growth chamber to assess the reaction of Super tomato to infection by Pst and Xep. Data on plant morphology and growth were obtained, including measurements of plant heights (136.9-88.7 cm), root lengths (69.0-46.3 cm), stem diameters (2.17-1.52 cm), plant fresh weights (596-426 g), plant dry weights (127.6-94.0 g), root fresh weights (74.5 to 51.8 g), root dry weights (24.3-11.9 g), yield per plant (4717.3-2906.5 g), mean fruit weight (385.2-223.7 g), fruit length (55.5-50.3 mm), and mean fruit diameter (96.0-81.1 mm). In terms of the physiological properties of tomato fruits, the water-soluble dry matter content ranged from 4.55% to 4.11%, fruit juice pH from 4.69 to 4.43, titratable acidity from 3.16 to 2.93 mval 100 ml⁻¹, vitamin C content from 26.63 to 17.80 mg/100 g, lycopene content from 2951.1 to 2629.5 ng/µl, and β-carotene content from 272.55 to 228.82 ng/µl. Additionally, pot experiments demonstrated that the super tomato genotype exhibited moderate susceptibility to both Pst and Xep infections, with disease severity index (DSI) of 2.4 and 2.2, respectively.

Etik Beyan

The authors declare that they have no competing interests. All authors have reviewed the manuscript and approved its submission to Plant Protection Bulletin.

Teşekkür

We are grateful to thank Doç. Dr. Mesude Figen DÖNMEZ and Prof. Dr. Hatice ÖZAKTAN for providing bacterial strains that have been used in the study.

Kaynakça

  • Abrahamian P., Klein-Gordon J.M., Jones J.B., Vallad G.E., 2021. Epidemiology, diversity, and management of bacterial spot of tomato caused by Xanthomonas perforans. Applied Microbiology and Biotechnology, 105 (16-17), 6143–6158.
  • Akbaba M., Dönmez M.F., Hürkan K., 2025. Characterization of causal agents of bacterial spot on tomato fields in Iğdır Plain (Turkiye). Journal of Agricultural Science and Technology, 0-0. (Accepted for publication, in press)
  • Akbaba M., Hürkan K., Özcan O., 2023. Characterization of causal agents of bacterial canker on apricot plantations and risk mapping using GIS in Aras Basin (Türkiye). Journal of Phytopathology, 171 (10), 517-536.
  • Akbaş B., Kunter B., Ilhan D., 2009. Influence of leafroll on local grapevine cultivars in agroecological conditions of Central Anatolia region. Horticultural Science, 36 (3), 97-104.
  • Al-Aysh F., Kutma H., Serhan M., Al-Zoubai A., Al-Naseer M.A., 2012. Genetic analysis and correlation studies of yield and fruit quality traits in tomato (Solanum lycopersicum L.). New York Science Journal, 5 (10), 142-145.
  • Al-Dahmani J.H., Abbasi P.A., Miller S.A., Hoitink H.A., 2003. Suppression of bacterial spot of tomato with foliar sprays of compost extracts under greenhouse and field conditions. Plant Disease, 87 (8), 913-919.
  • Aoun A.B., Lechiheb B., Benyahya L., Ferchichi A., 2013. Evaluation of fruit quality traits of traditional varieties of tomato (Solanum lycopersicum) grown in Tunisia. African Journal of Food Science, 7 (10), 350-354. https://doi.org/10.5897/AJFS2013.1067
  • Aydın G., Aktaş H., 2023. Bazı kiraz ve kokteyl domates hatlarının biyokimyasal içeriklerinin belirlenmesi. Türk Bilim ve Mühendislik Dergisi, 5 (2), 97-111.
  • Bakır V., Özdemir Z., Yardım H., 2012. Reaction of some popular hybrid tomato cultivars grown in Aegean region to bacterial speck disease and determination of disease incidence in Şahnalı, Aydın. The Journal of Turkish Phytopathology, 41 (1-2-3), 37-42.
  • Bode D., Elezi F., Gixhari B., 2013. Morphological characterisation and interrelationships among descriptors in Phaseolus vulgaris accessions. Agriculture and Forestry-Poljoprivreda i šumarstvo, 59 (2), 175-185.
  • Canzoniere P., Francesconi S., Giovando S., Balestra G., 2021. Antibacterial activity of tannins towards Pseudomonas syringae pv. tomato, and their potential as biostimulants on tomato plants. Phytopathologia Mediterranea, 60 (1), 23-36. https://www.jstor.org/stable/27248654
  • Cemeroğlu B., 1992. Meyve ve Sebze İşleme Endüstrisinde Temel Analiz Metotları. Ankara, Biltav Yayınları, No:02-2
  • Chambers S.C., Merriman P.R., 1975. Perennation and control of Pseudomonas syringae pv. tomato in Victoria. Australian Journal of Agricultural Research, 26, 657-663.
  • Che K., Liang C., Wang Y., Jin D., Wang B., 2003. Genetic assessment of watermelon germplasm using the AFLP technique. Hortscience, 38 (1), 81-84.
  • Constantin E.C., Cleenwerck I., Maes M., Baeyen S., Van Malderghem C., De Vos P., Cottyn B., 2016. Genetic characterization of strains named as Xanthomonas axonopodis pv. dieffenbachiae leads to a taxonomic revision of the X. axonopodis species complex. Plant Pathology, 65 (5), 792–806. https://doi.org/10.1111/PPA.12461
  • Dal Y., Kayak N., Kal Ü., Seymen M., Türkmen Ö., 2017. Yerel kavun (Cucumis melo L.) genotiplerinin bazı morfolojik özellikleri. Akademik Ziraat Dergisi, 6 (Özel Sayı), 179-186.
  • Eenink A.H., 1981. Partial resistance in lettuce to downy mildew (Bremia lactucae). 1. Search for partially resistant genotypes and influence of certain plant characters and environments on the resistance level. Euphytica, 30, 619-628.
  • Ekici O., Baştaş K., 2014. Determination of the resistance reactions of some tomato cultivars against bacterial speck disease. Selcuk Journal of Agriculture and Food Sciences, 28 (2), 42-51.
  • Eser B., Saygılı H., Göçgol A., İlker E., 2005. Tohum Bilimi ve Teknolojisi, Ege Üniversitesi Tohum Teknolojisi Uygulama ve Araştırma Merkezi, İzmir, Cilt 1, Yayın no:3.
  • FAO, 2022. Tomatoes, Food and Agriculture Organization of the United Nations (FAO), https://www.fao.org/faostat/en/#data/QCL/visualize (accessed date: 07.05.2024).
  • Felföldi Z., Ranga F., Roman I.A., Sestras A.F., Vodnar D.C., Prohens J., Sestras R.E., 2022. Analysis of physico-chemical and organoleptic fruit parameters relevant for tomato quality. Agronomy, 12 (5), 1232.
  • Figueiredo-González M., Valentao P., Pereira D.M., Andrade P.B., 2017. Further insights on tomato plant: cytotoxic and antioxidant activity of leaf extracts in human gastric cells. Food and Chemical Toxicology, 109, 386-392.
  • Fischer R.A., 2001. Selection traits for improving yield potential. In: Application of Physiology in Wheat Breeding, Reynolds, A.P., Ortiz-Monasterio, J.I., McNab, A., (Eds.), CIMMYT, Mexico, 148-159.
  • Giorio G., Stigliani A.L., D’Ambrosio C., 2007. Agronomic performance and transcriptional analysis of carotenoid biosynthesis in fruits of transgenic highcaro and control tomato lines underfield conditions. Transgenic Research, 16 (1), 15–28. https://doi.org/10.1007/s11248-006-90253
  • Gross T., Johnston S., Barber C.V., 2006. The convention on biological diversity: understanding and ınfluencing the process, United Nations University Institute of Advanced Studies, COP Secretariat, Ministry of the Environment, p 70.
  • Hanson P.M., Yang R.Y., Wu J., Chen J.T., Ledesma D., Tsou S.C., Lee T.C., 2004. Variation for antioxidant activity and antioxidants in tomato. Journal of the American Society for Horticultural Science, 129 (5), 704-711.
  • Horuz S., Serin M., 2024. Occurrence and pathogenicity of Stenotrophomonas spp. and Paenibacillus spp. on tomato plants in Turkey. Journal of Plant Pathology, 106, 191–201. https://doi.org/10.1007/s42161-023-01540-9
  • Hutton S.F., Scott J.W., Yang W., Sim S.C., Francis D.M., Jones J.B., 2010. Identification of QTL associated with resistance to bacterial spot race T4 in tomato. Theoretical and Applied Genetics, 121, 1275-1287.
  • Ji P., Campbell H.L., Kloepper J.W., Jones J.B., Suslow T.V., Wilson M., 2006. Integrated biological control of bacterial speck and spot of tomato under field conditions using foliar biological control agents and plant growth-promoting rhizobacteria. Biological Control, 36 (3), 358-367.
  • Jones J.B., Lacy G.H., Bouzar H., Stall R.E., Schaad N.W., 2004. Reclassification of the Xanthomonads associated with bacterial spot disease of tomato and pepper. Systematic and Applied Microbiology, 27 (6), 755–762. https://doi.org/10.1078/072320204236988432
  • Karagöz A., Zencirci N., Tan A., Taşkın T., Köksel H., Sürek M., Toker C., Özbek K., 2010. Bitki Genetik Kaynaklarının Korunması ve Kullanımı. Ziraat Mühendisliği VII. Teknik Kongresi. 11-15 Ocak 2010, Ankara, 155-177.
  • Karataş A., Büyükdinç D.T., İpek A., Yağcıoğlu M., Sönmez K., Ellialtıoğlu Ş.Ş., 2017. Türkiye’de fasulyede yapılan morfolojik ve moleküler karakterizasyon çalışmaları. Türk Bilimsel Derlemeler Dergisi, 10 (1), 16-27.
  • Kathayat K., Singh A., Rawat M., 2015. Morphological characterization of tomato (Solanum lycopersicum L.) germplasm in Tarai region of Uttarakhand. HortFlora Research Spectrum, 4 (3), 220-223.
  • Keskin G., Gül U., 2004. Domates, Tarımsal Ekonomi Araştırma Enstitüsü, T.E.A.E-Bakış, Sayı:5, Nüsha:13, Ankara.
  • Kozik E.U., 2002. Studies on resistance to bacterial speck (Pseudomonas syringae pv. tomato) in tomato cv. Ontario 7710. Plant Breeding, 121 (6), 526-530.
  • Kozik E.U., Sobiczewski P., 2007. Assessment of inoculation techniques suitability for determination of tomato plants resistance to bacterial speck (Pseudomonas syringae pv. tomato). Phytopathologia Polonica, 44, 17-25.
  • Lai Y.R., Lin C.H., Chang C.P., Ni H.F., Tsai W.S., Huang C.J., 2021. Distribution of copper resistance gene variants of Xanthomonas citri subsp. citri and Xanthomonas euvesicatoria pv. perforans. Plant Protection Science, 57 (3), 206-216.
  • Liu X., Wang L., Zhang H., Li Y., Yang W., 2017. Genetic and fruit trait differences between Chinese elite lines/varieties and American varieties of processing tomato. Scientia Horticulturae, 224, 251-257. https://doi.org/10.1016/j.scienta.2017.06.023
  • Madakbaş S.Y., Ergin M., 2011. Morphological and phenological characterization of Turkish bean (Phaseolus vulgaris L.) genotypes and their present variation states. African Journal of Agricultural Research, 6 (28), 6155-6166.
  • McLeod A., Masimba T., Jensen T., Serfontein K., Coertze S., 2017. Evaluating spray programs for managing copper resistant Pseudomonas syringae pv. tomato populations on tomato in the Limpopo region of South Africa. Crop Protection, 102, 32-42.
  • Morinière L., Burlet A., Rosenthal E.R., Nesme X., Portier P., Bull C.T., Lavire C., Fischer-Le Saux M., Bertolla F., 2020. Clarifying the taxonomy of the causal agent of bacterial leaf spot of lettuce through a polyphasic approach reveals that Xanthomonas cynarae Trébaol et al. 2000 emend. Timilsina et al. 2019 is a later heterotypic synonym of Xanthomonas hortorum Vauterin et al. 1995. Systematic and Applied Microbiology, 43 (4), 126087. https://doi.org/10.1016/J.SYAPM.2020.126087
  • Mumtaz S., Hameed M., Ahmad F., Ahmad M.S.A., Ahmad I., Ashraf M., Saleem M.H., 2021. Structural and functional determinants of physiological pliability in Kyllinga brevifolia rottb. for survival in hyper-saline salt marshes. Water, Air, & Soil Pollution, 232, 1-21.
  • Nagata M., Yamashita I., 1992. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaishi, 39 (10), 925-928.
  • Osdaghi E., Taghavi S.M., Hamzehzarghani H., Fazliarab A., Lamichhane J.R., 2017. Monitoring the occurrence of tomato bacterial spot and range of the causal agent Xanthomonas perforans in Iran. Plant Pathology, 66 (6), 990-1002.
  • Özbay N., Ateş K., 2015. Bingöl ili ekolojik şartlarına uygun sofralık domates çeşitlerinin belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 2 (2), 226-236.
  • Özden E., Akbaba M., 2023. Determination of some morphological, viability and physiological characteristics of Iğdır super tomato local genotype seeds. 13 th International Conference on Agriculture, Animal Science and Rural Development, November 28-29, 2023 Uşak / Türkiye, 636-650 pp.
  • Özenç D.B., Şen O., 2017. Farklı gelişim dönemlerinde uygulanan deniz yosunu gübresinin domates bitkisinin gelişim ve bazı kalite özelliklerine etkisi. Akademik Ziraat Dergisi, 6 (özel sayı), 235-242.
  • Paksoy M., 2003. Konya ekolojisinde değişik ekim dikim zamanlarında yetiştirilen bazı sanayilik domates çeşitlerinde verim ve kalite özelliklerinin incelenmesi. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 17 (32), 6-9.
  • Pal R.S., Hedau N.K., Kant L., Pattanayak A., 2018. Functional quality and antioxidant properties of tomato genotypes for breeding better quality varieties. Electronic Journal of Plant Breeding, 9 (1), 1-8. https://doi.org/10.5958/0975- 928X.2018.00001.7
  • Peixoto J.V.M., Garcia L.G.C., Nascimento A.D.R., Moraes E.R.D., Ferreira T.A.P.D.C., Fernandes M.R., Pereira V.D.A., 2018. Post-harvest evaluation of tomato genotypes with dual purpose. Food Science and Technology, 38 (2), 255-262. https://doi.org/10.1590/1678-457X.00217
  • Potnis N., Timilsina S., Strayer A., Shantharaj D., Barak J.D., Paret M.L., Vallad G.E., Jones J.B., 2015. Bacterial spot of tomato and pepper: Diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge. Molecular Plant Pathology, 16 (9), 907-920. https://doi.org/10.1111/mpp.12244
  • Qiao K., Liu Q., Huang Y., Xia Y., Zhang S., 2020. Management of bacterial spot of tomato caused by copper-resistant Xanthomonas perforans using a small molecule compound carvacrol. Crop Protection, 132, 105114. https://doi.org/10.1016/j.cropro.2020.105114
  • Raj T., Bhardwaj M.L., Pal S., 2018. Performance of tomato hybrids for quality traits under Mid-hill conditions of Himachal Pradesh. International Journal of Chemical Studies, 6 (4), 2565-2568.
  • Reis Pereira M., Dos Santos F.N., Tavares F., Cunha M., 2023. Enhancing host-pathogen phenotyping dynamics: early detection of tomato bacterial diseases using hyperspectral point measurement and predictive modeling. Frontiers in Plant Science, 14, 1242201. https://doi.org/10.3389/fpls.2023.1242201
  • Renna M., D’Imperio M., Gonnella M., Durante M., Parente A., Mita G., Santamaria M., Serio F., 2019. Morphological and chemical profile of three tomato (Solanum lycopersicum L.) landraces of a semi-arid mediterranean environment. Plants, 8 (8), 273. https://doi.org/10.3390/plants8080273
  • Roberts P.A., 2002. Concepts and consequences of resistance. In: Plant resistance to parasitic nematodes. Starr, J.L., Cook, R., Bridge, J., (Eds.), CABI Publishing, UK.pp. 23-42. https://doi.org/10.1079/9780851994666.0023
  • Salgotra R.K., Chauhan B.S., 2023. Genetic diversity, conservation, and utilization of plant genetic resources. Genes, 14 (1), 174. https://doi.org/10.3390/genes14010174
  • Sharma S., Bhattarai K., 2019. Progress in developing bacterial spot resistance in tomato. Agronomy, 9 (1), 26. https://doi.org/10.3390/agronomy9010026
  • Silvera-Pérez E., Maeso D., Catara V., Rubio L., Leoni C., Amaral J., Estelda C., Hernández M., Bóffano L., González P., 2023. Pseudomonas spp. associated with tomato pith necrosis in the Salto area, Northwest Uruguay. European Journal of Plant Pathology, 165 (4), 715-724.
  • Singh B., Goswami A., 2015. Morphological and molecular characterization of tomato (Lycopersicum esculentum Mill) genotypes. Vegetos, 28 (4), 67-75.
  • Tezcan O.S., Tütüncü A.Ç., Ay A., Özer H., 2022. Aşılı domates fidesi üretiminin domates bitkilerinin kalitesine etkileri. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 8 (3), 423– 429. https://doi.org/10.24180/ijaws.1163857
  • Tosun K., Aktaş H., 2022. Ebeveyn potansiyeli yüksek bazı domates hatlarının verim ve meyve kalite niteliklerinin belirlenmesi. Türk Bilim ve Mühendislik Dergisi, 4 (2), 100-113. https://doi.org/10.55979/tjse.1187438
  • Turhan A., Şeniz V., 2009. Türkiye’de yetiştirilen bazı domates gen kaynaklarının verim, meyve ve morfolojik özelliklerinin belirlenmesi. Selcuk Journal of Agriculture and Food Sciences, 23 (50), 52-59.
  • TUIK, 2022. Bitkisel Üretim İstatistikleri: Domates Üretimi. https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111anddil=1 (accessed date: 07.05.2024. (In Turkish)
  • Umesha S., Kavitha R., 2011. Induction of cinnamyl alcohol dehydrogenase in bacterial spot disease resistance of tomato. Journal of Bacteriology Research, 3 (2), 16-27.
  • Yang W.C, Francis D.M., 2007. Genetics and breeding for resistance to bacterial diseases in tomato: prospects for marker assisted selection. In: Genetic Improvement of Solanaceous Crops, 1, Tomato. Razdan M.K., Mattoo A.K. (Eds.), Science Publishers, New Hampshire, USA, pp. 379-419.
  • Yucel S., Can C., Yurtmen M., Cetinkaya-Yildiz R., Aysan Y., 2008. Tomato pathology in Turkey. The European Journal of Plant Science and Biotechnology, 2 (1), 38-47.
  • Zhan J., Thrall P.H., Burdon J.J., 2014. Achieving sustainable plant disease management through evolutionary principles. Trends in Plant Science, 19 (9), 570-575.

Yerel süper domates genotiplerinde tarımsal morfolojik özellikler ve bazı bakteriyel yaprak patojenlerine duyarlılık

Yıl 2025, Cilt: 65 Sayı: 1, 5 - 19, 01.04.2025
https://doi.org/10.16955/bitkorb.1528556

Öz

Bu çalışmada Iğdır Ovası’nda yaygın olarak yetiştirilen Süper domates genotiplerinin morfolojik özelliklerinin karakterize edilmesi ve Süper domates genotipinin Pseudomonas syringae pv. tomato (Pst) ve Xanthomonas euvesicatoria pv. perforans (Xep)'in neden olduğu bakteriyel hastalıklara reaksiyonunun belirlenmesi amaçlanmıştır. Süper domates genotipleri, 2021-2022 hasat sezonununda 20 farklı bölgeden toplanmıştır. Bitki özelliklerini karakterize etmek için domates genotiplerinden laboratuvarda morfolojik ve fizyolojik ölçümler alınmıştır. Ayrıca, Süper domatesin Pst ve Xep enfeksiyonuna reaksiyonunu değerlendirmek için bitki yetiştirme odasında saksı denemeleri gerçekleştirilmiştir. Analizlerin sonucunda, bitki morfolojisi ve büyümesine ilişkin veriler elde edilmiştir. Bu veriler arasında bitki boyları (136.9-88.7 cm), kök uzunlukları (69.0-46.3 cm), gövde çapları (2.17-1.52 cm), bitki taze ağırlıkları (596-426 g), bitki kuru ağırlıkları (127.6-94.0 g), kök taze ağırlıkları (74.5-51.8 g), kök kuru ağırlıkları (24.3-11.9 g), bitki başına verim (4717.3-2906.5 g), ortalama meyve ağırlığı (385.2-223.7 g), meyve uzunluğu (55.5-50.3 mm) ve ortalama meyve çapı (96.0-81.1 mm) ölçümleri yer almıştır. Domates meyvelerinin fizyolojik özellikleri açısından, suda çözünür kuru madde içeriği %4.55 ile %4.11 arasında, meyve suyu pH'ı 4.69 ile 4.43 arasında, titrasyon asitliği 3.16 ile 2.93 mval 100 ml⁻¹ arasında, C vitamini içeriği 26.63 ile 17.80 mg/100 g arasında, likopen içeriği 2951.1 ile 2629.5 ng/µl arasında ve β-karoten içeriği 272.55 ile 228.82 ng/µl arasında değişmiştir. Ayrıca, saksı denemeleri, Süper domates genotipinin hem Pst hem de Xep enfeksiyonlarına karşı orta düzeyde duyarlılık gösterdiğini, hastalık şiddeti endekslerinin (DSI) sırasıyla 2.4 ve 2.2 olduğunu göstermiştir.

Kaynakça

  • Abrahamian P., Klein-Gordon J.M., Jones J.B., Vallad G.E., 2021. Epidemiology, diversity, and management of bacterial spot of tomato caused by Xanthomonas perforans. Applied Microbiology and Biotechnology, 105 (16-17), 6143–6158.
  • Akbaba M., Dönmez M.F., Hürkan K., 2025. Characterization of causal agents of bacterial spot on tomato fields in Iğdır Plain (Turkiye). Journal of Agricultural Science and Technology, 0-0. (Accepted for publication, in press)
  • Akbaba M., Hürkan K., Özcan O., 2023. Characterization of causal agents of bacterial canker on apricot plantations and risk mapping using GIS in Aras Basin (Türkiye). Journal of Phytopathology, 171 (10), 517-536.
  • Akbaş B., Kunter B., Ilhan D., 2009. Influence of leafroll on local grapevine cultivars in agroecological conditions of Central Anatolia region. Horticultural Science, 36 (3), 97-104.
  • Al-Aysh F., Kutma H., Serhan M., Al-Zoubai A., Al-Naseer M.A., 2012. Genetic analysis and correlation studies of yield and fruit quality traits in tomato (Solanum lycopersicum L.). New York Science Journal, 5 (10), 142-145.
  • Al-Dahmani J.H., Abbasi P.A., Miller S.A., Hoitink H.A., 2003. Suppression of bacterial spot of tomato with foliar sprays of compost extracts under greenhouse and field conditions. Plant Disease, 87 (8), 913-919.
  • Aoun A.B., Lechiheb B., Benyahya L., Ferchichi A., 2013. Evaluation of fruit quality traits of traditional varieties of tomato (Solanum lycopersicum) grown in Tunisia. African Journal of Food Science, 7 (10), 350-354. https://doi.org/10.5897/AJFS2013.1067
  • Aydın G., Aktaş H., 2023. Bazı kiraz ve kokteyl domates hatlarının biyokimyasal içeriklerinin belirlenmesi. Türk Bilim ve Mühendislik Dergisi, 5 (2), 97-111.
  • Bakır V., Özdemir Z., Yardım H., 2012. Reaction of some popular hybrid tomato cultivars grown in Aegean region to bacterial speck disease and determination of disease incidence in Şahnalı, Aydın. The Journal of Turkish Phytopathology, 41 (1-2-3), 37-42.
  • Bode D., Elezi F., Gixhari B., 2013. Morphological characterisation and interrelationships among descriptors in Phaseolus vulgaris accessions. Agriculture and Forestry-Poljoprivreda i šumarstvo, 59 (2), 175-185.
  • Canzoniere P., Francesconi S., Giovando S., Balestra G., 2021. Antibacterial activity of tannins towards Pseudomonas syringae pv. tomato, and their potential as biostimulants on tomato plants. Phytopathologia Mediterranea, 60 (1), 23-36. https://www.jstor.org/stable/27248654
  • Cemeroğlu B., 1992. Meyve ve Sebze İşleme Endüstrisinde Temel Analiz Metotları. Ankara, Biltav Yayınları, No:02-2
  • Chambers S.C., Merriman P.R., 1975. Perennation and control of Pseudomonas syringae pv. tomato in Victoria. Australian Journal of Agricultural Research, 26, 657-663.
  • Che K., Liang C., Wang Y., Jin D., Wang B., 2003. Genetic assessment of watermelon germplasm using the AFLP technique. Hortscience, 38 (1), 81-84.
  • Constantin E.C., Cleenwerck I., Maes M., Baeyen S., Van Malderghem C., De Vos P., Cottyn B., 2016. Genetic characterization of strains named as Xanthomonas axonopodis pv. dieffenbachiae leads to a taxonomic revision of the X. axonopodis species complex. Plant Pathology, 65 (5), 792–806. https://doi.org/10.1111/PPA.12461
  • Dal Y., Kayak N., Kal Ü., Seymen M., Türkmen Ö., 2017. Yerel kavun (Cucumis melo L.) genotiplerinin bazı morfolojik özellikleri. Akademik Ziraat Dergisi, 6 (Özel Sayı), 179-186.
  • Eenink A.H., 1981. Partial resistance in lettuce to downy mildew (Bremia lactucae). 1. Search for partially resistant genotypes and influence of certain plant characters and environments on the resistance level. Euphytica, 30, 619-628.
  • Ekici O., Baştaş K., 2014. Determination of the resistance reactions of some tomato cultivars against bacterial speck disease. Selcuk Journal of Agriculture and Food Sciences, 28 (2), 42-51.
  • Eser B., Saygılı H., Göçgol A., İlker E., 2005. Tohum Bilimi ve Teknolojisi, Ege Üniversitesi Tohum Teknolojisi Uygulama ve Araştırma Merkezi, İzmir, Cilt 1, Yayın no:3.
  • FAO, 2022. Tomatoes, Food and Agriculture Organization of the United Nations (FAO), https://www.fao.org/faostat/en/#data/QCL/visualize (accessed date: 07.05.2024).
  • Felföldi Z., Ranga F., Roman I.A., Sestras A.F., Vodnar D.C., Prohens J., Sestras R.E., 2022. Analysis of physico-chemical and organoleptic fruit parameters relevant for tomato quality. Agronomy, 12 (5), 1232.
  • Figueiredo-González M., Valentao P., Pereira D.M., Andrade P.B., 2017. Further insights on tomato plant: cytotoxic and antioxidant activity of leaf extracts in human gastric cells. Food and Chemical Toxicology, 109, 386-392.
  • Fischer R.A., 2001. Selection traits for improving yield potential. In: Application of Physiology in Wheat Breeding, Reynolds, A.P., Ortiz-Monasterio, J.I., McNab, A., (Eds.), CIMMYT, Mexico, 148-159.
  • Giorio G., Stigliani A.L., D’Ambrosio C., 2007. Agronomic performance and transcriptional analysis of carotenoid biosynthesis in fruits of transgenic highcaro and control tomato lines underfield conditions. Transgenic Research, 16 (1), 15–28. https://doi.org/10.1007/s11248-006-90253
  • Gross T., Johnston S., Barber C.V., 2006. The convention on biological diversity: understanding and ınfluencing the process, United Nations University Institute of Advanced Studies, COP Secretariat, Ministry of the Environment, p 70.
  • Hanson P.M., Yang R.Y., Wu J., Chen J.T., Ledesma D., Tsou S.C., Lee T.C., 2004. Variation for antioxidant activity and antioxidants in tomato. Journal of the American Society for Horticultural Science, 129 (5), 704-711.
  • Horuz S., Serin M., 2024. Occurrence and pathogenicity of Stenotrophomonas spp. and Paenibacillus spp. on tomato plants in Turkey. Journal of Plant Pathology, 106, 191–201. https://doi.org/10.1007/s42161-023-01540-9
  • Hutton S.F., Scott J.W., Yang W., Sim S.C., Francis D.M., Jones J.B., 2010. Identification of QTL associated with resistance to bacterial spot race T4 in tomato. Theoretical and Applied Genetics, 121, 1275-1287.
  • Ji P., Campbell H.L., Kloepper J.W., Jones J.B., Suslow T.V., Wilson M., 2006. Integrated biological control of bacterial speck and spot of tomato under field conditions using foliar biological control agents and plant growth-promoting rhizobacteria. Biological Control, 36 (3), 358-367.
  • Jones J.B., Lacy G.H., Bouzar H., Stall R.E., Schaad N.W., 2004. Reclassification of the Xanthomonads associated with bacterial spot disease of tomato and pepper. Systematic and Applied Microbiology, 27 (6), 755–762. https://doi.org/10.1078/072320204236988432
  • Karagöz A., Zencirci N., Tan A., Taşkın T., Köksel H., Sürek M., Toker C., Özbek K., 2010. Bitki Genetik Kaynaklarının Korunması ve Kullanımı. Ziraat Mühendisliği VII. Teknik Kongresi. 11-15 Ocak 2010, Ankara, 155-177.
  • Karataş A., Büyükdinç D.T., İpek A., Yağcıoğlu M., Sönmez K., Ellialtıoğlu Ş.Ş., 2017. Türkiye’de fasulyede yapılan morfolojik ve moleküler karakterizasyon çalışmaları. Türk Bilimsel Derlemeler Dergisi, 10 (1), 16-27.
  • Kathayat K., Singh A., Rawat M., 2015. Morphological characterization of tomato (Solanum lycopersicum L.) germplasm in Tarai region of Uttarakhand. HortFlora Research Spectrum, 4 (3), 220-223.
  • Keskin G., Gül U., 2004. Domates, Tarımsal Ekonomi Araştırma Enstitüsü, T.E.A.E-Bakış, Sayı:5, Nüsha:13, Ankara.
  • Kozik E.U., 2002. Studies on resistance to bacterial speck (Pseudomonas syringae pv. tomato) in tomato cv. Ontario 7710. Plant Breeding, 121 (6), 526-530.
  • Kozik E.U., Sobiczewski P., 2007. Assessment of inoculation techniques suitability for determination of tomato plants resistance to bacterial speck (Pseudomonas syringae pv. tomato). Phytopathologia Polonica, 44, 17-25.
  • Lai Y.R., Lin C.H., Chang C.P., Ni H.F., Tsai W.S., Huang C.J., 2021. Distribution of copper resistance gene variants of Xanthomonas citri subsp. citri and Xanthomonas euvesicatoria pv. perforans. Plant Protection Science, 57 (3), 206-216.
  • Liu X., Wang L., Zhang H., Li Y., Yang W., 2017. Genetic and fruit trait differences between Chinese elite lines/varieties and American varieties of processing tomato. Scientia Horticulturae, 224, 251-257. https://doi.org/10.1016/j.scienta.2017.06.023
  • Madakbaş S.Y., Ergin M., 2011. Morphological and phenological characterization of Turkish bean (Phaseolus vulgaris L.) genotypes and their present variation states. African Journal of Agricultural Research, 6 (28), 6155-6166.
  • McLeod A., Masimba T., Jensen T., Serfontein K., Coertze S., 2017. Evaluating spray programs for managing copper resistant Pseudomonas syringae pv. tomato populations on tomato in the Limpopo region of South Africa. Crop Protection, 102, 32-42.
  • Morinière L., Burlet A., Rosenthal E.R., Nesme X., Portier P., Bull C.T., Lavire C., Fischer-Le Saux M., Bertolla F., 2020. Clarifying the taxonomy of the causal agent of bacterial leaf spot of lettuce through a polyphasic approach reveals that Xanthomonas cynarae Trébaol et al. 2000 emend. Timilsina et al. 2019 is a later heterotypic synonym of Xanthomonas hortorum Vauterin et al. 1995. Systematic and Applied Microbiology, 43 (4), 126087. https://doi.org/10.1016/J.SYAPM.2020.126087
  • Mumtaz S., Hameed M., Ahmad F., Ahmad M.S.A., Ahmad I., Ashraf M., Saleem M.H., 2021. Structural and functional determinants of physiological pliability in Kyllinga brevifolia rottb. for survival in hyper-saline salt marshes. Water, Air, & Soil Pollution, 232, 1-21.
  • Nagata M., Yamashita I., 1992. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaishi, 39 (10), 925-928.
  • Osdaghi E., Taghavi S.M., Hamzehzarghani H., Fazliarab A., Lamichhane J.R., 2017. Monitoring the occurrence of tomato bacterial spot and range of the causal agent Xanthomonas perforans in Iran. Plant Pathology, 66 (6), 990-1002.
  • Özbay N., Ateş K., 2015. Bingöl ili ekolojik şartlarına uygun sofralık domates çeşitlerinin belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 2 (2), 226-236.
  • Özden E., Akbaba M., 2023. Determination of some morphological, viability and physiological characteristics of Iğdır super tomato local genotype seeds. 13 th International Conference on Agriculture, Animal Science and Rural Development, November 28-29, 2023 Uşak / Türkiye, 636-650 pp.
  • Özenç D.B., Şen O., 2017. Farklı gelişim dönemlerinde uygulanan deniz yosunu gübresinin domates bitkisinin gelişim ve bazı kalite özelliklerine etkisi. Akademik Ziraat Dergisi, 6 (özel sayı), 235-242.
  • Paksoy M., 2003. Konya ekolojisinde değişik ekim dikim zamanlarında yetiştirilen bazı sanayilik domates çeşitlerinde verim ve kalite özelliklerinin incelenmesi. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 17 (32), 6-9.
  • Pal R.S., Hedau N.K., Kant L., Pattanayak A., 2018. Functional quality and antioxidant properties of tomato genotypes for breeding better quality varieties. Electronic Journal of Plant Breeding, 9 (1), 1-8. https://doi.org/10.5958/0975- 928X.2018.00001.7
  • Peixoto J.V.M., Garcia L.G.C., Nascimento A.D.R., Moraes E.R.D., Ferreira T.A.P.D.C., Fernandes M.R., Pereira V.D.A., 2018. Post-harvest evaluation of tomato genotypes with dual purpose. Food Science and Technology, 38 (2), 255-262. https://doi.org/10.1590/1678-457X.00217
  • Potnis N., Timilsina S., Strayer A., Shantharaj D., Barak J.D., Paret M.L., Vallad G.E., Jones J.B., 2015. Bacterial spot of tomato and pepper: Diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge. Molecular Plant Pathology, 16 (9), 907-920. https://doi.org/10.1111/mpp.12244
  • Qiao K., Liu Q., Huang Y., Xia Y., Zhang S., 2020. Management of bacterial spot of tomato caused by copper-resistant Xanthomonas perforans using a small molecule compound carvacrol. Crop Protection, 132, 105114. https://doi.org/10.1016/j.cropro.2020.105114
  • Raj T., Bhardwaj M.L., Pal S., 2018. Performance of tomato hybrids for quality traits under Mid-hill conditions of Himachal Pradesh. International Journal of Chemical Studies, 6 (4), 2565-2568.
  • Reis Pereira M., Dos Santos F.N., Tavares F., Cunha M., 2023. Enhancing host-pathogen phenotyping dynamics: early detection of tomato bacterial diseases using hyperspectral point measurement and predictive modeling. Frontiers in Plant Science, 14, 1242201. https://doi.org/10.3389/fpls.2023.1242201
  • Renna M., D’Imperio M., Gonnella M., Durante M., Parente A., Mita G., Santamaria M., Serio F., 2019. Morphological and chemical profile of three tomato (Solanum lycopersicum L.) landraces of a semi-arid mediterranean environment. Plants, 8 (8), 273. https://doi.org/10.3390/plants8080273
  • Roberts P.A., 2002. Concepts and consequences of resistance. In: Plant resistance to parasitic nematodes. Starr, J.L., Cook, R., Bridge, J., (Eds.), CABI Publishing, UK.pp. 23-42. https://doi.org/10.1079/9780851994666.0023
  • Salgotra R.K., Chauhan B.S., 2023. Genetic diversity, conservation, and utilization of plant genetic resources. Genes, 14 (1), 174. https://doi.org/10.3390/genes14010174
  • Sharma S., Bhattarai K., 2019. Progress in developing bacterial spot resistance in tomato. Agronomy, 9 (1), 26. https://doi.org/10.3390/agronomy9010026
  • Silvera-Pérez E., Maeso D., Catara V., Rubio L., Leoni C., Amaral J., Estelda C., Hernández M., Bóffano L., González P., 2023. Pseudomonas spp. associated with tomato pith necrosis in the Salto area, Northwest Uruguay. European Journal of Plant Pathology, 165 (4), 715-724.
  • Singh B., Goswami A., 2015. Morphological and molecular characterization of tomato (Lycopersicum esculentum Mill) genotypes. Vegetos, 28 (4), 67-75.
  • Tezcan O.S., Tütüncü A.Ç., Ay A., Özer H., 2022. Aşılı domates fidesi üretiminin domates bitkilerinin kalitesine etkileri. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 8 (3), 423– 429. https://doi.org/10.24180/ijaws.1163857
  • Tosun K., Aktaş H., 2022. Ebeveyn potansiyeli yüksek bazı domates hatlarının verim ve meyve kalite niteliklerinin belirlenmesi. Türk Bilim ve Mühendislik Dergisi, 4 (2), 100-113. https://doi.org/10.55979/tjse.1187438
  • Turhan A., Şeniz V., 2009. Türkiye’de yetiştirilen bazı domates gen kaynaklarının verim, meyve ve morfolojik özelliklerinin belirlenmesi. Selcuk Journal of Agriculture and Food Sciences, 23 (50), 52-59.
  • TUIK, 2022. Bitkisel Üretim İstatistikleri: Domates Üretimi. https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111anddil=1 (accessed date: 07.05.2024. (In Turkish)
  • Umesha S., Kavitha R., 2011. Induction of cinnamyl alcohol dehydrogenase in bacterial spot disease resistance of tomato. Journal of Bacteriology Research, 3 (2), 16-27.
  • Yang W.C, Francis D.M., 2007. Genetics and breeding for resistance to bacterial diseases in tomato: prospects for marker assisted selection. In: Genetic Improvement of Solanaceous Crops, 1, Tomato. Razdan M.K., Mattoo A.K. (Eds.), Science Publishers, New Hampshire, USA, pp. 379-419.
  • Yucel S., Can C., Yurtmen M., Cetinkaya-Yildiz R., Aysan Y., 2008. Tomato pathology in Turkey. The European Journal of Plant Science and Biotechnology, 2 (1), 38-47.
  • Zhan J., Thrall P.H., Burdon J.J., 2014. Achieving sustainable plant disease management through evolutionary principles. Trends in Plant Science, 19 (9), 570-575.
Toplam 68 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fitopatoloji
Bölüm Araştırma Makalesi
Yazarlar

Mustafa Akbaba 0000-0002-7029-9461

Eren Özden 0000-0001-7507-9815

Erken Görünüm Tarihi 27 Mart 2025
Yayımlanma Tarihi 1 Nisan 2025
Gönderilme Tarihi 6 Ağustos 2024
Kabul Tarihi 18 Ekim 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 65 Sayı: 1

Kaynak Göster

APA Akbaba, M., & Özden, E. (2025). Agro-morphological traits and some bacterial leaf pathogens susceptibility in local super tomato genotypes. Plant Protection Bulletin, 65(1), 5-19. https://doi.org/10.16955/bitkorb.1528556
AMA Akbaba M, Özden E. Agro-morphological traits and some bacterial leaf pathogens susceptibility in local super tomato genotypes. Plant Protection Bulletin. Nisan 2025;65(1):5-19. doi:10.16955/bitkorb.1528556
Chicago Akbaba, Mustafa, ve Eren Özden. “Agro-Morphological Traits and Some Bacterial Leaf Pathogens Susceptibility in Local Super Tomato Genotypes”. Plant Protection Bulletin 65, sy. 1 (Nisan 2025): 5-19. https://doi.org/10.16955/bitkorb.1528556.
EndNote Akbaba M, Özden E (01 Nisan 2025) Agro-morphological traits and some bacterial leaf pathogens susceptibility in local super tomato genotypes. Plant Protection Bulletin 65 1 5–19.
IEEE M. Akbaba ve E. Özden, “Agro-morphological traits and some bacterial leaf pathogens susceptibility in local super tomato genotypes”, Plant Protection Bulletin, c. 65, sy. 1, ss. 5–19, 2025, doi: 10.16955/bitkorb.1528556.
ISNAD Akbaba, Mustafa - Özden, Eren. “Agro-Morphological Traits and Some Bacterial Leaf Pathogens Susceptibility in Local Super Tomato Genotypes”. Plant Protection Bulletin 65/1 (Nisan 2025), 5-19. https://doi.org/10.16955/bitkorb.1528556.
JAMA Akbaba M, Özden E. Agro-morphological traits and some bacterial leaf pathogens susceptibility in local super tomato genotypes. Plant Protection Bulletin. 2025;65:5–19.
MLA Akbaba, Mustafa ve Eren Özden. “Agro-Morphological Traits and Some Bacterial Leaf Pathogens Susceptibility in Local Super Tomato Genotypes”. Plant Protection Bulletin, c. 65, sy. 1, 2025, ss. 5-19, doi:10.16955/bitkorb.1528556.
Vancouver Akbaba M, Özden E. Agro-morphological traits and some bacterial leaf pathogens susceptibility in local super tomato genotypes. Plant Protection Bulletin. 2025;65(1):5-19.

134351364813650136491344113445