Araştırma Makalesi
BibTex RIS Kaynak Göster

Otospermum glabrum özleri: fungal patojenlere ve Aphis fabae'ye karşı antioksidan özellikler ve biyoaktivite

Yıl 2025, Cilt: 65 Sayı: 3, 69 - 81, 30.09.2025
https://doi.org/10.16955/bitkorb.1613134

Öz

Tarımsal zararlı yönetiminde sentetik kimyasallar yerine bitki bazlı biyopestisitlerin benimsenmesi, güvenlikleri ve ekolojik faydaları nedeniyle giderek artan bir ilgi çekmektedir. Bu doğal bileşiklerin birçoğu güçlü antifungal aktivite göstererek gıda kaynaklı mantar kontaminasyonunu ve ilişkili mikotoksinleri azaltmaktadır. Bu çalışmada, Otospermum glabrum'un (Asteraceae) toprak üstü kısımlarından elde edilen ekstraktların antioksidan, antifungal ve afisidal potansiyeli değerlendirilmiştir. Üç ekstrakt −etil asetat, metanolik ve sulu− toplam polifenolik ve flavonoid içerikleri, antioksidan aktiviteleri (DPPH radikal süpürme, β-karoten ağartma ve toplam antioksidan kapasitesi), altı hasat sonrası ve bitki fungal patojenine karşı antifungal etkileri ve bakla yaprakbitine (Aphis fabae Scop.) karşı afisidal aktiviteleri açısından değerlendirilmiştir. Etil asetat özütü (EaE), test edilen özütler arasında en yüksek polifenol (57.60 ± 0.17 μg GAE/mg) ve flavinoid (49.46 ± 0.66 μg QE/mg) seviyesine sahipken; metanolik özüt (ME), en yüksek DPPH temizleme aktivitesi (IC50= 56.05±0.03 µg/ml) ve β-karoten ağartmasını önlemede en yüksek etkinliğini göstererek BHT'ninkine eşdeğer bir inhibitör aktivitesine ulaşmıştır. Sulu özüt ve etil asetat özütü, en yüksek toplam antioksidan kapasitesini göstermiştir (sırasıyla 252.60±0.20 µg AAE/mg ve 249.10±0.81 AAE/mg). Antifungal testlerine göre etil asetat özütü ve metanolik özütü tüm test edilen funguslara karşı %65'i geçen inhibisyon yüzdeleri (IP) ile en belirgin etkiyi ortaya koymuştur. Ek olarak, %30 konsantrasyonundaki metanolik ekstrakt, 72 saat sonra A. fabae'de %100 ölüme neden olmuş ve önemli bir kovucu etki (%48.98 ± 8.76) göstermiştir. Bu bulgular, O. glabrum'un entegre zararlı yönetimi için umut verici doğal bir biyopestisit kaynağı olduğunu göstermektedir.

Destekleyen Kurum

DGRSDT, university of M’sila

Teşekkür

This work was supported by the DGRSDT, university of M’sila (PRFU, Projets de Recherche Formation Universitaire) [grant number D01N01UN280120220001].

Kaynakça

  • Aazza S., El-Guendouz S., Miguel M.G., 2024. Antioxidant and α-amylase inhibition activities of six plants used in the management of diabetes in Morocco. Letters in Applied NanoBioScience, 13 (1), 17. https://doi.org/10.33263/LIANBS131.017
  • Abdel-Rahman R.S., Ismail I.A., Mohamed T.A., Hegazy M.E.F., Abdelshafeek K.A., 2019. Laboratory and field evaluation of certain wild plant extracts against Aphis fabae Scop. (Homoptera: Aphididae) and its predators. Bulletin of the National Research Centre, 43, 44. https://doi.org/10.1186/s42269-019-0084-z
  • Acheuk F., Lakhdari W., Abdellaoui K., Belaid M., Allouane R., Halouane F., 2017. Phytochemical study and bioinsecticidal effect of the crude ethanolic extract of the Algerian plant Artemisia judaica L. (Asteraceae) against the black bean aphid, Aphis fabae Scop. The Journal Agriculture and Forestry, 63 (1), 95-104. https://doi.org/10.17707/AgricultForest.63.1.11
  • Albayrak S., Silahtarlıoğlu N., 2019. Determination of biological activities of essential oil and extract obtained from Achillea coarctata Poir. Oriental Pharmacy and Experimental Medicine, 19, 135-146. https://doi.org/10.1007/s13596-019-00378-w.
  • Agar O.T., Dikmen M., Ozturk N., Yilmaz M.A., Temel H., Turkmenoglu F.P., 2015. Comparative studies on phenolic composition, antioxidant, wound healing and cytotoxic activities of selected Achillea L. species growing in Turkey. Molecules, 20 (10), 17976–18000. https://doi.org/10.3390/molecules201017976
  • Ahmed M., Peiwen Q., Gu Z., Liu Y., Sikandar A., Hussain D., Javeed A., Shafi J., Iqbal M.F., An R., Guo H., Du Y., Wang W., Zhang Y., Ji M., 2020. Insecticidal activity and biochemical composition of Citrullus colocynthis, Cannabis indica, and Artemisia argyi extracts against cabbage aphid (Brevicoryne brassicae L.). Scientific Reports, 10, 522. https://doi.org/10.1038/s41598-019-57092-5
  • Alananbeh K.M., Al-Abdallat A., Al-Hiary H., 2024. First report of Fusarium culmorum causing crown rot on wheat in Jordan. Plant Disease, 108 (3), 799. https://doi.org/10.1094/PDIS-08-23-1714-PDN
  • Almogdad M., Semaškienė R., 2021. The occurrence and control of black bean aphid (Aphis fabae Scop.) in broad bean. Zemdirbyste-Agriculture 108 (2), 165-172. https://doi.org/10.13080/z-a.2021.108.022
  • Andreu V., Levert A., Amiot A., Cousin A., Aveline N., Bertrand C., 2018. Chemical composition and antifungal activity of plant extracts traditionally used in organic and biodynamic farming. Environmental Science and Pollution Research International, 25 (30), 16987–17000. https://doi.org/10.1007/s11356-018-1320-z
  • Chioma N., Christie O., Nathaniel O., Aqib F., 2021. Phytochemical analysis and in vitro screening of antifungal activity of Jatropha multifida, Euphorbia hirta, Occimum gratissimum and Mitracarpus scaber leaves extract. GSC Biological and Pharmaceutical Sciences, 14 (3), 098-112.
  • Benbelkhir F.Z., Allali K., Benadjila A., Goudjal Y., Medjekal S., Zamoum M., 2024. Development of bioinsecticide based on Streptomyces griseoflavus PAL114 for control of black bean aphids Aphis fabae. Biocontrol Science and Technology, 34 (8), 736–753. https://doi.org/10.1080/09583157.2024.2373477
  • Biniaś B., Gospodarek J., 2017. Effect of water extract from chamomile on black bean aphid and Colorado potato beetle. Journal of Ecological Engineering, 18 (3), 118–124. https://doi.org/10.12911/22998993/69363
  • Bouguerra A., Djebili S., Zouaoui N., Barkat M., 2020. Evaluation of phenolic contents and antioxidant activities of some medicinal plants growing in Algerian Aurès Mountains. Acta Scientifica Naturalis, 7 (2), 15–30. https://doi.org/10.2478/asn-2020-0017
  • Czerniewicz P., Chrzanowski G., Sprawka I., and Sytykiewicz H., 2018. Aphicidal activity of selected Asteraceae essential oils and their effect on enzyme activities of the green peach aphid, Myzus persicae (Sulzer). Pesticide Biochemistry and Physiology, 145, 84-92.
  • https://doi.org/10.1016/j.pestbp.2018.01.010
  • Dane Y., Mouhouche F., Canela-Garayoa R., Delpino-Rius A., 2016. Phytochemical analysis of methanolic extracts of Artemisia absinthium L. (Asteraceae), Juniperus phoenicea L., and Tetraclinis articulata (Cupressaceae) and evaluation of their biological activity for stored grain protection. Arabian Journal for Science and Engineering, 41, 2147–2158. https://doi.org/10.1007/s13369-015-1977-2
  • Deresa E.M., Diriba T.F., 2023. Phytochemicals as alternative fungicides for controlling plant diseases: a comprehensive review of their efficacy, commercial representatives, advantages, challenges for adoption, and possible solutions. Heliyon, 9 (3), e13810. https://doi.org/10.1016/j.heliyon.2023.e13810
  • El Mihyaoui A., Esteves da Silva J.C.G., Charfi S., Candela Castillo M.E., Lamarti A., Arnao M.B., 2022. Chamomile (Matricaria chamomilla L.): a review of ethnomedicinal use, phytochemistry, and pharmacological uses. Life, 12 (4), 479. https://doi.org/10.3390/life12040479
  • Elbouzidi A., Taibi M., Ouassou H., Ouahhoud S., Ou-Yahia D., Loukili E.H., Aherkou M., Mansouri F., Bencheikh N., Laaraj S., Bellaouchi R., Saalaoui E., Elfazazi K., Berrichi A., Abid M., Addi, M., 2023. Exploring the multi-faceted potential of carob (Ceratonia siliqua var. Rahma) leaves from Morocco: a comprehensive analysis of polyphenols profile, antimicrobial activity, cytotoxicity against breast cancer cell lines, and genotoxicity. Pharmaceuticals, 16 (6), 840. https://doi.org/10.3390/ph16060840
  • Faraone I., Rai D.K., Chiummiento L., Fernandez E., Choudhary A., Prinzo F., Milella L., 2018. Antioxidant activity and phytochemical characterization of Senecio clivicolus Wedd. Molecules, 23 (10), 2497. https://doi.org/10.3390/molecules23102497
  • Fatehi N., Benmehdi H., Allali H., Sahel N., Oulednecir N., 2021. Evidence-based antifungal potential of some traditional medicinal plants from the Bechar region (Southwest Algeria). Indian Journal of Natural Products and Resources, 12 (1), 68–73. doi:10.56042/ijnpr.v12i1.23936
  • Gharibi S., Sayed Tabatabaei B.E., Saeidi G., 2015. Comparison of essential oil composition, flavonoid content and antioxidant activity in eight Achillea species. Journal of Essential Oil Bearing Plants, 18 (6), 1382–1394. https://doi.org/10.1080/0972060X.2014.981600
  • Gharibi S., Sayed Tabatabaei B.E., Saeidi G., Goli S.A.H., Talebi M., 2013. Total phenolic content and antioxidant activity of three Iranian endemic Achillea species. Industrial Crops and Products, 50, 154–158. https://doi.org/10.1016/j.indcrop.2013.07.038
  • Ghuffar S., Irshad G., Naz F., Khan M.A., 2021. Studies of Penicillium species associated with blue mold disease of grapes and management through plant essential oils as non-hazardous botanical fungicides. Green Processing and Synthesis, 10 (1), 21–36. https://doi.org/10.1515/gps-2021-0007
  • Guenane H., Rezzoug M., Bakchiche B., Cheraif K., Mohamed A.S., El-Shazly M.A.M., 2024. Antioxidant properties and mineral contents of different solvent extracts of some medicinal plants cultivated in Algeria. Tropical Journal of Natural Product Research, 8 (1), 5987–5991. https://doi.org/10.26538/tjnpr/v8i1.39
  • Hassanpour H., Niknam V., Ahmadi-Sakha S., Haddadi B., 2020. Antioxidant activity and flavonoid content of Matricaria chamomilla extracts from different populations of Iran. Journal of Botanical Research, 2 (2), 8-13. https://doi.org/10.30564/jrb.v2i2.1909
  • Hbika A., Daoudi N.E., Bouyanzer A., Bouhrim M., Mohti H., Loukili E.H., Mechchate H., Al-Salahi R., Nasr F.A., Bnouham M., Zaid A., 2022. Artemisia absinthium L. aqueous and ethyl acetate extracts: antioxidant effect and potential activity in vitro and in vivo against pancreatic α-amylase and intestinal α-glucosidase. Pharmaceutics, 14 (3), 481. https://doi.org/10.3390/pharmaceutics14030481
  • Hendel N., Sarri D., Sarri M., Selloum M., Boussakra F., Driche O., 2021. Screening for in vitro antioxidant activity and antifungal effect of Artemisia campestris L. International Journal of Agriculture, Environment and Food Sciences, 5 (3), 251–259. https://doi.org/10.31015/jaefs.2021.3.1
  • Hendel N., Sarri D., Sarri M., Napoli E., Palumbo Piccionello A., Ruberto G., 2024. Phytochemical analysis and antioxidant and antifungal activities of powders, methanol extracts, and essential oils from Rosmarinus officinalis L. and Thymus ciliatus Desf. Benth. International Journal of Molecular Sciences, 25 (14), 7989. doi: 10.3390/ijms25147989
  • Hernández-Ceja A., Loeza-Lara P.D., Espinosa-García F.J., García-Rodríguez Y.M., Medina-Medrano J.R., Gutiérrez-Hernández G.F., Ceja-Torres L.F., 2021. In vitro antifungal activity of plant extracts on pathogenic fungi of blueberry (Vaccinium sp.). Plants, 10 (5), 852. https://doi.org/10.3390/plants10050852
  • Kaczorová D., Karalija E., Dahija S., Bešta-Gajević R., Parić A., Čavar Zeljković S., 2021. Influence of extraction solvent on the phenolic profile and bioactivity of two Achillea species. Molecules, 26 (6), 1601. https://doi.org/10.3390/molecules26061601
  • Khennouf S., Benchiekh D., Djidel S., Dahamna S., Amira S., Charef N., Baghiani A., Harzallah D., Arrar L., 2013. Polyphenols and antioxidant properties of extracts from Mentha pulegium L. and Matricaria chamomilla L. Pharmacognosy Communications, 3 (2), 35–40. https://doi.org/10.5530/pc.2013.2.8
  • Kumar A., Nirmal P., Kumar M., Jose A., Tomer V., Oz E., Proestos C., Zeng M., Elobeid T., Sneha K., Oz F., 2023. Major phytochemicals: recent advances in health benefits and extraction method. Molecules, 28 (2), 887. https://doi.org/10.3390/molecules28020887
  • Kursa W., Jamiołkowska A., Wyrostek J., Kowalski R., 2022. Antifungal effect of plant extracts on the growth of the cereal pathogen Fusarium spp.—an in vitro study. Agronomy, 12 (2), 3204. https://doi.org/10.3390/agronomy12123204
  • Lagnika L., Amoussa A.M.O., Adjileye R.A.A., Laleye A., Sanni A., 2016. Antimicrobial, antioxidant, toxicity and phytochemical assessment of extracts from Acmella uliginosa, a leafy vegetable consumed in Bénin, West Africa. BMC Complementary and Alternative Medicine, 16, 34. https://doi.org/10.1186/s12906-016-1014-3
  • Lebbal S., Benhizia T., Djebaili S., Bouzidi C., Ghassir H., Rahal K., Zeraib A., 2023. Aphicidal activity screening of plant extracts from Pistacia lentiscus (Anacardiaceae). Entomologia Hellenica, 32 (2), 12–19. https://doi.org/10.12681/entomologia.35414
  • Lezoul N.E.H., Belkadi M., Habibi F., Guillén F., 2020. Extraction processes with several solvents on total bioactive compounds in different organs of three medicinal plants. Molecules, 25 (20), 4672. https://doi.org/10.3390/molecules25204672
  • Li H., Zhao R., Pan Y., Tian H., Chen W., 2024. Insecticidal activity of Ageratina adenophora (Asteraceae) extract against Limax maximus (Mollusca, Limacidae) at different developmental stages and its chemical constituent analysis. PLOS One, 19 (4), e0298668. https://doi.org/10.1371/journal.pone.0298668
  • Ljubuncic P., Song H., Cogan U., Azaizeh H., Bomzon A., 2005. The effects of aqueous extracts prepared from the leaves of Pistacia lentiscus in experimental liver disease. Journal of Ethnopharmacology, 100 (1-2), 198–204. https://doi.org/10.1016/j.jep.2005.03.006
  • Mammeri A., Bendif H., Bensouici C., Benslama A., Rebas K., Bouasla A., Rebaia I., Souilah N., Miara M.D., 2022. Total phenolic contents, in vitro antioxidant activity, enzymes inhibition, and anti-inflammatory effect of the selective extracts from the Algerian Lavandula multifida. Acta Pharmaceutica Sciencia, 60 (1), 1–15. https://doi.org/10.23893/1307-2080.APS.6001
  • Martin J.H. (1983). The identification of common aphid pests of tropical agriculture. Tropical Pest Management, 29 (4), 395–411. https://doi.org/10.1080/09670878309370834
  • Mbarga M.J.A., Podoprigora I.V., Anyutoulou K.L.D., Kezimana P., Smolyakova L.A., Tene M.H., Rehailia M., Yashina N.V., Smirnova I.P., Manga I.A.M., Das M.S., 2022. Antimicrobial and antibiotic-resistance reversal activity of some medicinal plants from Cameroon against selected resistant and non-resistant uropathogenic bacteria. Frontiers in Bioscience (Elite Ed), 14 (4), 25. https://doi.org/10.31083/j.fbe1404025
  • Mehmood A., Javid S., Khan M.F., Ahmad K.S., Mustafa A., 2022. In vitro total phenolics, total flavonoids, antioxidant and antibacterial activities of selected medicinal plants using different solvent systems. BMC Chemistry, 16, 64. https://doi.org/10.1186/s13065-022-00858-2
  • Moawad S.S., Al-Barty A.M.F., 2011. Evaluation of some medicinal and ornamental plant extracts toward pomegranate aphid, Aphis punicae (Passerini) under laboratory conditions. African Journal of Agricultural Research, 6 (10), 2425–2429. https://doi.org/10.5897/AJAR11.294
  • Mokhtari R., Fard M.K., Rezaei M., Moftakharzadeh S.A., Mohseni A., 2023. Antioxidant, antimicrobial activities, and characterization of phenolic compounds of thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and thyme–sage mixture extracts. Journal of Food Quality, 2023, Article ID 2602454, 9 pages. https://doi.org/10.1155/2023/2602454
  • Molole G.J., Gure A., Abdissa N., 2022. Determination of total phenolic content and antioxidant activity of Commiphora mollis (Oliv.) Engl. resin. BMC Chemistry, 16 (1), 48. https://doi.org/10.1186/s13065-022-00841-x
  • Mourad B., Rachid B., Sihem B., 2018. Antioxidant activity and phenolic content of Artemisia campestris from two regions of Algeria. World Journal of Environmental Biosciences, 7 (2), 61–66.
  • Mwangi R.W., Mustafa M., Charles K., Wagara I.W., Kappel N., 2023. Selected emerging and reemerging plant pathogens affecting the food basket: a threat to food security. Journal of Agriculture and Food Research, 14, 100827. https://doi.org/10.1016/j.jafr.2023.100827
  • Naimi I., Tastift M.A., Zefzoufi M., Gadhi C., Ba M’hamed T., Bouamama H., 2025. Chemical characterization, anti-cholinesterase and insecticidal activities of Moroccan Artemisia absinthium L. leaf extracts against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of Stored Products Research, 112 (1), 102635. https://doi.org/10.1016/j.jspr.2025.102635
  • Ngegba P.M., Cui G., Khalid M.Z., Zhong G., 2022. Use of botanical pesticides in agriculture as an alternative to synthetic pesticides. Agriculture, 12 (5), 600. https://doi.org/10.3390/agriculture12050600
  • Noureldeen A., Kumar U., Asad M., Darwish H., Alharthi S., Fawzy M.A., Al-Barty A.M., Alotaibi S.S., Fallatah A., Alghamdi A., Albogami B., Alkashgry N., 2022. Aphicidal activity of five plant extracts applied singly or in combination with entomopathogenic bacteria, Xenorhabdus budapestensis, against rose aphid, Macrosiphum rosae (Hemiptera: Aphididae). Journal of King Saud University – Science, 34, 102306. https://doi.org/10.1016/j.jksus.2022.102306
  • Onanuga A.O., Oloyede G.K., 2022. Phytochemical analysis and antifungal activity of Costus lucanusianus J. Braun & K. Schum aerial and rhizome crude extracts. GSC Biological and Pharmaceutical Sciences, 18 (2), 215-223. https://doi.org/10.30574/gscbps.2022.18.2.0068
  • Othman A., Mukhtar N.J., Ismail N.S., Chang S.K., 2014. Phenolics, flavonoids content and antioxidant activities of 4 Malaysian herbal plants. International Food Research Journal, 21 (2), 759–766.
  • Palaiogiannis D., Chatzimitakos T., Athanasiadis V., Bozinou E., Makris D.P., Lalas S.I., 2023. Successive solvent extraction of polyphenols and flavonoids from Cistus creticus L. leaves. Oxygen, 3 (3), 274–286. https://doi.org/10.3390/oxygen3030018
  • Pandey G., Rathore H., 2023. Toxicity of strobilurins fungicides: a comprehensive review. Journal of Chemical Health Risks, 13 (2), 207–218. https://doi.org/10.22034/jchr.2023.1960279.1563
  • Pintye A., Bacsó R., Kovács G.M., 2024. Trans-kingdom fungal pathogens infecting both plants and humans, and the problem of azole fungicide resistance. Frontiers in Microbiology, 15, 1354757. https://doi.org/10.3389/fmicb.2024.1354757
  • Quezel P., Santa S., 1962. Nouvelle flore de l’Algérie et des régions désertiques méridionales. Éditions du Centre National de la Recherche Scientifique, Paris, 1170 p.
  • Rahim G., Qureshi R., Hazrat A., Ahmad B., Khan A.A., Aziz T., Alharbi M., Alshammari A., 2023. Phytochemical, antimicrobial, radical scavenging and in-vitro biological activities of Teucrium stocksianum leaves. Journal of the Chilean Chemical Society, 68 (1), 5748–5754. https://doi.org/10.4067/S0717-97072023000105748
  • Ranjbar M., Naghavi M.R., Alizadeh H., 2020. Chemical composition of the essential oils of Artemisia species from Iran: a comparative study using multivariate statistical analysis. Journal of Essential Oil Research, 32 (4), 361-371. https://doi.org/10.1080/10412905.2020.1750495
  • Rizwana H., Alwahibi M.S., Soliman D.A., 2016. Antimicrobial activity and chemical composition of flowers of Matricaria aurea, a native herb of Saudi Arabia. International Journal of Pharmacology, 12 (6), 576–586. https://doi.org/10.3923/ijp.2016.576.586
  • Salari E., Ahmadi K., Zamani R., 2010. Study on the effects of acetonic extract of Otostegia persica (Labiatae) on three aphid species and one stored product pest. Advances in Environmental Biology, 4 (3), 346–349. https://www.researchgate.net/publication/235799744
  • Salem M.Z.M., Behiry S.I., El-Hefny M., 2019. Inhibition of Fusarium culmorum, Penicillium chrysogenum and Rhizoctonia solani by n-hexane extracts of three plant species as a wood-treated oil fungicide. Journal of Applied Microbiology, 126 (6), 1683–1699. doi: 10.1111/jam.14256
  • Madjitoloum Betoloum S., Talla E., Ngassoum M.B., Tsatsop Tsauge R.K., Nyemb J.N., Mahmout Y., 2018. Optimization of microwave-assisted extraction of total phenol content and total flavonoids content from Anacardium occidentale L. (Anacardeaceae) using response surface methodology. International Journal of Biochemistry and Biotechnology, 7 (4), 800–809.
  • Şabanoğlu S., Gökbulut A., Altun M.L., 2019. Characterization of phenolic compounds, total phenolic content and antioxidant activity of three Achillea species. Journal of Research in Pharmacy, 23 (3), 567–576. https://doi.org/10.12991/jrp.2019.164
  • Silva-Beltrán N.P., Boon S.A., Ijaz M.K., McKinney J., Gerba C.P., 2023. Antifungal activity and mechanism of action of natural product derivatives as potential environmental disinfectants. Journal of Industrial Microbiology and Biotechnology, 50 (1), kuad036. https://doi.org/10.1093/jimb/kuad036
  • Souto A.L., Sylvestre M., Tölke E.D., Tavares J.F., Barbosa-Filho J.M., Cebrián-Torrejón G., 2021. Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: prospects, applications and challenges. Molecules, 26 (16), 4835. https://doi.org/10.3390/molecules26164835
  • Šamec D., Karalija E., Šola I., Vujčić Bok V., Salopek-Sondi B., 2021. The role of polyphenols in abiotic stress response: the influence of molecular structure. Plants, 10 (1), 118. https://doi.org/10.3390/plants10010118
  • Tabet Zatla A., Hammoudi A., Brikci Nigassa N., 2023. Analysis of the chemical composition and evaluation of antioxidant and anti-inflammatory properties of hydrosol extract and its principal component (Carlina oxide) in aerial parts of Atractylis gummifera from Western Algeria. Chemical Proceedings, 14 (1), 66. https://doi.org/10.3390/ecsoc-27-16135
  • Thakshila W.A.K.G., Dammini Premachandra W.T.S., Borgemeister C., 2022. Potential toxic effects of aqueous leaf extracts of Calotropis gigantea and Croton laccifera against Aphis craccivora. International Journal of Tropical Insect Science, 42, 1165–1173. https://doi.org/10.1007/s42690-021-00632-2
  • Toplan G.G., Taşkın T., İşcan G., Göger F., Kürkçüoğlu M., Civaş A., Ecevit-Genç G., Mat A., Başer K.H.C., 2022. Comparative studies on essential oil and phenolic content with in vitro antioxidant, anticholinesterase, antimicrobial activities of Achillea biebersteinii Afan. and A. millefolium subsp. millefolium Afan. L. growing in Eastern Turkey. Molecules, 27 (6), 1956. https://doi.org/10.3390/molecules27061956
  • Trifan A., Zengin G., Sinan K.I., Sieniawska E., Sawicki R., Maciejewska-Turska M., Skalikca-Woźniak K., Luca S.V., 2022. Unveiling the phytochemical profile and biological potential of five Artemisia species. Antioxidants, 11 (5) 1017. https://doi.org/10.3390/antiox11051017
  • Yang M., Li M., Chen F., Chen S., 2024. Bioactive components and antimicrobial potential of extracts from Artemisia species and their repellent activities against Aphid (Macrosiphoniella sanborni). Ornamental Plant Research, 4:e025. doi:10.48130/opr-0024-0021
  • Zakaria L., 2024. An overview of Aspergillus species associated with plant diseases. Pathogens, 13 (9), 813. https://doi.org/10.3390/pathogens13090813

Otospermum glabrum extracts: antioxidant properties and bioactivity against fungal pathogens and Aphis fabae

Yıl 2025, Cilt: 65 Sayı: 3, 69 - 81, 30.09.2025
https://doi.org/10.16955/bitkorb.1613134

Öz

The adoption of plant-based biopesticides as sustainable alternatives to synthetic chemicals in agricultural pest management has gained increasing attention due to their safety and ecological benefits. Many of these natural compounds demonstrate potent antifungal activity, mitigating foodborne fungal contamination and associated mycotoxins. This study evaluated the antioxidant, antifungal, and aphicidal potential of Otospermum glabrum (Asteraceae) extracts derived from its aerial parts. Three extracts −ethyl acetate, methanolic, and aqueous− were assessed for total polyphenolic and flavonoid contents, antioxidant activity (DPPH radical scavenging, β-carotene bleaching, and total antioxidant capacity), antifungal effects against six post-harvest and crop fungal pathogens, and aphicidal activity against the black bean aphid (Aphis fabae Scop.). The ethyl acetate extract (EaE) exhibited the highest polyphenols (57.60 ± 0.17 μg GAE/mg) and flavonoids (49.46 ± 0.66 μg QE/mg), while the methanolic extract (ME) demonstrated the strongest DPPH scavenging activity (IC₅₀ = 56.05 ± 0.03 µg/ml) and β-carotene bleaching inhibition, comparable to BHT. The aqueous and ethyl acetate extracts showed the highest total antioxidant capacity (252.60 ± 0.20 and 249.10 ± 0.81 µg AAE/mg, respectively). Antifungal assays revealed that ethyl acetate and methanolic extracts were the most effective, with inhibition percentages (IP) exceeding 65% against all tested fungi. Additionally, the methanolic extract at 30% concentration induced 100% mortality in A. fabae after 72 h and exhibited significant repellency (48.98 ± 8.76%). These findings highlight O. glabrum as a promising source of natural biopesticides for integrated pest management.

Destekleyen Kurum

DGRSDT, university of M’sila

Teşekkür

This work was supported by the DGRSDT, university of M’sila (PRFU, Projets de Recherche Formation Universitaire) [grant number D01N01UN280120220001].

Kaynakça

  • Aazza S., El-Guendouz S., Miguel M.G., 2024. Antioxidant and α-amylase inhibition activities of six plants used in the management of diabetes in Morocco. Letters in Applied NanoBioScience, 13 (1), 17. https://doi.org/10.33263/LIANBS131.017
  • Abdel-Rahman R.S., Ismail I.A., Mohamed T.A., Hegazy M.E.F., Abdelshafeek K.A., 2019. Laboratory and field evaluation of certain wild plant extracts against Aphis fabae Scop. (Homoptera: Aphididae) and its predators. Bulletin of the National Research Centre, 43, 44. https://doi.org/10.1186/s42269-019-0084-z
  • Acheuk F., Lakhdari W., Abdellaoui K., Belaid M., Allouane R., Halouane F., 2017. Phytochemical study and bioinsecticidal effect of the crude ethanolic extract of the Algerian plant Artemisia judaica L. (Asteraceae) against the black bean aphid, Aphis fabae Scop. The Journal Agriculture and Forestry, 63 (1), 95-104. https://doi.org/10.17707/AgricultForest.63.1.11
  • Albayrak S., Silahtarlıoğlu N., 2019. Determination of biological activities of essential oil and extract obtained from Achillea coarctata Poir. Oriental Pharmacy and Experimental Medicine, 19, 135-146. https://doi.org/10.1007/s13596-019-00378-w.
  • Agar O.T., Dikmen M., Ozturk N., Yilmaz M.A., Temel H., Turkmenoglu F.P., 2015. Comparative studies on phenolic composition, antioxidant, wound healing and cytotoxic activities of selected Achillea L. species growing in Turkey. Molecules, 20 (10), 17976–18000. https://doi.org/10.3390/molecules201017976
  • Ahmed M., Peiwen Q., Gu Z., Liu Y., Sikandar A., Hussain D., Javeed A., Shafi J., Iqbal M.F., An R., Guo H., Du Y., Wang W., Zhang Y., Ji M., 2020. Insecticidal activity and biochemical composition of Citrullus colocynthis, Cannabis indica, and Artemisia argyi extracts against cabbage aphid (Brevicoryne brassicae L.). Scientific Reports, 10, 522. https://doi.org/10.1038/s41598-019-57092-5
  • Alananbeh K.M., Al-Abdallat A., Al-Hiary H., 2024. First report of Fusarium culmorum causing crown rot on wheat in Jordan. Plant Disease, 108 (3), 799. https://doi.org/10.1094/PDIS-08-23-1714-PDN
  • Almogdad M., Semaškienė R., 2021. The occurrence and control of black bean aphid (Aphis fabae Scop.) in broad bean. Zemdirbyste-Agriculture 108 (2), 165-172. https://doi.org/10.13080/z-a.2021.108.022
  • Andreu V., Levert A., Amiot A., Cousin A., Aveline N., Bertrand C., 2018. Chemical composition and antifungal activity of plant extracts traditionally used in organic and biodynamic farming. Environmental Science and Pollution Research International, 25 (30), 16987–17000. https://doi.org/10.1007/s11356-018-1320-z
  • Chioma N., Christie O., Nathaniel O., Aqib F., 2021. Phytochemical analysis and in vitro screening of antifungal activity of Jatropha multifida, Euphorbia hirta, Occimum gratissimum and Mitracarpus scaber leaves extract. GSC Biological and Pharmaceutical Sciences, 14 (3), 098-112.
  • Benbelkhir F.Z., Allali K., Benadjila A., Goudjal Y., Medjekal S., Zamoum M., 2024. Development of bioinsecticide based on Streptomyces griseoflavus PAL114 for control of black bean aphids Aphis fabae. Biocontrol Science and Technology, 34 (8), 736–753. https://doi.org/10.1080/09583157.2024.2373477
  • Biniaś B., Gospodarek J., 2017. Effect of water extract from chamomile on black bean aphid and Colorado potato beetle. Journal of Ecological Engineering, 18 (3), 118–124. https://doi.org/10.12911/22998993/69363
  • Bouguerra A., Djebili S., Zouaoui N., Barkat M., 2020. Evaluation of phenolic contents and antioxidant activities of some medicinal plants growing in Algerian Aurès Mountains. Acta Scientifica Naturalis, 7 (2), 15–30. https://doi.org/10.2478/asn-2020-0017
  • Czerniewicz P., Chrzanowski G., Sprawka I., and Sytykiewicz H., 2018. Aphicidal activity of selected Asteraceae essential oils and their effect on enzyme activities of the green peach aphid, Myzus persicae (Sulzer). Pesticide Biochemistry and Physiology, 145, 84-92.
  • https://doi.org/10.1016/j.pestbp.2018.01.010
  • Dane Y., Mouhouche F., Canela-Garayoa R., Delpino-Rius A., 2016. Phytochemical analysis of methanolic extracts of Artemisia absinthium L. (Asteraceae), Juniperus phoenicea L., and Tetraclinis articulata (Cupressaceae) and evaluation of their biological activity for stored grain protection. Arabian Journal for Science and Engineering, 41, 2147–2158. https://doi.org/10.1007/s13369-015-1977-2
  • Deresa E.M., Diriba T.F., 2023. Phytochemicals as alternative fungicides for controlling plant diseases: a comprehensive review of their efficacy, commercial representatives, advantages, challenges for adoption, and possible solutions. Heliyon, 9 (3), e13810. https://doi.org/10.1016/j.heliyon.2023.e13810
  • El Mihyaoui A., Esteves da Silva J.C.G., Charfi S., Candela Castillo M.E., Lamarti A., Arnao M.B., 2022. Chamomile (Matricaria chamomilla L.): a review of ethnomedicinal use, phytochemistry, and pharmacological uses. Life, 12 (4), 479. https://doi.org/10.3390/life12040479
  • Elbouzidi A., Taibi M., Ouassou H., Ouahhoud S., Ou-Yahia D., Loukili E.H., Aherkou M., Mansouri F., Bencheikh N., Laaraj S., Bellaouchi R., Saalaoui E., Elfazazi K., Berrichi A., Abid M., Addi, M., 2023. Exploring the multi-faceted potential of carob (Ceratonia siliqua var. Rahma) leaves from Morocco: a comprehensive analysis of polyphenols profile, antimicrobial activity, cytotoxicity against breast cancer cell lines, and genotoxicity. Pharmaceuticals, 16 (6), 840. https://doi.org/10.3390/ph16060840
  • Faraone I., Rai D.K., Chiummiento L., Fernandez E., Choudhary A., Prinzo F., Milella L., 2018. Antioxidant activity and phytochemical characterization of Senecio clivicolus Wedd. Molecules, 23 (10), 2497. https://doi.org/10.3390/molecules23102497
  • Fatehi N., Benmehdi H., Allali H., Sahel N., Oulednecir N., 2021. Evidence-based antifungal potential of some traditional medicinal plants from the Bechar region (Southwest Algeria). Indian Journal of Natural Products and Resources, 12 (1), 68–73. doi:10.56042/ijnpr.v12i1.23936
  • Gharibi S., Sayed Tabatabaei B.E., Saeidi G., 2015. Comparison of essential oil composition, flavonoid content and antioxidant activity in eight Achillea species. Journal of Essential Oil Bearing Plants, 18 (6), 1382–1394. https://doi.org/10.1080/0972060X.2014.981600
  • Gharibi S., Sayed Tabatabaei B.E., Saeidi G., Goli S.A.H., Talebi M., 2013. Total phenolic content and antioxidant activity of three Iranian endemic Achillea species. Industrial Crops and Products, 50, 154–158. https://doi.org/10.1016/j.indcrop.2013.07.038
  • Ghuffar S., Irshad G., Naz F., Khan M.A., 2021. Studies of Penicillium species associated with blue mold disease of grapes and management through plant essential oils as non-hazardous botanical fungicides. Green Processing and Synthesis, 10 (1), 21–36. https://doi.org/10.1515/gps-2021-0007
  • Guenane H., Rezzoug M., Bakchiche B., Cheraif K., Mohamed A.S., El-Shazly M.A.M., 2024. Antioxidant properties and mineral contents of different solvent extracts of some medicinal plants cultivated in Algeria. Tropical Journal of Natural Product Research, 8 (1), 5987–5991. https://doi.org/10.26538/tjnpr/v8i1.39
  • Hassanpour H., Niknam V., Ahmadi-Sakha S., Haddadi B., 2020. Antioxidant activity and flavonoid content of Matricaria chamomilla extracts from different populations of Iran. Journal of Botanical Research, 2 (2), 8-13. https://doi.org/10.30564/jrb.v2i2.1909
  • Hbika A., Daoudi N.E., Bouyanzer A., Bouhrim M., Mohti H., Loukili E.H., Mechchate H., Al-Salahi R., Nasr F.A., Bnouham M., Zaid A., 2022. Artemisia absinthium L. aqueous and ethyl acetate extracts: antioxidant effect and potential activity in vitro and in vivo against pancreatic α-amylase and intestinal α-glucosidase. Pharmaceutics, 14 (3), 481. https://doi.org/10.3390/pharmaceutics14030481
  • Hendel N., Sarri D., Sarri M., Selloum M., Boussakra F., Driche O., 2021. Screening for in vitro antioxidant activity and antifungal effect of Artemisia campestris L. International Journal of Agriculture, Environment and Food Sciences, 5 (3), 251–259. https://doi.org/10.31015/jaefs.2021.3.1
  • Hendel N., Sarri D., Sarri M., Napoli E., Palumbo Piccionello A., Ruberto G., 2024. Phytochemical analysis and antioxidant and antifungal activities of powders, methanol extracts, and essential oils from Rosmarinus officinalis L. and Thymus ciliatus Desf. Benth. International Journal of Molecular Sciences, 25 (14), 7989. doi: 10.3390/ijms25147989
  • Hernández-Ceja A., Loeza-Lara P.D., Espinosa-García F.J., García-Rodríguez Y.M., Medina-Medrano J.R., Gutiérrez-Hernández G.F., Ceja-Torres L.F., 2021. In vitro antifungal activity of plant extracts on pathogenic fungi of blueberry (Vaccinium sp.). Plants, 10 (5), 852. https://doi.org/10.3390/plants10050852
  • Kaczorová D., Karalija E., Dahija S., Bešta-Gajević R., Parić A., Čavar Zeljković S., 2021. Influence of extraction solvent on the phenolic profile and bioactivity of two Achillea species. Molecules, 26 (6), 1601. https://doi.org/10.3390/molecules26061601
  • Khennouf S., Benchiekh D., Djidel S., Dahamna S., Amira S., Charef N., Baghiani A., Harzallah D., Arrar L., 2013. Polyphenols and antioxidant properties of extracts from Mentha pulegium L. and Matricaria chamomilla L. Pharmacognosy Communications, 3 (2), 35–40. https://doi.org/10.5530/pc.2013.2.8
  • Kumar A., Nirmal P., Kumar M., Jose A., Tomer V., Oz E., Proestos C., Zeng M., Elobeid T., Sneha K., Oz F., 2023. Major phytochemicals: recent advances in health benefits and extraction method. Molecules, 28 (2), 887. https://doi.org/10.3390/molecules28020887
  • Kursa W., Jamiołkowska A., Wyrostek J., Kowalski R., 2022. Antifungal effect of plant extracts on the growth of the cereal pathogen Fusarium spp.—an in vitro study. Agronomy, 12 (2), 3204. https://doi.org/10.3390/agronomy12123204
  • Lagnika L., Amoussa A.M.O., Adjileye R.A.A., Laleye A., Sanni A., 2016. Antimicrobial, antioxidant, toxicity and phytochemical assessment of extracts from Acmella uliginosa, a leafy vegetable consumed in Bénin, West Africa. BMC Complementary and Alternative Medicine, 16, 34. https://doi.org/10.1186/s12906-016-1014-3
  • Lebbal S., Benhizia T., Djebaili S., Bouzidi C., Ghassir H., Rahal K., Zeraib A., 2023. Aphicidal activity screening of plant extracts from Pistacia lentiscus (Anacardiaceae). Entomologia Hellenica, 32 (2), 12–19. https://doi.org/10.12681/entomologia.35414
  • Lezoul N.E.H., Belkadi M., Habibi F., Guillén F., 2020. Extraction processes with several solvents on total bioactive compounds in different organs of three medicinal plants. Molecules, 25 (20), 4672. https://doi.org/10.3390/molecules25204672
  • Li H., Zhao R., Pan Y., Tian H., Chen W., 2024. Insecticidal activity of Ageratina adenophora (Asteraceae) extract against Limax maximus (Mollusca, Limacidae) at different developmental stages and its chemical constituent analysis. PLOS One, 19 (4), e0298668. https://doi.org/10.1371/journal.pone.0298668
  • Ljubuncic P., Song H., Cogan U., Azaizeh H., Bomzon A., 2005. The effects of aqueous extracts prepared from the leaves of Pistacia lentiscus in experimental liver disease. Journal of Ethnopharmacology, 100 (1-2), 198–204. https://doi.org/10.1016/j.jep.2005.03.006
  • Mammeri A., Bendif H., Bensouici C., Benslama A., Rebas K., Bouasla A., Rebaia I., Souilah N., Miara M.D., 2022. Total phenolic contents, in vitro antioxidant activity, enzymes inhibition, and anti-inflammatory effect of the selective extracts from the Algerian Lavandula multifida. Acta Pharmaceutica Sciencia, 60 (1), 1–15. https://doi.org/10.23893/1307-2080.APS.6001
  • Martin J.H. (1983). The identification of common aphid pests of tropical agriculture. Tropical Pest Management, 29 (4), 395–411. https://doi.org/10.1080/09670878309370834
  • Mbarga M.J.A., Podoprigora I.V., Anyutoulou K.L.D., Kezimana P., Smolyakova L.A., Tene M.H., Rehailia M., Yashina N.V., Smirnova I.P., Manga I.A.M., Das M.S., 2022. Antimicrobial and antibiotic-resistance reversal activity of some medicinal plants from Cameroon against selected resistant and non-resistant uropathogenic bacteria. Frontiers in Bioscience (Elite Ed), 14 (4), 25. https://doi.org/10.31083/j.fbe1404025
  • Mehmood A., Javid S., Khan M.F., Ahmad K.S., Mustafa A., 2022. In vitro total phenolics, total flavonoids, antioxidant and antibacterial activities of selected medicinal plants using different solvent systems. BMC Chemistry, 16, 64. https://doi.org/10.1186/s13065-022-00858-2
  • Moawad S.S., Al-Barty A.M.F., 2011. Evaluation of some medicinal and ornamental plant extracts toward pomegranate aphid, Aphis punicae (Passerini) under laboratory conditions. African Journal of Agricultural Research, 6 (10), 2425–2429. https://doi.org/10.5897/AJAR11.294
  • Mokhtari R., Fard M.K., Rezaei M., Moftakharzadeh S.A., Mohseni A., 2023. Antioxidant, antimicrobial activities, and characterization of phenolic compounds of thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and thyme–sage mixture extracts. Journal of Food Quality, 2023, Article ID 2602454, 9 pages. https://doi.org/10.1155/2023/2602454
  • Molole G.J., Gure A., Abdissa N., 2022. Determination of total phenolic content and antioxidant activity of Commiphora mollis (Oliv.) Engl. resin. BMC Chemistry, 16 (1), 48. https://doi.org/10.1186/s13065-022-00841-x
  • Mourad B., Rachid B., Sihem B., 2018. Antioxidant activity and phenolic content of Artemisia campestris from two regions of Algeria. World Journal of Environmental Biosciences, 7 (2), 61–66.
  • Mwangi R.W., Mustafa M., Charles K., Wagara I.W., Kappel N., 2023. Selected emerging and reemerging plant pathogens affecting the food basket: a threat to food security. Journal of Agriculture and Food Research, 14, 100827. https://doi.org/10.1016/j.jafr.2023.100827
  • Naimi I., Tastift M.A., Zefzoufi M., Gadhi C., Ba M’hamed T., Bouamama H., 2025. Chemical characterization, anti-cholinesterase and insecticidal activities of Moroccan Artemisia absinthium L. leaf extracts against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of Stored Products Research, 112 (1), 102635. https://doi.org/10.1016/j.jspr.2025.102635
  • Ngegba P.M., Cui G., Khalid M.Z., Zhong G., 2022. Use of botanical pesticides in agriculture as an alternative to synthetic pesticides. Agriculture, 12 (5), 600. https://doi.org/10.3390/agriculture12050600
  • Noureldeen A., Kumar U., Asad M., Darwish H., Alharthi S., Fawzy M.A., Al-Barty A.M., Alotaibi S.S., Fallatah A., Alghamdi A., Albogami B., Alkashgry N., 2022. Aphicidal activity of five plant extracts applied singly or in combination with entomopathogenic bacteria, Xenorhabdus budapestensis, against rose aphid, Macrosiphum rosae (Hemiptera: Aphididae). Journal of King Saud University – Science, 34, 102306. https://doi.org/10.1016/j.jksus.2022.102306
  • Onanuga A.O., Oloyede G.K., 2022. Phytochemical analysis and antifungal activity of Costus lucanusianus J. Braun & K. Schum aerial and rhizome crude extracts. GSC Biological and Pharmaceutical Sciences, 18 (2), 215-223. https://doi.org/10.30574/gscbps.2022.18.2.0068
  • Othman A., Mukhtar N.J., Ismail N.S., Chang S.K., 2014. Phenolics, flavonoids content and antioxidant activities of 4 Malaysian herbal plants. International Food Research Journal, 21 (2), 759–766.
  • Palaiogiannis D., Chatzimitakos T., Athanasiadis V., Bozinou E., Makris D.P., Lalas S.I., 2023. Successive solvent extraction of polyphenols and flavonoids from Cistus creticus L. leaves. Oxygen, 3 (3), 274–286. https://doi.org/10.3390/oxygen3030018
  • Pandey G., Rathore H., 2023. Toxicity of strobilurins fungicides: a comprehensive review. Journal of Chemical Health Risks, 13 (2), 207–218. https://doi.org/10.22034/jchr.2023.1960279.1563
  • Pintye A., Bacsó R., Kovács G.M., 2024. Trans-kingdom fungal pathogens infecting both plants and humans, and the problem of azole fungicide resistance. Frontiers in Microbiology, 15, 1354757. https://doi.org/10.3389/fmicb.2024.1354757
  • Quezel P., Santa S., 1962. Nouvelle flore de l’Algérie et des régions désertiques méridionales. Éditions du Centre National de la Recherche Scientifique, Paris, 1170 p.
  • Rahim G., Qureshi R., Hazrat A., Ahmad B., Khan A.A., Aziz T., Alharbi M., Alshammari A., 2023. Phytochemical, antimicrobial, radical scavenging and in-vitro biological activities of Teucrium stocksianum leaves. Journal of the Chilean Chemical Society, 68 (1), 5748–5754. https://doi.org/10.4067/S0717-97072023000105748
  • Ranjbar M., Naghavi M.R., Alizadeh H., 2020. Chemical composition of the essential oils of Artemisia species from Iran: a comparative study using multivariate statistical analysis. Journal of Essential Oil Research, 32 (4), 361-371. https://doi.org/10.1080/10412905.2020.1750495
  • Rizwana H., Alwahibi M.S., Soliman D.A., 2016. Antimicrobial activity and chemical composition of flowers of Matricaria aurea, a native herb of Saudi Arabia. International Journal of Pharmacology, 12 (6), 576–586. https://doi.org/10.3923/ijp.2016.576.586
  • Salari E., Ahmadi K., Zamani R., 2010. Study on the effects of acetonic extract of Otostegia persica (Labiatae) on three aphid species and one stored product pest. Advances in Environmental Biology, 4 (3), 346–349. https://www.researchgate.net/publication/235799744
  • Salem M.Z.M., Behiry S.I., El-Hefny M., 2019. Inhibition of Fusarium culmorum, Penicillium chrysogenum and Rhizoctonia solani by n-hexane extracts of three plant species as a wood-treated oil fungicide. Journal of Applied Microbiology, 126 (6), 1683–1699. doi: 10.1111/jam.14256
  • Madjitoloum Betoloum S., Talla E., Ngassoum M.B., Tsatsop Tsauge R.K., Nyemb J.N., Mahmout Y., 2018. Optimization of microwave-assisted extraction of total phenol content and total flavonoids content from Anacardium occidentale L. (Anacardeaceae) using response surface methodology. International Journal of Biochemistry and Biotechnology, 7 (4), 800–809.
  • Şabanoğlu S., Gökbulut A., Altun M.L., 2019. Characterization of phenolic compounds, total phenolic content and antioxidant activity of three Achillea species. Journal of Research in Pharmacy, 23 (3), 567–576. https://doi.org/10.12991/jrp.2019.164
  • Silva-Beltrán N.P., Boon S.A., Ijaz M.K., McKinney J., Gerba C.P., 2023. Antifungal activity and mechanism of action of natural product derivatives as potential environmental disinfectants. Journal of Industrial Microbiology and Biotechnology, 50 (1), kuad036. https://doi.org/10.1093/jimb/kuad036
  • Souto A.L., Sylvestre M., Tölke E.D., Tavares J.F., Barbosa-Filho J.M., Cebrián-Torrejón G., 2021. Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: prospects, applications and challenges. Molecules, 26 (16), 4835. https://doi.org/10.3390/molecules26164835
  • Šamec D., Karalija E., Šola I., Vujčić Bok V., Salopek-Sondi B., 2021. The role of polyphenols in abiotic stress response: the influence of molecular structure. Plants, 10 (1), 118. https://doi.org/10.3390/plants10010118
  • Tabet Zatla A., Hammoudi A., Brikci Nigassa N., 2023. Analysis of the chemical composition and evaluation of antioxidant and anti-inflammatory properties of hydrosol extract and its principal component (Carlina oxide) in aerial parts of Atractylis gummifera from Western Algeria. Chemical Proceedings, 14 (1), 66. https://doi.org/10.3390/ecsoc-27-16135
  • Thakshila W.A.K.G., Dammini Premachandra W.T.S., Borgemeister C., 2022. Potential toxic effects of aqueous leaf extracts of Calotropis gigantea and Croton laccifera against Aphis craccivora. International Journal of Tropical Insect Science, 42, 1165–1173. https://doi.org/10.1007/s42690-021-00632-2
  • Toplan G.G., Taşkın T., İşcan G., Göger F., Kürkçüoğlu M., Civaş A., Ecevit-Genç G., Mat A., Başer K.H.C., 2022. Comparative studies on essential oil and phenolic content with in vitro antioxidant, anticholinesterase, antimicrobial activities of Achillea biebersteinii Afan. and A. millefolium subsp. millefolium Afan. L. growing in Eastern Turkey. Molecules, 27 (6), 1956. https://doi.org/10.3390/molecules27061956
  • Trifan A., Zengin G., Sinan K.I., Sieniawska E., Sawicki R., Maciejewska-Turska M., Skalikca-Woźniak K., Luca S.V., 2022. Unveiling the phytochemical profile and biological potential of five Artemisia species. Antioxidants, 11 (5) 1017. https://doi.org/10.3390/antiox11051017
  • Yang M., Li M., Chen F., Chen S., 2024. Bioactive components and antimicrobial potential of extracts from Artemisia species and their repellent activities against Aphid (Macrosiphoniella sanborni). Ornamental Plant Research, 4:e025. doi:10.48130/opr-0024-0021
  • Zakaria L., 2024. An overview of Aspergillus species associated with plant diseases. Pathogens, 13 (9), 813. https://doi.org/10.3390/pathogens13090813
Toplam 73 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fitopatoloji
Bölüm Araştırma Makalesi
Yazarlar

Mohammed Allouani 0009-0001-4298-6432

Nouı Hendel 0000-0002-6577-925X

Dahou Moutassem 0000-0001-6103-9134

Sarrı Madani 0000-0002-7112-0400

Djamel Sarri 0000-0003-3617-1162

Abdallah Kherbache 0000-0002-5615-9681

Meriem Sahraoui 0009-0003-5206-0486

Erken Görünüm Tarihi 25 Eylül 2025
Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 4 Ocak 2025
Kabul Tarihi 31 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 65 Sayı: 3

Kaynak Göster

APA Allouani, M., Hendel, N., Moutassem, D., … Madani, S. (2025). Otospermum glabrum extracts: antioxidant properties and bioactivity against fungal pathogens and Aphis fabae. Plant Protection Bulletin, 65(3), 69-81. https://doi.org/10.16955/bitkorb.1613134
AMA Allouani M, Hendel N, Moutassem D, vd. Otospermum glabrum extracts: antioxidant properties and bioactivity against fungal pathogens and Aphis fabae. Plant Protection Bulletin. Eylül 2025;65(3):69-81. doi:10.16955/bitkorb.1613134
Chicago Allouani, Mohammed, Nouı Hendel, Dahou Moutassem, Sarrı Madani, Djamel Sarri, Abdallah Kherbache, ve Meriem Sahraoui. “Otospermum glabrum extracts: antioxidant properties and bioactivity against fungal pathogens and Aphis fabae”. Plant Protection Bulletin 65, sy. 3 (Eylül 2025): 69-81. https://doi.org/10.16955/bitkorb.1613134.
EndNote Allouani M, Hendel N, Moutassem D, Madani S, Sarri D, Kherbache A, Sahraoui M (01 Eylül 2025) Otospermum glabrum extracts: antioxidant properties and bioactivity against fungal pathogens and Aphis fabae. Plant Protection Bulletin 65 3 69–81.
IEEE M. Allouani, N. Hendel, D. Moutassem, S. Madani, D. Sarri, A. Kherbache, ve M. Sahraoui, “Otospermum glabrum extracts: antioxidant properties and bioactivity against fungal pathogens and Aphis fabae”, Plant Protection Bulletin, c. 65, sy. 3, ss. 69–81, 2025, doi: 10.16955/bitkorb.1613134.
ISNAD Allouani, Mohammed vd. “Otospermum glabrum extracts: antioxidant properties and bioactivity against fungal pathogens and Aphis fabae”. Plant Protection Bulletin 65/3 (Eylül2025), 69-81. https://doi.org/10.16955/bitkorb.1613134.
JAMA Allouani M, Hendel N, Moutassem D, Madani S, Sarri D, Kherbache A, Sahraoui M. Otospermum glabrum extracts: antioxidant properties and bioactivity against fungal pathogens and Aphis fabae. Plant Protection Bulletin. 2025;65:69–81.
MLA Allouani, Mohammed vd. “Otospermum glabrum extracts: antioxidant properties and bioactivity against fungal pathogens and Aphis fabae”. Plant Protection Bulletin, c. 65, sy. 3, 2025, ss. 69-81, doi:10.16955/bitkorb.1613134.
Vancouver Allouani M, Hendel N, Moutassem D, Madani S, Sarri D, Kherbache A, vd. Otospermum glabrum extracts: antioxidant properties and bioactivity against fungal pathogens and Aphis fabae. Plant Protection Bulletin. 2025;65(3):69-81.

134351364813650136491344113445