Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of Single, Double and Triple Bacterial Formulations on Soil Biological Properties in Black Cumin Cultivation

Yıl 2025, Cilt: 6 Sayı: 2, 147 - 157, 31.12.2025

Öz

Mikroorganizmalar, toprak ekosisteminin işlevi, sağlığı, verimliliği, üretkenliği, kalitesi ve sürdürülebilir gelişimi için gereklidir. Bu çalışma, siyah kimyonun yetiştirildiği toprakların biyokimyasal ve mikrobiyal özellikleri üzerinde bakteri formülasyonlarının etkilerini belirlemek için yürütülmüştür. Altı tek suş (Pseudomonas fluorescens RC24, P. fluorescens RC36, P. fluorescens RC38, Bacillus licheniformis RC33, B. megaterium RC61 ve B. subtilis RC121), iki adet çift kombinasyon (Pseudomonas fluorescens RC24 + Bacillus megaterium RC61 ve Pseudomonas fluorescens RC36 + Bacillus subtilis RC121) ve üç adet üçlü kombinasyondaki (Pseudomonas fluorescens RC24 + Bacillus megaterium RC61 + Bacillus suptilis RC121, Pseudomonas fluorescens RC36 + Bacillus licheniformis RC33 + Bacillus megaterium RC61 ve Pseudomonas fluorescens RC38 + Bacillus licheniformis RC33 + Bacillus subtilis RC121) formülasyonlarının üreaz, katalaz, dehidrogenaz ve alkali fosfataz enzim aktiviteleri, ekstrakte edilebilir amonyum ve nitrat azot içerikleri, toprak solunumu ve mezofil aerobik mikroorganizma sayıları üzerine olası etkileri araştırıldı. Toprak biyolojik özelliklerinin farklı düzeylerde uygulanan bakteriyel uygulamalardan etkilendiği belirlenmiş, en etkili bakteriyel uygulamalar Pseudomonas fluorescens RC36, Pseudomonas fluorescens RC38, Pseudomonas fluorescens RC24 olarak sıralanmış ve hepsinin araştırılan toprak biyolojik özelliklerini olumlu yönde etkilediği görülmüştür. Tekli bakteriyel uygulamaların ikili ve üçlü bakteriyel kombinasyonlardan daha etkili olduğu sonucuna varılmıştır.

Etik Beyan

There is no need for any ethics committee decision for the work. The authors of the article declare that the data, information and documents presented in this article were obtained within the framework of academic and ethical rules, and that all information, documents, evaluations and results were presented in accordance with scientific ethics and moral rules.

Destekleyen Kurum

This study has not been published or presented in any form previously. The research was carried out on the agricultural fields of the Balıkesir Metropolitan Municipality Farmer Training Center (BAÇEM). We extend our sincere thanks to the institution for their collaboration.

Teşekkür

This study has not been published or presented in any form previously. The research was carried out on the agricultural fields of the Balıkesir Metropolitan Municipality Farmer Training Center (BAÇEM). We extend our sincere thanks to the institution for their collaboration.

Kaynakça

  • Ahmed, T., Shahid, M., Noman, M., Hussain, S., Khan, M. A., Zubair, M., ... Mahmood, F. (2019). Plant growth-promoting rhizobacteria as biological tools for nutrient management and soil sustainability. In Plant Growth Promoting Rhizobacteria for Agricultural Sustainability (pp. 95-110). Springer, Singapore.
  • Akçura, S., Çakmakçı, R. (2023). Bitki gelişimini teşvik edici bakterilerin şam çörek otunda (Nigella damascena L.) bazı bitkisel özellikler üzerine etkisi. ISPEC Journal of Agricultural Sciences, 7(3), 472-488 (in Turkish).
  • Akter, A., Zuan, A. T. K., Kasim, S., Amin, A. M., Ab Aziz, Z. F., Md Rahmatullah, N., Sadeq, B. M., Chompa, S. S., Rahman, Md E. (2023). Nitrogen Dynamics in Soil Treated with Plant-growth Promoting Bacteria and Urea Fertilizer. Pertanika Journal of Science & Technology, 31(6), 2995-3011. https://doi.org/10.47836/pjst.31.6.20.
  • Allison, L. E., & Moodie, C. D. (1965). Carbonate. In: C.A. Black et al.(ed.) Methods of Soil Analysis, Part 2. Agronomy, 9, 1379-1400. Am. Soc. Of Agron., Inc., Madison, Wisconsin, USA.
  • Allmaras, R. R., & Gardner, C. O. (1956). Soil Sampling for Moisture Determination in Irrigation Experiments 1. Agronomy Journal, 48(1), 15-17. e-ISSN: 1435-0645.
  • Amezquita-Aviles, C. F., Coronel-Acosta, C. B., Santos-Villalobos, S. D. L., Santoyo, G., & Parra-Cota, F. I. (2022). Characterization of native plant growth-promoting bacteria (PGPB) and their effect on the development of maize (Zea mays L.). Biotecnia, 24(1), 15-22. https://doi.org/10.18633/biotecnia.v24i1.1353.
  • Anderson, J. P. E. (1983). Soil respiration. In: Methods of Soil Analysis Part 2 Chemical and Microbiological Properties (Ed. JPE. Anderson), 831-871. http://doi.org/10.2134/agronmonogr9.2.2ed.c41.
  • Anderson, T. H., & Domsch, K. H. (2010). Soil microbial biomass: the eco-physiological approach. Soil Biology and Biochemistry, 42(12), 2039-2043. http://doi.org/10.1016/j.soilbio.2010.06.026.
  • Arora, N. K., Fatima, T., Mishra, J., Mishra, I., Verma, S., Verma, R., ... Bharti, C. (2020). Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. Journal of Advanced Research, 26, 69-82. https://doi.org/10.1016/j.jare.2020.07.003.
  • Beck, T. H. (1971). Die messung der katalaseaktivität von böden. Zeitschrift für Pflanzenernährung und Bodenkunde, 130(1), 68-81. http://doi.org/10.1002/jpln.19711300108.
  • Bouyoucos, G. J. (1951). A Recalibration of Hydrometer Method for Making Mechanical Analysis of Agronomy Journal, 43:434-438. e-ISSN: 1435-0645.
  • Bremner, J. M. (1965). Inorganic forms of nitrogen In: C.A. Black et al(ed). Methods of Soil Analysis, Part 2. Agronomy 9:1179-1237. Am. Soc. of Agron., Inc. Madison, Wisconsin, USA. https://doi.org/10.2134/agronmonogr9.2.c33.
  • Burns, R. G., & Dick, R. P. (2002). Enzymes in The Environment: Activity, Ecology, and Applications. CRC Press. New York. eBook ISBN 9780429207570. 640 s. http://doi.org/10.1201/9780203904039.
  • Çakmakçı, R. (2019a). A review of biological fertilizers current use, new approaches, and future perspectives. International Journal of Innovative Studies in Sciences and Engineering Technology, 5 (7), 83-92.
  • Çakmakçı, R. (2019b). The variability of the predominant culturable plant growth-promoting rhizobacterial diversity in the acidic tea rhizosphere soils in the eastern black sea region. Alinteri Journal of Agriculture Sciences, 34(2), 175-181.
  • Çakmakçı, R., Dönmez, M. F., Ertürk, Y., Erat, M., Haznedar, A., & Sekban, R. (2010). Diversity and metabolic potential of culturable bacteria from the rhizosphere of Turkish tea grown in acidic soils. Plant and Soil, 332, 299-318.
  • Calzavara, A. K., Paiva, P. H. G., Gabriel, L. C., Oliveira, A. L. M., Milani, K., Oliveira, H. C., ... Stolf‐Moreira, R. (2018). Associative bacteria influence maize (Zea mays L.) growth, physiology and root anatomy under different nitrogen levels. Plant Biology, 20(5), 870-878. https://doi.org/10.1111/plb.12841.
  • Casida, Jr L. E. (1977). Microbial metabolic activity in soil as measured by dehydrogenase determinations. Applied and Environmental Microbiology, 34(6), 630-636. http://doi.org/10.1128/aem.34.6.630-636.1977.
  • Chandra, D., Srivastava, R., Gupta, V. V., Franco, C. M., Paasricha, N., Saifi, S. K., ... Sharma, A. K. (2019). Field performance of bacterial inoculants to alleviate water stress effects in wheat (Triticum aestivum L.). Plant and Soil, 441(1), 261-281. https://doi.org/10.1007/s11104-019-04115-9.
  • D’Antuono, L. F., Moretti, A., & Lovato, M. F. S. (2002). Seed yield, yield components, oil content and essential oil content and composition of Nigella sativa L. and Nigella damascena L. Industrial Crops Production, 15, 59-69.
  • Dimitrijević, S., Pavlović, M., Maksimović, S., Ristić, M., Filipović, V., Antonović, D., & Dimitrijević‐Branković, S. (2018). Plant growth‐promoting bacteria elevates the nutritional and functional properties of black cumin and flaxseed fixed oil. Journal of the Science of Food and Agriculture, 98(4), 1584-1590. https://doi.org/10.1002/jsfa.8631.
  • Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S. D., Mishra, J., & Arora, N. K. (2019). Salt-tolerant plant growth promotes rhizobacteria for enhancing crop productivity of saline soils. Frontiers in Microbiology, 10, 2791.
  • Erdel, E. (2021). Determination of soil enzyme activities in different wheat growing stages under different tillage systems. Journal of the Institute of Science and Technology, 11(4), 3243-3253. (in Turkish with an abstract in English).
  • Ergün, Y. A. (2017). Biyokömür ve ahır gübresi uygulamalarının topraktaki bazı enzim aktivitelerine, CO2 üretimine, besin elementi içeriğine ve domates bitkisinin gelişimine etkisi. Yüksek Lisans, Ordu Üniversitesi, Fen Bilimleri Enstitüsü, Ordu, (in Turkish).
  • Goenadi, D. H., Mustafa, A. B., & Santi, L. P. (2018). Bio-organo-chemical fertilizers: a new prospecting technology for improving fertilizer use efficiency (FUE). Earth and Environmental Science, 183.
  • Hoffmann, E. D., & Hoffmann, G. G. (1966). Die bestimmung der biologischen tatigkeit in boden mit enzymethoden. In: Advances in Enzymology and Related Areas of Molecular Biology (Ed. FF. Nord), (28), 365-390. http://doi.org/10.1002/9780470122730.ch6.
  • Hoffmann, G. G., & Teicher, K. (1961). Ein kolorimetrisches verfahren zur bestimmung der ureaseaktivität in Böden. Journal of Plant Nutrition and Soil Science, 95(1), 55-63. http://doi.org/10.1002/jpln.19610950107.
  • Hridya, A. C., Byju, G., & Misra, R. S. (2014). Effects of microbial inoculations on soil chemical, biochemical and microbial biomass carbon of cassava (Manihot esculenta Crantz) growing Vertisols. Archives of Agronomy and Soil Science, 60(2), 239-249. http://doi.org/10.1080/03650340.2013.791023.
  • Hueso, S., García, C., & Hernández, T. (2012). Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils. Soil Biology and Biochemistry, 50, 167-173. http://doi.org/10.1016/j.soilbio.2012.03.026.
  • Jackson, M. L. (1958). Soil Chemical Analysis. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, USA. https://doi.org/10.1002/jpln.19590850311.
  • Kacar, B. (2016). Bitki, Toprak ve Gübre Analizleri 3: Fiziksel ve Kimyasal Toprak Analizleri. Yayın No: 1524, Gıda Tarım ve Hayvancılık No: 15, ISBN: 978-605-320-430-5, Basım Sayısı: 1. Basım, Eylül 2016, NOBEL Akademik Yayıncılık Eğitim Danışmanlık Tic. Ltd. Şti., Nobel Akademik Yayıncılık, 614 s. (in Turkish).
  • Kandeler, E. (2007). Physiological and biochemical methods for studying soil biota and their functions. In: Soil Microbiology. Ecology and Biochemistry (Ed. EA. Paul, Third Edition), 3, 53-58. http://www.sciencedirect.com/science/article/abs/pii/B978008047514150007X.
  • Kaya, A. R., Eryiğit, T., & Aysabar, Z. (2021). Her yönüyle çörek otu (Nigella sp.) ve ilgili çalışmalar. İKSAD Yayınevi, ISBN: 978-625-367-132-7 (in Turkish).
  • Kumar, A., Singh, S., Mukherjee, A., Rastogi, R. P., & Verma, J. P. (2021). Salt-tolerant plant growth-promoting Bacillus pumilus strain JPVS11 to enhance plant growth attributes of rice and improve soil health under salinity stress. Microbiological Research, 242, 126616. https://doi.org/10.1016/j.micres.2020.126616.
  • Merajipoor, M., Dehnavi, M. M., Salehi, A., & Yadavi, A. (2020). Improving grain yield, water and nitrogen use efficiency of Nigella sativa with biological and chemical nitrogen under different irrigation regimes. Scientia Horticulturae, 260, 108869. https://doi.org/10.1016/j.scienta.2019.108869.
  • Müftüoğlu, N. M., Türkmen, C., & Çıkılı, Y. (2014). Toprak ve Bitkide Verimlilik Analizleri (2. Basım). Nobel Akademik Yayıncılık Eğitim Danışmanlık Tic., Ltd., Şti. Ankara Dağıtım, Mithatpaşa Cad, No: 74 B01/02 Kızılay–Ankara, ISBN: 978-605-133-895-8, 218 s. (in Turkish).
  • Okur, N., Kayıkçıoğlu, H. H., Tunç, G., & Tüzel, Y. (2007). The effect of some organic amendments using organic agriculture on microbial activity in soil. Ege Üniversitesi Ziraat Fakültesi Dergisi, 44(2), 65-80. (in Turkish with an abstract in English). http://dergipark.org.tr/tr/download/article-file/59260.
  • Olanrewaju, O. S., & Babalola, O. O. (2019). Bacterial consortium for improved maize (Zea mays L.) production. Microorganisms, 7(11), 519. https://doi.org/10.3390/microorganisms7110519.
  • Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Dept. of Agriculture.
  • Page, A. L., Miller, R. H., & Keeney, D. R. (1982). Methods of soil analysis. Part 2. American Society of Agronomy. Soil Science Society of America, Madison, WI, USA. http://doi.org/10.2134/agronmonogr9.2.2ed.c37.
  • Paul, E. A. (2016). The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biology and Biochemistry, 98, 109-126. http://www.sciencedirect.com/science/article/pii/S0038071716300281.
  • Qin, K., Dong, X., Jifon, J., & Leskovar, D. I. (2019). Rhizosphere microbial biomass is affected by soil type, organic and water inputs in a bell pepper system. Applied Soil Ecology, 138, 80-87. http://doi.org/10.1016/j.apsoil.2019.02.024.
  • Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils (Vol. 78, No. 2, p. 154). LWW.
  • Shaalan, M. N. (2005). Influence of biofertilizers and chicken manure on growth, yield and seeds quality of Nigella sativa L. plants. Egyptian Journal of Agricultural Research, 83, 811-828.
  • Singh, S., Kumar, V., Dhanjal, D. S., Dhaka, V., Thotapalli, S., Singh, J., Al-Ani, L. K. T., & Aguilar-Marcelino, L. (2021). Rhizosphere biology: a key to agricultural sustainability. In: Current Trends in Microbial Biotechnology for Sustainable Agriculture (Ed: C. Singh, N. Yadav), 161-182. https://doi.org/10.1007/978-981-15-6949-4_7#DOI.
  • Tabatabai, M. A. (1994). Soil enzymes. In: Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties. (Ed. RW. Weaver, S. Angle, P. Bottomley, D. Bezdicek, S. Smith, A. Tabatabai, A. Wollum), 37, 903-947. http://doi.org/10.2136/sssabookser5.2.c37.
  • Türkmen, C., Müftüoğlu, N. M., & Kavdır, Y. (2013). Change of some soil quality characteristics under different pasture reclamation methods of rangelands. Journal of Agricultural Sciences, 19(4), 245-255. (in Turkish with an abstract in English). http://doi.org/10.1501/Tarimbil_0000001250.
  • Uzunboy, N., & Türkmen, C. (2018). Effect of municipal sewage sludge on mass loss of bioplastic. ÇOMÜ Ziraat Fakültesi Dergisi, 6, 275-280. (in Turkish with an abstract in English). http://doi.org/10.33202/comuagri.504381.
  • Valenzuela-Aragon, B., Parra-Cota, F. I., Santoyo, G., Arellano-Wattenbarger, G. L., & de los Santos-Villalobos, S. (2019). Plant-assisted selection: a promising alternative for in vivo identification of wheat (Triticum turgidum L. subsp. Durum) growth promoting bacteria. Plant and Soil, 435(1), 367-384. https://doi.org/10.1007/s11104-018-03901-1.
  • Verma, M., Mishra, J., & Arora, N. K. (2019). Plant growth-promoting rhizobacteria: diversity and applications. Environmental Biotechnology: For Sustainable Future. (Ed: RC. Sobti, NK. Arora, R. Kothari), 129-173.
  • Verma, P., Yadav, A. N., Kazy, S. K., Saxena, A. K., & Suman, A. (2014). Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. International Journal of Current Microbiology and Applied Sciences, 3(5), 432-447.
  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38.
  • Wang, G., Li, B., Peng, D., Zhao, H., Lu, M., Zhang, L., ... Ji, J. (2022). Combined application of H2S and a plant growth promoting strain JIL321 regulates photosynthetic efficacy, soil enzyme activity and growth-promotion in rice under salt stress. Microbiological Research, 256, 126943. https://doi.org/10.1016/j.micres.2021.126943.
  • Wolińska, A., & Stępniewska, Z. (2012). Dehydrogenase activity in the soil environment. Dehydrogenases (Ed: R. A. Canuto), 8, 183-210. http://www.intechopen.com/chapters/40938.
  • Wollum, A. G. (1982). Cultural Methods for Soil Microorganisms 1. Methods of soil analysis. Part 2. Chemical and microbiological properties, (methodsofsoilan2), 781-802. https://doi.org/10.2134/agronmonogr9.2.2ed.c37.
  • Yadav, R., Chakraborty, S., & Ramakrishna, W. (2022b). Wheat grain proteomic and protein–metabolite interactions analyses provide insights into plant growth promoting bacteria–arbuscular mycorrhizal fungi–wheat interactions. Plant Cell Reports, 1-21. https://doi.org/10.1007/s00299-022-02866-x.
  • Yadav, R., Ror, P., Beniwal, R., Kumar, S., & Ramakrishna, W. (2022a). Bacillus sp. and arbuscular mycorrhizal fungi consortia enhance wheat nutrient and yield in the second‐year field trial: Superior performance in comparison with chemical fertilizers. Journal of Applied Microbiology, 132(3), 2203-2219. https://doi.org/10.1111/jam.15371.
  • Yagüe, M. R., Lobo, C., & García, P. (2023). Organic fertilization induces changes in soil nitrogen mineralization and enzyme activities. Plant, Soil and Environment, 69 (1), 38-43. http://doi.org/10.17221/274/2022-PSE.
  • Yiqi, L., & Zhou, X. (2010). Soil Respiration and The Environment. Academic Elsevier Press. ISBN 978-0-12-088782-8. 328 s. https://doi.org/10.1016/B978-0-12-088782-8.X5000-1.
  • Zhang, R., & Wienhold, B. J. (2002). The effect of soil moisture on mineral nitrogen, soil electrical conductivity, and pH. Nutrient Cycling in Agroecosystems, 63, 251-254. http://link.springer.com/article/10.1023/A:1021115227884.

Çörekotu Yetiştiriciliğinde Tekli, Çiftli ve Üçlü Bakteriyel Uygulamaların Toprak Biyolojik Özelliklerine Etkileri

Yıl 2025, Cilt: 6 Sayı: 2, 147 - 157, 31.12.2025

Öz

Mikroorganizmalar, toprak ekosisteminin işlevi, sağlığı, verimliliği, üretkenliği, kalitesi ve sürdürülebilir gelişimi için gereklidir. Bu çalışma, siyah kimyonun yetiştirildiği toprakların biyokimyasal ve mikrobiyal özellikleri üzerinde bakteri formülasyonlarının etkilerini belirlemek için yürütülmüştür. Altı tek suş (Pseudomonas fluorescens RC24, P. fluorescens RC36, P. fluorescens RC38, Bacillus licheniformis RC33, B. megaterium RC61 ve B. subtilis RC121), iki adet çift kombinasyon (Pseudomonas fluorescens RC24 + Bacillus megaterium RC61 ve Pseudomonas fluorescens RC36 + Bacillus subtilis RC121) ve üç adet üçlü kombinasyondaki (Pseudomonas fluorescens RC24 + Bacillus megaterium RC61 + Bacillus suptilis RC121, Pseudomonas fluorescens RC36 + Bacillus licheniformis RC33 + Bacillus megaterium RC61 ve Pseudomonas fluorescens RC38 + Bacillus licheniformis RC33 + Bacillus subtilis RC121) formülasyonlarının üreaz, katalaz, dehidrogenaz ve alkali fosfataz enzim aktiviteleri, ekstrakte edilebilir amonyum ve nitrat azot içerikleri, toprak solunumu ve mezofil aerobik mikroorganizma sayıları üzerine olası etkileri araştırıldı. Toprak biyolojik özelliklerinin farklı düzeylerde uygulanan bakteriyel uygulamalardan etkilendiği belirlenmiş, en etkili bakteriyel uygulamalar Pseudomonas fluorescens RC36, Pseudomonas fluorescens RC38, Pseudomonas fluorescens RC24 olarak sıralanmış ve hepsinin araştırılan toprak biyolojik özelliklerini olumlu yönde etkilediği görülmüştür. Tekli bakteriyel uygulamaların ikili ve üçlü bakteriyel kombinasyonlardan daha etkili olduğu sonucuna varılmıştır.

Kaynakça

  • Ahmed, T., Shahid, M., Noman, M., Hussain, S., Khan, M. A., Zubair, M., ... Mahmood, F. (2019). Plant growth-promoting rhizobacteria as biological tools for nutrient management and soil sustainability. In Plant Growth Promoting Rhizobacteria for Agricultural Sustainability (pp. 95-110). Springer, Singapore.
  • Akçura, S., Çakmakçı, R. (2023). Bitki gelişimini teşvik edici bakterilerin şam çörek otunda (Nigella damascena L.) bazı bitkisel özellikler üzerine etkisi. ISPEC Journal of Agricultural Sciences, 7(3), 472-488 (in Turkish).
  • Akter, A., Zuan, A. T. K., Kasim, S., Amin, A. M., Ab Aziz, Z. F., Md Rahmatullah, N., Sadeq, B. M., Chompa, S. S., Rahman, Md E. (2023). Nitrogen Dynamics in Soil Treated with Plant-growth Promoting Bacteria and Urea Fertilizer. Pertanika Journal of Science & Technology, 31(6), 2995-3011. https://doi.org/10.47836/pjst.31.6.20.
  • Allison, L. E., & Moodie, C. D. (1965). Carbonate. In: C.A. Black et al.(ed.) Methods of Soil Analysis, Part 2. Agronomy, 9, 1379-1400. Am. Soc. Of Agron., Inc., Madison, Wisconsin, USA.
  • Allmaras, R. R., & Gardner, C. O. (1956). Soil Sampling for Moisture Determination in Irrigation Experiments 1. Agronomy Journal, 48(1), 15-17. e-ISSN: 1435-0645.
  • Amezquita-Aviles, C. F., Coronel-Acosta, C. B., Santos-Villalobos, S. D. L., Santoyo, G., & Parra-Cota, F. I. (2022). Characterization of native plant growth-promoting bacteria (PGPB) and their effect on the development of maize (Zea mays L.). Biotecnia, 24(1), 15-22. https://doi.org/10.18633/biotecnia.v24i1.1353.
  • Anderson, J. P. E. (1983). Soil respiration. In: Methods of Soil Analysis Part 2 Chemical and Microbiological Properties (Ed. JPE. Anderson), 831-871. http://doi.org/10.2134/agronmonogr9.2.2ed.c41.
  • Anderson, T. H., & Domsch, K. H. (2010). Soil microbial biomass: the eco-physiological approach. Soil Biology and Biochemistry, 42(12), 2039-2043. http://doi.org/10.1016/j.soilbio.2010.06.026.
  • Arora, N. K., Fatima, T., Mishra, J., Mishra, I., Verma, S., Verma, R., ... Bharti, C. (2020). Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. Journal of Advanced Research, 26, 69-82. https://doi.org/10.1016/j.jare.2020.07.003.
  • Beck, T. H. (1971). Die messung der katalaseaktivität von böden. Zeitschrift für Pflanzenernährung und Bodenkunde, 130(1), 68-81. http://doi.org/10.1002/jpln.19711300108.
  • Bouyoucos, G. J. (1951). A Recalibration of Hydrometer Method for Making Mechanical Analysis of Agronomy Journal, 43:434-438. e-ISSN: 1435-0645.
  • Bremner, J. M. (1965). Inorganic forms of nitrogen In: C.A. Black et al(ed). Methods of Soil Analysis, Part 2. Agronomy 9:1179-1237. Am. Soc. of Agron., Inc. Madison, Wisconsin, USA. https://doi.org/10.2134/agronmonogr9.2.c33.
  • Burns, R. G., & Dick, R. P. (2002). Enzymes in The Environment: Activity, Ecology, and Applications. CRC Press. New York. eBook ISBN 9780429207570. 640 s. http://doi.org/10.1201/9780203904039.
  • Çakmakçı, R. (2019a). A review of biological fertilizers current use, new approaches, and future perspectives. International Journal of Innovative Studies in Sciences and Engineering Technology, 5 (7), 83-92.
  • Çakmakçı, R. (2019b). The variability of the predominant culturable plant growth-promoting rhizobacterial diversity in the acidic tea rhizosphere soils in the eastern black sea region. Alinteri Journal of Agriculture Sciences, 34(2), 175-181.
  • Çakmakçı, R., Dönmez, M. F., Ertürk, Y., Erat, M., Haznedar, A., & Sekban, R. (2010). Diversity and metabolic potential of culturable bacteria from the rhizosphere of Turkish tea grown in acidic soils. Plant and Soil, 332, 299-318.
  • Calzavara, A. K., Paiva, P. H. G., Gabriel, L. C., Oliveira, A. L. M., Milani, K., Oliveira, H. C., ... Stolf‐Moreira, R. (2018). Associative bacteria influence maize (Zea mays L.) growth, physiology and root anatomy under different nitrogen levels. Plant Biology, 20(5), 870-878. https://doi.org/10.1111/plb.12841.
  • Casida, Jr L. E. (1977). Microbial metabolic activity in soil as measured by dehydrogenase determinations. Applied and Environmental Microbiology, 34(6), 630-636. http://doi.org/10.1128/aem.34.6.630-636.1977.
  • Chandra, D., Srivastava, R., Gupta, V. V., Franco, C. M., Paasricha, N., Saifi, S. K., ... Sharma, A. K. (2019). Field performance of bacterial inoculants to alleviate water stress effects in wheat (Triticum aestivum L.). Plant and Soil, 441(1), 261-281. https://doi.org/10.1007/s11104-019-04115-9.
  • D’Antuono, L. F., Moretti, A., & Lovato, M. F. S. (2002). Seed yield, yield components, oil content and essential oil content and composition of Nigella sativa L. and Nigella damascena L. Industrial Crops Production, 15, 59-69.
  • Dimitrijević, S., Pavlović, M., Maksimović, S., Ristić, M., Filipović, V., Antonović, D., & Dimitrijević‐Branković, S. (2018). Plant growth‐promoting bacteria elevates the nutritional and functional properties of black cumin and flaxseed fixed oil. Journal of the Science of Food and Agriculture, 98(4), 1584-1590. https://doi.org/10.1002/jsfa.8631.
  • Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S. D., Mishra, J., & Arora, N. K. (2019). Salt-tolerant plant growth promotes rhizobacteria for enhancing crop productivity of saline soils. Frontiers in Microbiology, 10, 2791.
  • Erdel, E. (2021). Determination of soil enzyme activities in different wheat growing stages under different tillage systems. Journal of the Institute of Science and Technology, 11(4), 3243-3253. (in Turkish with an abstract in English).
  • Ergün, Y. A. (2017). Biyokömür ve ahır gübresi uygulamalarının topraktaki bazı enzim aktivitelerine, CO2 üretimine, besin elementi içeriğine ve domates bitkisinin gelişimine etkisi. Yüksek Lisans, Ordu Üniversitesi, Fen Bilimleri Enstitüsü, Ordu, (in Turkish).
  • Goenadi, D. H., Mustafa, A. B., & Santi, L. P. (2018). Bio-organo-chemical fertilizers: a new prospecting technology for improving fertilizer use efficiency (FUE). Earth and Environmental Science, 183.
  • Hoffmann, E. D., & Hoffmann, G. G. (1966). Die bestimmung der biologischen tatigkeit in boden mit enzymethoden. In: Advances in Enzymology and Related Areas of Molecular Biology (Ed. FF. Nord), (28), 365-390. http://doi.org/10.1002/9780470122730.ch6.
  • Hoffmann, G. G., & Teicher, K. (1961). Ein kolorimetrisches verfahren zur bestimmung der ureaseaktivität in Böden. Journal of Plant Nutrition and Soil Science, 95(1), 55-63. http://doi.org/10.1002/jpln.19610950107.
  • Hridya, A. C., Byju, G., & Misra, R. S. (2014). Effects of microbial inoculations on soil chemical, biochemical and microbial biomass carbon of cassava (Manihot esculenta Crantz) growing Vertisols. Archives of Agronomy and Soil Science, 60(2), 239-249. http://doi.org/10.1080/03650340.2013.791023.
  • Hueso, S., García, C., & Hernández, T. (2012). Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils. Soil Biology and Biochemistry, 50, 167-173. http://doi.org/10.1016/j.soilbio.2012.03.026.
  • Jackson, M. L. (1958). Soil Chemical Analysis. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, USA. https://doi.org/10.1002/jpln.19590850311.
  • Kacar, B. (2016). Bitki, Toprak ve Gübre Analizleri 3: Fiziksel ve Kimyasal Toprak Analizleri. Yayın No: 1524, Gıda Tarım ve Hayvancılık No: 15, ISBN: 978-605-320-430-5, Basım Sayısı: 1. Basım, Eylül 2016, NOBEL Akademik Yayıncılık Eğitim Danışmanlık Tic. Ltd. Şti., Nobel Akademik Yayıncılık, 614 s. (in Turkish).
  • Kandeler, E. (2007). Physiological and biochemical methods for studying soil biota and their functions. In: Soil Microbiology. Ecology and Biochemistry (Ed. EA. Paul, Third Edition), 3, 53-58. http://www.sciencedirect.com/science/article/abs/pii/B978008047514150007X.
  • Kaya, A. R., Eryiğit, T., & Aysabar, Z. (2021). Her yönüyle çörek otu (Nigella sp.) ve ilgili çalışmalar. İKSAD Yayınevi, ISBN: 978-625-367-132-7 (in Turkish).
  • Kumar, A., Singh, S., Mukherjee, A., Rastogi, R. P., & Verma, J. P. (2021). Salt-tolerant plant growth-promoting Bacillus pumilus strain JPVS11 to enhance plant growth attributes of rice and improve soil health under salinity stress. Microbiological Research, 242, 126616. https://doi.org/10.1016/j.micres.2020.126616.
  • Merajipoor, M., Dehnavi, M. M., Salehi, A., & Yadavi, A. (2020). Improving grain yield, water and nitrogen use efficiency of Nigella sativa with biological and chemical nitrogen under different irrigation regimes. Scientia Horticulturae, 260, 108869. https://doi.org/10.1016/j.scienta.2019.108869.
  • Müftüoğlu, N. M., Türkmen, C., & Çıkılı, Y. (2014). Toprak ve Bitkide Verimlilik Analizleri (2. Basım). Nobel Akademik Yayıncılık Eğitim Danışmanlık Tic., Ltd., Şti. Ankara Dağıtım, Mithatpaşa Cad, No: 74 B01/02 Kızılay–Ankara, ISBN: 978-605-133-895-8, 218 s. (in Turkish).
  • Okur, N., Kayıkçıoğlu, H. H., Tunç, G., & Tüzel, Y. (2007). The effect of some organic amendments using organic agriculture on microbial activity in soil. Ege Üniversitesi Ziraat Fakültesi Dergisi, 44(2), 65-80. (in Turkish with an abstract in English). http://dergipark.org.tr/tr/download/article-file/59260.
  • Olanrewaju, O. S., & Babalola, O. O. (2019). Bacterial consortium for improved maize (Zea mays L.) production. Microorganisms, 7(11), 519. https://doi.org/10.3390/microorganisms7110519.
  • Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Dept. of Agriculture.
  • Page, A. L., Miller, R. H., & Keeney, D. R. (1982). Methods of soil analysis. Part 2. American Society of Agronomy. Soil Science Society of America, Madison, WI, USA. http://doi.org/10.2134/agronmonogr9.2.2ed.c37.
  • Paul, E. A. (2016). The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biology and Biochemistry, 98, 109-126. http://www.sciencedirect.com/science/article/pii/S0038071716300281.
  • Qin, K., Dong, X., Jifon, J., & Leskovar, D. I. (2019). Rhizosphere microbial biomass is affected by soil type, organic and water inputs in a bell pepper system. Applied Soil Ecology, 138, 80-87. http://doi.org/10.1016/j.apsoil.2019.02.024.
  • Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils (Vol. 78, No. 2, p. 154). LWW.
  • Shaalan, M. N. (2005). Influence of biofertilizers and chicken manure on growth, yield and seeds quality of Nigella sativa L. plants. Egyptian Journal of Agricultural Research, 83, 811-828.
  • Singh, S., Kumar, V., Dhanjal, D. S., Dhaka, V., Thotapalli, S., Singh, J., Al-Ani, L. K. T., & Aguilar-Marcelino, L. (2021). Rhizosphere biology: a key to agricultural sustainability. In: Current Trends in Microbial Biotechnology for Sustainable Agriculture (Ed: C. Singh, N. Yadav), 161-182. https://doi.org/10.1007/978-981-15-6949-4_7#DOI.
  • Tabatabai, M. A. (1994). Soil enzymes. In: Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties. (Ed. RW. Weaver, S. Angle, P. Bottomley, D. Bezdicek, S. Smith, A. Tabatabai, A. Wollum), 37, 903-947. http://doi.org/10.2136/sssabookser5.2.c37.
  • Türkmen, C., Müftüoğlu, N. M., & Kavdır, Y. (2013). Change of some soil quality characteristics under different pasture reclamation methods of rangelands. Journal of Agricultural Sciences, 19(4), 245-255. (in Turkish with an abstract in English). http://doi.org/10.1501/Tarimbil_0000001250.
  • Uzunboy, N., & Türkmen, C. (2018). Effect of municipal sewage sludge on mass loss of bioplastic. ÇOMÜ Ziraat Fakültesi Dergisi, 6, 275-280. (in Turkish with an abstract in English). http://doi.org/10.33202/comuagri.504381.
  • Valenzuela-Aragon, B., Parra-Cota, F. I., Santoyo, G., Arellano-Wattenbarger, G. L., & de los Santos-Villalobos, S. (2019). Plant-assisted selection: a promising alternative for in vivo identification of wheat (Triticum turgidum L. subsp. Durum) growth promoting bacteria. Plant and Soil, 435(1), 367-384. https://doi.org/10.1007/s11104-018-03901-1.
  • Verma, M., Mishra, J., & Arora, N. K. (2019). Plant growth-promoting rhizobacteria: diversity and applications. Environmental Biotechnology: For Sustainable Future. (Ed: RC. Sobti, NK. Arora, R. Kothari), 129-173.
  • Verma, P., Yadav, A. N., Kazy, S. K., Saxena, A. K., & Suman, A. (2014). Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. International Journal of Current Microbiology and Applied Sciences, 3(5), 432-447.
  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38.
  • Wang, G., Li, B., Peng, D., Zhao, H., Lu, M., Zhang, L., ... Ji, J. (2022). Combined application of H2S and a plant growth promoting strain JIL321 regulates photosynthetic efficacy, soil enzyme activity and growth-promotion in rice under salt stress. Microbiological Research, 256, 126943. https://doi.org/10.1016/j.micres.2021.126943.
  • Wolińska, A., & Stępniewska, Z. (2012). Dehydrogenase activity in the soil environment. Dehydrogenases (Ed: R. A. Canuto), 8, 183-210. http://www.intechopen.com/chapters/40938.
  • Wollum, A. G. (1982). Cultural Methods for Soil Microorganisms 1. Methods of soil analysis. Part 2. Chemical and microbiological properties, (methodsofsoilan2), 781-802. https://doi.org/10.2134/agronmonogr9.2.2ed.c37.
  • Yadav, R., Chakraborty, S., & Ramakrishna, W. (2022b). Wheat grain proteomic and protein–metabolite interactions analyses provide insights into plant growth promoting bacteria–arbuscular mycorrhizal fungi–wheat interactions. Plant Cell Reports, 1-21. https://doi.org/10.1007/s00299-022-02866-x.
  • Yadav, R., Ror, P., Beniwal, R., Kumar, S., & Ramakrishna, W. (2022a). Bacillus sp. and arbuscular mycorrhizal fungi consortia enhance wheat nutrient and yield in the second‐year field trial: Superior performance in comparison with chemical fertilizers. Journal of Applied Microbiology, 132(3), 2203-2219. https://doi.org/10.1111/jam.15371.
  • Yagüe, M. R., Lobo, C., & García, P. (2023). Organic fertilization induces changes in soil nitrogen mineralization and enzyme activities. Plant, Soil and Environment, 69 (1), 38-43. http://doi.org/10.17221/274/2022-PSE.
  • Yiqi, L., & Zhou, X. (2010). Soil Respiration and The Environment. Academic Elsevier Press. ISBN 978-0-12-088782-8. 328 s. https://doi.org/10.1016/B978-0-12-088782-8.X5000-1.
  • Zhang, R., & Wienhold, B. J. (2002). The effect of soil moisture on mineral nitrogen, soil electrical conductivity, and pH. Nutrient Cycling in Agroecosystems, 63, 251-254. http://link.springer.com/article/10.1023/A:1021115227884.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tarımda Enzim ve Mikrobiyal Biyoteknoloji
Bölüm Araştırma Makalesi
Yazarlar

Cafer Türkmen 0000-0002-0707-5908

Sevim Akçura

Yakup Çikili 0000-0002-0393-6248

Ramazan Cakmakcı 0000-0002-1354-1995

Nuray Mücellâ Müftüoğlu 0000-0001-6065-029X

Gönderilme Tarihi 29 Mayıs 2025
Kabul Tarihi 21 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 2

Kaynak Göster

APA Türkmen, C., Akçura, S., Çikili, Y., … Cakmakcı, R. (2025). Effects of Single, Double and Triple Bacterial Formulations on Soil Biological Properties in Black Cumin Cultivation. BİLİM-TEKNOLOJİ-YENİLİK EKOSİSTEMİ DERGİSİ, 6(2), 147-157.