Araştırma Makalesi
BibTex RIS Kaynak Göster

Domateste biyofungisit (Trichoderma spp.) kullanılarak Mısırlı canavar otu [Phelipanche aegyptiaca (Pers.) Pomel]’nun ücadelesi

Yıl 2025, Cilt: 65 Sayı: 3, 61 - 68, 30.09.2025
https://doi.org/10.16955/bitkorb.1657350

Öz

Mısırlı canavar otu olarak bilinen Phelipanche aegyptiaca (Pers.) Pomel, domates üretiminde önemli verim kayıplarına neden olan kök paraziti bir bitkidir. Bu çalışmada, Trichoderma asperellum ICC012 ve Trichoderma gamsii ICC080 suşlarını içeren ticari bir biyolojik ürünün domateste canavar otu üzerindeki etkinliği değerlendirilmiştir. Deneme, ürünün üç farklı konsantrasyonunda (N: tavsiye dozu, N/2 ve 3N/2) uygulanmasıyla, tesadüf blokları deneme desenine göre dört tekerrürlü olarak kurulmuş ve kontrollü sera koşullarında yürütülmüştür. Uygulamalar iki programda gerçekleştirilmiştir: Program A (fide dikimden bir hafta önce ve bir gün sonra) ve Program B (fide dikiminden 15 gün sonra ek bir uygulama). Sonuçlar, biyolojik kontrol ajanı (BCA) uygulamalarının P. aegyptiaca sürgünlerinde hastalık şiddetini önemli ölçüde artırdığını, bu değerlerin kontroldeki %40’a kıyasla %69.5 ile %79.6 arasında değiştiğini göstermiştir. Nekrotik alandaki en yüksek skala değerini alan sürgün sayısı, kontrolde ortalama üç iken BCA uygulaması yapılan saksılarda ortalama 17-19.5 ile önemli ölçüde artmıştır. Ayrıca, BCA uygulanan saksılarda ölü tüberküllerin ortalama sayısı 32 iken, uygulama yapılmayan saksılarda 16 olarak belirlenmiştir. BCA uygulanan canavar otu sürgünlerinin yaş ağırlığı kontrole göre önemli bulunurken, kuru sürgün ağırlığında hiçbir uygulama arasında önemli bir fark bulunmamıştır. Domates bitkisinin büyüme parametrelerinde kontrole kıyasla önemli bir fark gözlemlenmemiştir. Bu sonuçlar, Trichoderma türlerinin çoklu mekanizmalarla canavar otunu kontrol edebileceğini düşündürmektedir. Bu bulguların doğal koşullarda doğrulanması için saha denemelerinin yapılması gerekmektedir.

Kaynakça

  • Afrouz M., Sayyed R.Z., Fazeli-Nasab B., Piri R., Almalki W., Fitriatin B.N., 2023. Seed bio-priming with beneficial Trichoderma harzianum alleviates cold stress in maize. Peer J, 11, e15644.
  • Aksoy E., Uygur F.N., 2008. Effect of broomrapes on tomato and faba bean crops. Türkiye Herboloji Dergisi, 11 (1), 1-7.
  • Amira M.B., Lopez D., Mohamed A.T., Khouaja A., Chaar H., Fumanal B., Gousset-Dupont A., Bonhomme L., Label P., Goupil P., 2017. Beneficial effect of Trichoderma harzianum strain Ths97 in biocontrolling Fusarium solani causal agent of root rot disease in olive trees. Biological Control, 110, 70-78.
  • Azarig M.A., Hassan M.M., Rugheim A.M., Ahmed O.M.M., Abakeer R.A., Abusin R., Abdelgani M.E., 2020. Impact of Trichoderma harzianum and bacterial strains against Striga hermonthica in sorghum, 9 (10), 4049-4059.
  • Cesarini M., Petrucci A., Hotaj E., Venturini G., Liguori R., Sarrocco S., 2025. Use in a controlled environment of Trichoderma asperellum ICC012 and Trichoderma gamsii ICC080 to manage FHB on common wheat. Microbiological Research, 290, 127941. https://doi.org/10.1016/j.micres.2024.127941
  • Cignitas E., Kitis Y.E., 2022. Molecular identification of Phelipanche species from the western Mediterranean region of Türkiye. p. 198. In: Book of Abstracts: 19th European Weed Research Society Symposium, Athens, Greece.
  • Di Marco S., Metruccio E.G., Moretti S., Nocentini M., Carella G., Pacetti A., Battiston E., Osti F., Mugnai L., 2022. Activity of Trichoderma asperellum strain ICC 012 and Trichoderma gamsii strain ICC 080 toward diseases of esca complex and associated pathogens. Frontiers in Microbiology, 12, 813410. doi: 10.3389/fmicb.2021.813410
  • Dörr I., Kollmann R., 1995. Symplasmic sieve element continuity between orobanche and its host. Botanica Acta, 108 (1), 47-55. https://doi.org/10.1111/j.1438-8677.1995.tb00830.x
  • El-Dabaa M.A.T., Abd-El-Khair H., 2020. Applications of plant growth promoting bacteria and Trichoderma spp. for controlling Orobanche crenata in faba bean. Bulletin of the National Research Centre, 44 (4), 1-10. https://doi.org/10.1186/s42269-019-0263-y
  • Elad Y., 2000. Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Protection, 19 (8-10), 709-714. https://doi.org/10.1016/S0261-2194(00)00094-6
  • FAOSTAT. 2022. Crops and livestock products, (accessed date: 10.03.2024). https://www.fao.org/faostat/en/#data/QCL.
  • Fernández-Aparicio M., Reboud X., Gibot-Leclerc S., 2016. Broomrape weeds. Underground mechanisms of parasitism and associated strategies for their control: a review. Frontiers in Plant Science, 7, 135. doi: 10.3389/fpls.2016.00135
  • Fidan E., Tepe I., 2024. Physiological effects of arbuscular mycorrhizal fungi (AMF), plant growth-promoting rhizobacteria (PGPRs), and Trichoderma harzianum on tomato (Solanum lycopersicum L.) infected with branched broomrape [Phelipanche ramosa (L.) Pomel]. 03 April 2024, Preprint (Version 1). https://doi.org/10.21203/rs.3.rs-4186595/v1
  • Galletti S., Paris R., Cianchetta S., 2020. Selected isolates of Trichoderma gamsii induce different pathways of systemic resistance in maize upon Fusarium verticillioides challenge. Microbiological Research, 233, 126406. https://doi.org/10.1016/j.micres.2019.126406
  • Harman G.E., Howell C.R., Viterbo A., Chet I., Lorito M., 2004. Trichoderma species—opportunistic, avirulent plant symbionts. Nature Reviews, Microbiology, 2 (1), 43-56. doi:10.1038/nrmicro797
  • Hassan M.M., Daffalla H.M., Modwi H.I., Osman M.G., Ahmed I.I., Gani M.E.A., Abdel El Gabar E., 2013. Effects of fungal strains on seeds germination of millet and Striga hermonthica. Universal Journal of Agricultural Research, 2 (2), 83-88. doi:10.13189/ujar.2014.020208
  • Howell C.R., 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Disease, 87 (1), 4-10.
  • Jalali F., Abbasi S., Salari H., 2024. The activity of Trichoderma spp. culture filtrate to control Phelipanche aegyptiaca infection in tomato. Journal of Plant Protection Research, 64 (2), 189-199. https://doi.org/10.24425/jppr.2024.150252
  • Joel D.M., Gressel J., Musselman L.J., 2013. Parasitic mechanisms and control strategies. In: Parasitic Orobanchaceae. Joel, D.M., Gressel, J., Musselman, L.J., (Eds.). Springer Berlin, Heidelberg, XVII, 513 p. https://doi.org/10.1007/978-3-642-38146-1
  • Li X., Liao Q., Zeng S., Wang Y., Liu J., 2025. The use of Trichoderma species for the biocontrol of postharvest fungal decay in fruits and vegetables: challenges and opportunities. Postharvest Biology and Technology, 219, 113236. https://doi.org/10.1016/j.postharvbio.2024.113236
  • Maširević S., Medić-Pap S., Škorić D., Terzić A., 2014. Effect of roots of different sunflower hybrids and bio agent based on Trichoderma asperellum on broomrape germination. 89-94 p. In: Proceedings of Third International Symposium on Broomrape (Orobanche spp.) in Sunflower. Córdoba, Spain. Int. Sunflower Assoc., Paris, France.
  • Montero-Barrientos M., Hermosa R., Cardoza R.E., Gutiérrez S., Nicolás C., Monte E., 2010. Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. Journal of Plant Physiology, 167 (8), 659-665. doi: 10.1016/j.jplph.2009.11.012
  • Parker C., 2009. Observations on the current status of orobanche and striga problems worldwide. Pest Management Science: formerly Pesticide Science, 65 (5), 453-459. https://doi.org/10.1002/ps.1713
  • Poveda J., Abril-Urias P., Escobar C., 2020. Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Frontiers in Microbiology, 11, 992. doi: 10.3389/fmicb.2020.00992
  • Rawat L., Singh Y., Shukla N., Kumar J., 2011. Alleviation of the adverse effects of salinity stress in wheat (Triticum aestivum L.) by seed biopriming with salinity tolerant isolates of Trichoderma harzianum. Plant and Soil, 347 (1), 387-400. doi:10.1007/s11104-011-0858-z
  • Rispail N., Dita M.A., González‐Verdejo C., Pérez‐de‐Luque A., Castillejo M.A., Prats E., Román B., Jorrín J., Rubiales D., 2007. Plant resistance to parasitic plants: molecular approaches to an old foe. New Phytologist, 173 (4), 703-712. https://doi.org/10.1111/j.1469-8137.2007.01980.x
  • Shoresh M., Harman G.E., Mastouri F., 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review Of Phytopathology, 48 (1), 21-43. doi: 10.1146/annurev-phyto-073009-114450
  • Shukla N., Awasthi R., Rawat L., Kumar J., 2012. Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress. Plant Physiology and Biochemistry, 54, 78-88. doi:10.1016/j.plaphy.2012.02.001
  • Townsend G.R., Heuberger J.W., 1943. Methods for estimating losses caused by diseases in fungicide experiments. Plant Disease Reporter, 27, 340-343.
  • Vinale F., Sivasithamparam K., Ghisalberti E.L., Marra R., Woo S.L., Lorito M., 2008. Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry, 40 (1), 1-10. https://doi.org/10.1016/j.soilbio.2007.07.002
  • Yoshida S., Cui S., Ichihashi Y., Shirasu K., 2016. The haustorium, a specialized invasive

Management of Egyptian broomrape [Phelipanche aegyptiaca (Pers.) Pomel] using biofungicide (Trichoderma spp.) in tomato

Yıl 2025, Cilt: 65 Sayı: 3, 61 - 68, 30.09.2025
https://doi.org/10.16955/bitkorb.1657350

Öz

Phelipanche aegyptiaca (Pers.) Pomel, commonly known as Egyptian broomrape, is a root parasitic plant that causes significant yield losses in tomato production. This study aimed to evaluate the efficacy of a commercial bioproduct containing Trichoderma asperellum strain ICC012 and Trichoderma gamsii strain ICC080, against P. aegyptiaca in tomato. The experiment was conducted under controlled greenhouse conditions using three concentrations of the bioproduct (N: recommended dose, N/2, and 3N/2) in a randomized block design with four replications. Applications were made in two programs: Program A (one week before and one day after planting) and Program B (an additional application 15 days after planting). Results showed that the biological control agent (BCA) applications significantly increased disease severity in P. aegyptiaca shoots, with the values ranging from 69.5% to 79.6%, compared to 40% in the control. The number of shoots exhibiting the highest scale value on necrotic area increased significantly from three in the control to 17-19.5 in BCA-treated pots. Additionally, the average number of dead tubercles on tomato roots was 32 in BCA-treated pots, compared to 16 in untreated controls. The fresh weight of BCA-treated broomrape shoots was significantly different from the control, while there was no significant difference in the dry weight of the shoots among treatments. BCA did not significantly alter the weights of aerial parts and the roots of tomato compared to the control. These results suggest that Trichoderma species can control broomrape through multiple mechanisms. Further field trials are recommended to validate these findings under natural conditions.

Kaynakça

  • Afrouz M., Sayyed R.Z., Fazeli-Nasab B., Piri R., Almalki W., Fitriatin B.N., 2023. Seed bio-priming with beneficial Trichoderma harzianum alleviates cold stress in maize. Peer J, 11, e15644.
  • Aksoy E., Uygur F.N., 2008. Effect of broomrapes on tomato and faba bean crops. Türkiye Herboloji Dergisi, 11 (1), 1-7.
  • Amira M.B., Lopez D., Mohamed A.T., Khouaja A., Chaar H., Fumanal B., Gousset-Dupont A., Bonhomme L., Label P., Goupil P., 2017. Beneficial effect of Trichoderma harzianum strain Ths97 in biocontrolling Fusarium solani causal agent of root rot disease in olive trees. Biological Control, 110, 70-78.
  • Azarig M.A., Hassan M.M., Rugheim A.M., Ahmed O.M.M., Abakeer R.A., Abusin R., Abdelgani M.E., 2020. Impact of Trichoderma harzianum and bacterial strains against Striga hermonthica in sorghum, 9 (10), 4049-4059.
  • Cesarini M., Petrucci A., Hotaj E., Venturini G., Liguori R., Sarrocco S., 2025. Use in a controlled environment of Trichoderma asperellum ICC012 and Trichoderma gamsii ICC080 to manage FHB on common wheat. Microbiological Research, 290, 127941. https://doi.org/10.1016/j.micres.2024.127941
  • Cignitas E., Kitis Y.E., 2022. Molecular identification of Phelipanche species from the western Mediterranean region of Türkiye. p. 198. In: Book of Abstracts: 19th European Weed Research Society Symposium, Athens, Greece.
  • Di Marco S., Metruccio E.G., Moretti S., Nocentini M., Carella G., Pacetti A., Battiston E., Osti F., Mugnai L., 2022. Activity of Trichoderma asperellum strain ICC 012 and Trichoderma gamsii strain ICC 080 toward diseases of esca complex and associated pathogens. Frontiers in Microbiology, 12, 813410. doi: 10.3389/fmicb.2021.813410
  • Dörr I., Kollmann R., 1995. Symplasmic sieve element continuity between orobanche and its host. Botanica Acta, 108 (1), 47-55. https://doi.org/10.1111/j.1438-8677.1995.tb00830.x
  • El-Dabaa M.A.T., Abd-El-Khair H., 2020. Applications of plant growth promoting bacteria and Trichoderma spp. for controlling Orobanche crenata in faba bean. Bulletin of the National Research Centre, 44 (4), 1-10. https://doi.org/10.1186/s42269-019-0263-y
  • Elad Y., 2000. Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Protection, 19 (8-10), 709-714. https://doi.org/10.1016/S0261-2194(00)00094-6
  • FAOSTAT. 2022. Crops and livestock products, (accessed date: 10.03.2024). https://www.fao.org/faostat/en/#data/QCL.
  • Fernández-Aparicio M., Reboud X., Gibot-Leclerc S., 2016. Broomrape weeds. Underground mechanisms of parasitism and associated strategies for their control: a review. Frontiers in Plant Science, 7, 135. doi: 10.3389/fpls.2016.00135
  • Fidan E., Tepe I., 2024. Physiological effects of arbuscular mycorrhizal fungi (AMF), plant growth-promoting rhizobacteria (PGPRs), and Trichoderma harzianum on tomato (Solanum lycopersicum L.) infected with branched broomrape [Phelipanche ramosa (L.) Pomel]. 03 April 2024, Preprint (Version 1). https://doi.org/10.21203/rs.3.rs-4186595/v1
  • Galletti S., Paris R., Cianchetta S., 2020. Selected isolates of Trichoderma gamsii induce different pathways of systemic resistance in maize upon Fusarium verticillioides challenge. Microbiological Research, 233, 126406. https://doi.org/10.1016/j.micres.2019.126406
  • Harman G.E., Howell C.R., Viterbo A., Chet I., Lorito M., 2004. Trichoderma species—opportunistic, avirulent plant symbionts. Nature Reviews, Microbiology, 2 (1), 43-56. doi:10.1038/nrmicro797
  • Hassan M.M., Daffalla H.M., Modwi H.I., Osman M.G., Ahmed I.I., Gani M.E.A., Abdel El Gabar E., 2013. Effects of fungal strains on seeds germination of millet and Striga hermonthica. Universal Journal of Agricultural Research, 2 (2), 83-88. doi:10.13189/ujar.2014.020208
  • Howell C.R., 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Disease, 87 (1), 4-10.
  • Jalali F., Abbasi S., Salari H., 2024. The activity of Trichoderma spp. culture filtrate to control Phelipanche aegyptiaca infection in tomato. Journal of Plant Protection Research, 64 (2), 189-199. https://doi.org/10.24425/jppr.2024.150252
  • Joel D.M., Gressel J., Musselman L.J., 2013. Parasitic mechanisms and control strategies. In: Parasitic Orobanchaceae. Joel, D.M., Gressel, J., Musselman, L.J., (Eds.). Springer Berlin, Heidelberg, XVII, 513 p. https://doi.org/10.1007/978-3-642-38146-1
  • Li X., Liao Q., Zeng S., Wang Y., Liu J., 2025. The use of Trichoderma species for the biocontrol of postharvest fungal decay in fruits and vegetables: challenges and opportunities. Postharvest Biology and Technology, 219, 113236. https://doi.org/10.1016/j.postharvbio.2024.113236
  • Maširević S., Medić-Pap S., Škorić D., Terzić A., 2014. Effect of roots of different sunflower hybrids and bio agent based on Trichoderma asperellum on broomrape germination. 89-94 p. In: Proceedings of Third International Symposium on Broomrape (Orobanche spp.) in Sunflower. Córdoba, Spain. Int. Sunflower Assoc., Paris, France.
  • Montero-Barrientos M., Hermosa R., Cardoza R.E., Gutiérrez S., Nicolás C., Monte E., 2010. Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. Journal of Plant Physiology, 167 (8), 659-665. doi: 10.1016/j.jplph.2009.11.012
  • Parker C., 2009. Observations on the current status of orobanche and striga problems worldwide. Pest Management Science: formerly Pesticide Science, 65 (5), 453-459. https://doi.org/10.1002/ps.1713
  • Poveda J., Abril-Urias P., Escobar C., 2020. Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Frontiers in Microbiology, 11, 992. doi: 10.3389/fmicb.2020.00992
  • Rawat L., Singh Y., Shukla N., Kumar J., 2011. Alleviation of the adverse effects of salinity stress in wheat (Triticum aestivum L.) by seed biopriming with salinity tolerant isolates of Trichoderma harzianum. Plant and Soil, 347 (1), 387-400. doi:10.1007/s11104-011-0858-z
  • Rispail N., Dita M.A., González‐Verdejo C., Pérez‐de‐Luque A., Castillejo M.A., Prats E., Román B., Jorrín J., Rubiales D., 2007. Plant resistance to parasitic plants: molecular approaches to an old foe. New Phytologist, 173 (4), 703-712. https://doi.org/10.1111/j.1469-8137.2007.01980.x
  • Shoresh M., Harman G.E., Mastouri F., 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review Of Phytopathology, 48 (1), 21-43. doi: 10.1146/annurev-phyto-073009-114450
  • Shukla N., Awasthi R., Rawat L., Kumar J., 2012. Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress. Plant Physiology and Biochemistry, 54, 78-88. doi:10.1016/j.plaphy.2012.02.001
  • Townsend G.R., Heuberger J.W., 1943. Methods for estimating losses caused by diseases in fungicide experiments. Plant Disease Reporter, 27, 340-343.
  • Vinale F., Sivasithamparam K., Ghisalberti E.L., Marra R., Woo S.L., Lorito M., 2008. Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry, 40 (1), 1-10. https://doi.org/10.1016/j.soilbio.2007.07.002
  • Yoshida S., Cui S., Ichihashi Y., Shirasu K., 2016. The haustorium, a specialized invasive
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fitopatoloji, Herboloji
Bölüm Araştırma Makalesi
Yazarlar

Esra Çiğnitaş 0000-0002-0614-0712

Gürkan Başbağcı 0000-0002-4107-1134

Erken Görünüm Tarihi 25 Eylül 2025
Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 13 Mart 2025
Kabul Tarihi 22 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 65 Sayı: 3

Kaynak Göster

APA Çiğnitaş, E., & Başbağcı, G. (2025). Management of Egyptian broomrape [Phelipanche aegyptiaca (Pers.) Pomel] using biofungicide (Trichoderma spp.) in tomato. Plant Protection Bulletin, 65(3), 61-68. https://doi.org/10.16955/bitkorb.1657350
AMA Çiğnitaş E, Başbağcı G. Management of Egyptian broomrape [Phelipanche aegyptiaca (Pers.) Pomel] using biofungicide (Trichoderma spp.) in tomato. Plant Protection Bulletin. Eylül 2025;65(3):61-68. doi:10.16955/bitkorb.1657350
Chicago Çiğnitaş, Esra, ve Gürkan Başbağcı. “Management of Egyptian broomrape [Phelipanche aegyptiaca (Pers.) Pomel] using biofungicide (Trichoderma spp.) in tomato”. Plant Protection Bulletin 65, sy. 3 (Eylül 2025): 61-68. https://doi.org/10.16955/bitkorb.1657350.
EndNote Çiğnitaş E, Başbağcı G (01 Eylül 2025) Management of Egyptian broomrape [Phelipanche aegyptiaca (Pers.) Pomel] using biofungicide (Trichoderma spp.) in tomato. Plant Protection Bulletin 65 3 61–68.
IEEE E. Çiğnitaş ve G. Başbağcı, “Management of Egyptian broomrape [Phelipanche aegyptiaca (Pers.) Pomel] using biofungicide (Trichoderma spp.) in tomato”, Plant Protection Bulletin, c. 65, sy. 3, ss. 61–68, 2025, doi: 10.16955/bitkorb.1657350.
ISNAD Çiğnitaş, Esra - Başbağcı, Gürkan. “Management of Egyptian broomrape [Phelipanche aegyptiaca (Pers.) Pomel] using biofungicide (Trichoderma spp.) in tomato”. Plant Protection Bulletin 65/3 (Eylül2025), 61-68. https://doi.org/10.16955/bitkorb.1657350.
JAMA Çiğnitaş E, Başbağcı G. Management of Egyptian broomrape [Phelipanche aegyptiaca (Pers.) Pomel] using biofungicide (Trichoderma spp.) in tomato. Plant Protection Bulletin. 2025;65:61–68.
MLA Çiğnitaş, Esra ve Gürkan Başbağcı. “Management of Egyptian broomrape [Phelipanche aegyptiaca (Pers.) Pomel] using biofungicide (Trichoderma spp.) in tomato”. Plant Protection Bulletin, c. 65, sy. 3, 2025, ss. 61-68, doi:10.16955/bitkorb.1657350.
Vancouver Çiğnitaş E, Başbağcı G. Management of Egyptian broomrape [Phelipanche aegyptiaca (Pers.) Pomel] using biofungicide (Trichoderma spp.) in tomato. Plant Protection Bulletin. 2025;65(3):61-8.

134351364813650136491344113445