Araştırma Makalesi
BibTex RIS Kaynak Göster

On Parseval Identity of q-Sturm-Liouville Problem with Transmission Conditions on Semi Axis

Yıl 2021, Cilt: 10 Sayı: 2, 403 - 414, 07.06.2021

Öz

Makale, transfer koşullu tekil q-Sturm-Liouville problemi için bir spektral fonksiyonun varlığı ile ilgilidir. Ayrıca, özfonksiyonlarda genişleme formülü ve Parseval eşitliği oluşturulmuştur.

Kaynakça

  • Ernst T. 2000. The History of q-calculus and a New Method. Department of Mathematics, Uppsala University, ISSN 1101-3591, 1-230.
  • Kac V., Cheung P. 2002. Quantum Calculus. Springer-Verlag, Berlin, 1-118.
  • Allahverdiev B.P., Tuna H. 2018. An expansion theorem for q-Sturm-Liouville operators on the whole line. Turkish Journal of Mathematics, 42 (3): 1060-1071.
  • Allahverdiev B.P., Tuna H. 2019. Eigenfunction expansion in the singular case for q-Sturm-Liouville operators. Caspian Journal of Mathematical Sciences, 8 (2): 91-102.
  • Allahverdiev B.P., Tuna H. 2019. Eigenfunction expansion for singular Sturm-Liouville problems with transmission conditions. Electron J. Differential Equations, 03: 1-10.
  • Annaby M.H., Mansour Z.S. 2012. q-Fractional Calculus and Equations. Lecture Notes in Mathematics, Springer-Verlag, Berlin Heidelberg, 1-318.
  • Annaby M.H., Mansour Z.S. 2005. Basic Sturm-Liouville problems. J. Phys. A.: Math. Gen., 38 (17): 3775-3797.
  • Jackson F.H. 1910. q-difference equations. Am. J. Math., 32 (4): 305-314.
  • Jackson F.H. 1910. On q-definite Integrals. Pure Appl. Math.,41 (15): 193-203.
  • Levitan B.M., Sagsjan I.S. 1991. Sturm-Liouville and Dirac Operators. Mathematics and its Applications, Kluwer Academic Publishers, London, 1-339.
  • Titchmarsh E.C. 1962. Eigenfunction Expansions Associated with Second-Order Differential Equations, Part I. Second Edition Clarendon Press, Oxford, 1-210.
  • Annaby M.H., Mansour Z.S. 2011. Asymptotic formulae for eigenvalues and eigenfunctions of q-Sturm-Liouville problems. Math. Nachr., 284 (4): 443-470.
  • Annaby M.H., Mansour Z.S., Soliman I.A. 2012. q-Titchmarsh-Weyl theory: series expansion. Nagoya Math. J., 205: 67-118.
  • Karahan D., Mamedov Kh.R. 2020. Sampling Theory Associated with q-Sturm-Liouville Operator with Discontinuity Conditions. Journal of Contemporary Applied Mathematics, 10 (2): 40-48.
  • Mukhtarov O.Sh., Tunç E. 2004. Eigenvalue problems for Sturm Liouville equations with transmission conditions. Israel J. Math., 144: 367-380.
  • Mukhtarov O.Sh., Yakubov S. 2002. Problems for differential equations with transmission conditions. Applicable Anal., 81: 1033-1064.
  • Goktas S., Koyunbakan H., Gulsen T. 2018. Inverse nodal problem for polynomial pencil of Sturm‐Liouville operator. Mathematical Methods in the Applied Sciences, 41 (17): 7576-7582.
  • Bairamov E., Aygar Y., Oznur B. 2020. Scattering Properties of Eigenparameter Dependent Impulsive Sturm-Liouville Equations. Bulletin of the Malaysian Mathematical Sciences Society, 43: 2769-2781.
  • Hahn W. 1949. Beitrage zur Theorie der Heineschen Reiben. Math. Nachr, 2: 340-379 (in German).
  • Annaby M.H. 2013. q-Type Sampling Theorems. Results in Mathematics, 44: 214-225.
  • Dehghani I., Akbarfam A.J. 2014. Resolvent operator and self-adjointness of Sturm-Liouville operators with a finite number of transmission conditions. Mediterr. J. Math., 11: 447-462.
  • Wang A., Sun J., Hao X., Yao S. 2009. Completeness of eigenfunctions of Sturm-Liouville problems with transmission conditions. Math. Appl. Anal., 16: 299-312.
  • Kolmogorov A.N., Fomin S.V. 1975. Introductory Real Analysis. Dover Publications, New York, 1-416.

On Parseval Identity of q-Sturm-Liouville Problem with Transmission Conditions

Yıl 2021, Cilt: 10 Sayı: 2, 403 - 414, 07.06.2021

Öz

Kaynakça

  • Ernst T. 2000. The History of q-calculus and a New Method. Department of Mathematics, Uppsala University, ISSN 1101-3591, 1-230.
  • Kac V., Cheung P. 2002. Quantum Calculus. Springer-Verlag, Berlin, 1-118.
  • Allahverdiev B.P., Tuna H. 2018. An expansion theorem for q-Sturm-Liouville operators on the whole line. Turkish Journal of Mathematics, 42 (3): 1060-1071.
  • Allahverdiev B.P., Tuna H. 2019. Eigenfunction expansion in the singular case for q-Sturm-Liouville operators. Caspian Journal of Mathematical Sciences, 8 (2): 91-102.
  • Allahverdiev B.P., Tuna H. 2019. Eigenfunction expansion for singular Sturm-Liouville problems with transmission conditions. Electron J. Differential Equations, 03: 1-10.
  • Annaby M.H., Mansour Z.S. 2012. q-Fractional Calculus and Equations. Lecture Notes in Mathematics, Springer-Verlag, Berlin Heidelberg, 1-318.
  • Annaby M.H., Mansour Z.S. 2005. Basic Sturm-Liouville problems. J. Phys. A.: Math. Gen., 38 (17): 3775-3797.
  • Jackson F.H. 1910. q-difference equations. Am. J. Math., 32 (4): 305-314.
  • Jackson F.H. 1910. On q-definite Integrals. Pure Appl. Math.,41 (15): 193-203.
  • Levitan B.M., Sagsjan I.S. 1991. Sturm-Liouville and Dirac Operators. Mathematics and its Applications, Kluwer Academic Publishers, London, 1-339.
  • Titchmarsh E.C. 1962. Eigenfunction Expansions Associated with Second-Order Differential Equations, Part I. Second Edition Clarendon Press, Oxford, 1-210.
  • Annaby M.H., Mansour Z.S. 2011. Asymptotic formulae for eigenvalues and eigenfunctions of q-Sturm-Liouville problems. Math. Nachr., 284 (4): 443-470.
  • Annaby M.H., Mansour Z.S., Soliman I.A. 2012. q-Titchmarsh-Weyl theory: series expansion. Nagoya Math. J., 205: 67-118.
  • Karahan D., Mamedov Kh.R. 2020. Sampling Theory Associated with q-Sturm-Liouville Operator with Discontinuity Conditions. Journal of Contemporary Applied Mathematics, 10 (2): 40-48.
  • Mukhtarov O.Sh., Tunç E. 2004. Eigenvalue problems for Sturm Liouville equations with transmission conditions. Israel J. Math., 144: 367-380.
  • Mukhtarov O.Sh., Yakubov S. 2002. Problems for differential equations with transmission conditions. Applicable Anal., 81: 1033-1064.
  • Goktas S., Koyunbakan H., Gulsen T. 2018. Inverse nodal problem for polynomial pencil of Sturm‐Liouville operator. Mathematical Methods in the Applied Sciences, 41 (17): 7576-7582.
  • Bairamov E., Aygar Y., Oznur B. 2020. Scattering Properties of Eigenparameter Dependent Impulsive Sturm-Liouville Equations. Bulletin of the Malaysian Mathematical Sciences Society, 43: 2769-2781.
  • Hahn W. 1949. Beitrage zur Theorie der Heineschen Reiben. Math. Nachr, 2: 340-379 (in German).
  • Annaby M.H. 2013. q-Type Sampling Theorems. Results in Mathematics, 44: 214-225.
  • Dehghani I., Akbarfam A.J. 2014. Resolvent operator and self-adjointness of Sturm-Liouville operators with a finite number of transmission conditions. Mediterr. J. Math., 11: 447-462.
  • Wang A., Sun J., Hao X., Yao S. 2009. Completeness of eigenfunctions of Sturm-Liouville problems with transmission conditions. Math. Appl. Anal., 16: 299-312.
  • Kolmogorov A.N., Fomin S.V. 1975. Introductory Real Analysis. Dover Publications, New York, 1-416.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Nida Palamut Koşar 0000-0003-2421-7872

Yayımlanma Tarihi 7 Haziran 2021
Gönderilme Tarihi 6 Şubat 2021
Kabul Tarihi 9 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 10 Sayı: 2

Kaynak Göster

IEEE N. Palamut Koşar, “On Parseval Identity of q-Sturm-Liouville Problem with Transmission Conditions”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 10, sy. 2, ss. 403–414, 2021.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr