BibTex RIS Kaynak Göster

A New Regular Matrix Defined By Fibonacci Numbers And Its Applications

Yıl 2015, Cilt: 4 Sayı: 2, 0 - 0, 22.12.2015
https://doi.org/10.17798/beufen.78452

Öz

The main goal of this paper is to define a new infinite Toeplitz matrix and to examine some algebraic and topological properties of the sequence spaces and where by means of this matrix.en

Kaynakça

  • Başar F., 2011. Summability Theory and Its Applications, Bentham e-Books, 410s. İstanbul.
  • Choudary B., Nanda S., 1989. Functional Analysis with Applications, John Wiley & Sons Inc, New Delhi, India, 272-273.
  • Kalman D., Mena R., 2003. The Fibonacci Numbers: Exposed, Mathematics Magazine, 76 (3): 167-181.
  • Vajda S., 1989. Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Dover Publications Inc., 190 s. New York.
  • Kara E.E., Basarir M., 2012. An Application of Fibonacci Numbers into Infinite Toeplitz Matrices, Caspian Journal of Mathematics Sciences, 1 (1): 1-6.
  • Wilansky A., 1984. Summablity Through Functional Analysis, Elsevier Science Publishers B.V., 309 s. Amsterdam.
  • Mursaleen M., Noman A.K., 2011. On Some New Sequence Spaces of Non-absolute Type Related to The Spaces and I, Filomat, 25 (2): 33-51.
  • Mursaleen M., Noman A.K., 2010. On the Space of -Convergent and Bounded Sequences, Thai Journal of Mathematics, 8 (2): 311-329.
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

MURAT Karakaş

Yayımlanma Tarihi 22 Aralık 2015
Gönderilme Tarihi 21 Ekim 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 4 Sayı: 2

Kaynak Göster

IEEE M. Karakaş, “A New Regular Matrix Defined By Fibonacci Numbers And Its Applications”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 4, sy. 2, 2015, doi: 10.17798/beufen.78452.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr