Araştırma Makalesi
BibTex RIS Kaynak Göster

Cardinal (Vitis vinifera L.) Üzüm Çeşidinde Taç Yönetimi Uygulamasının Omca Taç Mikroklimasına Etkilerinin Belirlenmesi

Yıl 2024, Cilt: 5 Sayı: 2, 59 - 66, 30.12.2024

Öz

Bu araştırma, ‘ÇOMÜ Dardanos Yerleşkesi Ziraat Fakültesi Bitkisel Üretim Araştırma ve Uygulama Birimi’ ‘Sofralık Üzüm Çeşitleri Uygulama ve Araştırma Bağı’ndaki ‘Cardinal’ üzüm çeşidi üzerinde 2024 yılında yürütülmüştür. Araştırmada, kısa ve karışık kış budaması gerçekleştirilen omcalarda taç yönetimi uygulamasının omca taç mikroklimasına etkisinin belirlenmesi amaçlanmıştır. Elde edilen araştırma bulgularına göre; ‘Cardinal’ üzüm çeşidinde, budama ana etkisinin (BUAET) taç içi sıcaklığına ve taç içi bağıl neme etkisi istatistikî olarak önemli bulunmuştur. Karışık kış budamasında (KAKB) 34.79°C olan taç içi sıcaklığı kısa kış budamasında (KIKB) 35.13°C ile daha yüksek bir sonuç vermiştir. KAKB’nda %34.76 olan taç içi bağıl nem, KIKB’nda %34.04 ile daha düşük bir değer almıştır. Rüzgâr hızı açısından, KAKB ile KIKB arasında BUAET’nin herhangi önemli bir etkisi tespit edilememiştir. KAKB’nda 9560.2 lüks olarak belirlenen taç içi ışık şiddeti, KIKB’nda 10788.9 lüks olarak ölçülmüştür. Uygulama ana etkisinin (UYAET) sıcaklık, bağıl nem, rüzgâr hızı ve ışık şiddeti bakımından kontrol (KNT) ve taç yönetimi (TY) arasında istatistikî açıdan önemli farklılıklar meydana getirdiği belirlenmiştir. Buna göre omca taç içinde KNT’de 34.73°C olan sıcaklık, yapılan TY’nin ardından 35.19°C’ye yükselmiş ve bağıl nem ise %35.65’ten %33.15’e düşmüştür. Rüzgâr hızı 1.79 m sn–1’den 2.47 m sn–1’ye ve ışık şiddeti 7728.0 lüks’ten 12621.0 lüks değerine çıkmıştır. Bununla birlikte, salkım ve yaprak yüzey sıcaklığı değerleri de yapılan uygulamalardan istatistikî olarak etkilenmiştir. Sonuç olarak; incelenen omca taç içi mikroklima değerlerinin yapılan farklı uygulamalara göre istatistikî olarak önemli farklılıklar oluşturduğu, bu durumun da üzüm verimi, kalitesi, hastalıklar ve zararlı populasyonu gibi birçok faktör ile birlikte değerlendirilmesinin bağcılık açısından yararlı sonuçlar ortaya koyabileceği düşünülmektedir.

Kaynakça

  • Anić, M., Osrečak, M., Andabaka, Ž., Tomaz, I., Večenaj, Ž., Jelić, D., Kozina, B., Kontić J.K. ve Karoglan, M. (2021). The Effect of Leaf Removal on Canopy Microclimate, Vine Performance and Grape Phenolic Composition of Merlot (Vitis vinifera L.) Grapes in the Continental Part of Croatia. Scientia Horticulturae, 285: 110161.
  • Bertamini, M., Nedunchezhian, N. (2003). Photo Inhibition of Photosynthesis in Mature and Young Leaves of Grapevine (Vitis vinifera L.). Plant Science, 164 (4): 635-644.
  • Blancquaert, E.H., Oberholster, A., Ricardo–da–Silva, J.M., Deloire, A.J. (2019). Effects of Abiotic Factors on Phenolic Compounds in the Grape Nerry–A Review. South African Journal of Enology and Viticulture, 40(1), 1-14.
  • Camargo, A.C., Biasoto, A.C.T., Schwember, A.R., Granato, D., Rasera, G.B., Franchin, M., Shahidi, F. (2019). Should We Ban Total Phenolics and Antioxidant Screening Methods? The Link Between Antioxidant Potential and Activation of NF-Κb Using Phenolic Compounds from Grape By–Products. Food Chemistry, 290, 229-238.
  • Candar, S., Korkutal, İ. ve Bahar, E. (2019). Effect of Canopy Microclimate on Merlot (Vitis vinifera L.) Grape Composition. Applied Ecology and Environmental Research, 17 (6), 15431-15446.
  • Friedel, M., Stoll, M., Patz, C. D., Will, F. ve Dietrich, H. (2015). Impact of Light Exposure on Fruit Composition of White'riesling'grape Berries (Vitis vinifera L.). Vitis–Journal of Grapevine Research, 54(3), 107-116.
  • Haselgrove, L., Botting, D., Van Heeswijck, R., Hoj, P.B., Dry, P.R., Ford, C., Land, P.G.I. (2000). Canopy Microclimate and Berry Composition: The Effect of Bunch Exposure on the Phenolic Composition of Vitis vinifera L. cv. Shiraz Grape Berries. Australian Journal of Grape and Wine Research, 6(2), 141-149.
  • Hunter, J.J. (1997). Implications of Seasonal Canopy Management and Growth Compensation in Grapevine. S., Afr. J., Enol. Vitic., 21(2), 81-91.
  • Jones, G. V., & Davis, R. E. (2000). Climate Influences on Grapevine Phenology, Grape Composition, and Wine Production and Quality For Bordeaux, France. American Journal of Enology and Viticulture, 51(3), 249-261.
  • Keller, M., Zhang, Y. U. N., Shrestha, P. M., Biondi, M., & Bondada, B. R. (2015). Sugar Demand of Ripening Grape Berries Leads to Recycling of Surplus Phloem Water Via The Xylem. Plant, Cell Environment, 38(6), 1048-1059.
  • Martínez–Lüscher, J., Brillante, L., & Kurtural, S. K. (2019). Flavonol Profile Is A Reliable Indicator to Assess Canopy Architecture and the Exposure of Red Wine Grapes to Solar Radiation. Frontiers in Plant Science, 10(10), 1-15.
  • Matese, A., Crisci, A., Di Gennaro, S. F., Primicerio, J., Tomasi, D., Marcuzzo, P., & Guidoni, S. (2014). Spatial Variability of Meteorological Conditions at Different Scales in Viticulture. Agricultural and Forest Meteorology, 189, 159-167.
  • Molitor, D., & Keller, M. (2016). Yield of Muller–Thurgau and Riesling Grapevines is Altered By Meteorological Conditions in the Current and Previous Growing Seasons. OENO One, 50(4), 245-258.
  • Pastore, C., Zenoni, S., Fasoli, M., Pezzotti, M., Torbielli, G. B., & Filippetti, I. (2013). Selective Defoliation Affects Plant Growth, Fruit Transcriptional Ripening Program and Flavonoid Metabolism in Grapevine. BMC Plant. Biol., 13(30), 1-16.
  • Petrie, P. R., Trought, M. C. T., & Howell, G. S. (2000). Influence of Leaf Ageing, Leaf Area and Crop Load on Photosynthesis, Stomatal Conductance and Senescence of Grapevine (Vitis vinifera L. cv. Pinot Noir) Leaves. Vitis, 39, 31-36.
  • Petrie, P. R., Trought, M. C. T., & Howell. G. S. (2000). Growth and Dry Matter Partitioning of Pinot Noir (Vitis vinifera L.) in Relation to Leaf Area and Crop Load. Australian Journal of Grape and Wine Research, 6, 40-45.
  • Profio, F., Reynolds, A. G., & Kasimos, A. (2011). Canopy Management and Enzyme Impacts on Merlot, Cabernet Franc, and Cabernet Sauvignon. II. Wine Composition and Quality. American Journal of Enology and Viticulture, 62(2), 152-168.
  • Şahin, E., Dardeniz, A., Çoban, H., & Kaya, Ç. (2023). Yalova İncisi (Vitis vinifera L.) Üzüm Çeşidinde Kademeli Taç Yönetimi Uygulamalarının Omca Mikroklimasına Etkilerinin Belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 10(3), 591-597.
  • Schubert, A., Restagno, M., & Lovisolo, C. (1996). Net Photosynthesus of Grapevine Leaves of Different Age Exposed to High or Low Light Intensities. Adv. Hort. Sci., 10, 163-166.
  • Song, J. Q., Smart, R., Wang, H., Dambergs, B., Sparrow, A., & Qian, M. C. (2015). Effect of Grape Bunch Sunlight Exposure and UV Radiation on Phenolics and Volatile Composition of Vitis vinifera L. Cv. Pinot Noir Wine. Food Chemistry, 173, 424-431.
  • Spayd, S. E., Tarara, J. M., Mee, D. L., & Ferguson, J. C. (2002). Separation of Sunlight and Temperature Effects on the Composition of Vitis vinifera Cv. Merlot Berries. American Journal of Enology and Viticulture, 53(3), 171-182.
  • Torres, N., Martínez–Lüscher, J., Porte, E., & Kurtural, S. K. (2020). Optimal Ranges and Thresholds of Grape Berry Solar Radiation for Flavonoid Biosynthesis in Warm Climates. Frontiers in Plant Science, 11(931), 1-15.

Determination of the Effects of Canopy Management Practices on the Grapevine Microclimate of Cardinal (Vitis vinifera L.) Grape Vines

Yıl 2024, Cilt: 5 Sayı: 2, 59 - 66, 30.12.2024

Öz

This research was carried out on ‘Cardinal’ grape variety in ‘ÇOMÜ Dardanos Campus Faculty of Agriculture Farming Crop Production and Research Unit’ ‘Table Grape Varieties Research and Application’ Vineyard in 2024. In the study, it was aimed to determine the effect of canopy management practice on the canopy microclimate in short and mixed winter pruning. According to the research findings, the main effect of pruning on in–canopy temperature and in–canopy relative humidity was found to be statistically significant in ‘Cardinal’ grape variety. In crown temperature, which was 34.79°C in the mixed pruning (MP), gave a higher result with 35.13°C in the spur pruning (SP). In crown relative humidity, which was 34.76% in MP, was lower with 34.04% in SP. In terms of wind speed, there was no significant effect of the main effect of pruning (MEP) between MP and SP. The light intensity in the canopy, which was determined as 9560.2 lux in MP, was measured as 10788.9 lux in SP. It was determined that the main effect of the treatment (MET) caused statistically significant differences between CNT (Control) and canopy management (CM) in terms of temperature, relative humidity, wind speed and light intensity. Accordingly, the temperature inside the crown of the tree increased from 34.73°C in the Control to 35.19°C after the CM and the relative humidity decreased from 35.65% to 33.15%. Wind speed increased from 1.79 m s-1 to 2.47 m s-1 and light intensity increased from 7728.0 lux to 12621.0 lux. In conclusion, it is observed that the different applications result in statistically significant differences in the microclimate values within the grapevine canopy. Evaluating this situation based on factors such as grape yield, quality, diseases, and pest populations could yield beneficial results for viticulture.

Kaynakça

  • Anić, M., Osrečak, M., Andabaka, Ž., Tomaz, I., Večenaj, Ž., Jelić, D., Kozina, B., Kontić J.K. ve Karoglan, M. (2021). The Effect of Leaf Removal on Canopy Microclimate, Vine Performance and Grape Phenolic Composition of Merlot (Vitis vinifera L.) Grapes in the Continental Part of Croatia. Scientia Horticulturae, 285: 110161.
  • Bertamini, M., Nedunchezhian, N. (2003). Photo Inhibition of Photosynthesis in Mature and Young Leaves of Grapevine (Vitis vinifera L.). Plant Science, 164 (4): 635-644.
  • Blancquaert, E.H., Oberholster, A., Ricardo–da–Silva, J.M., Deloire, A.J. (2019). Effects of Abiotic Factors on Phenolic Compounds in the Grape Nerry–A Review. South African Journal of Enology and Viticulture, 40(1), 1-14.
  • Camargo, A.C., Biasoto, A.C.T., Schwember, A.R., Granato, D., Rasera, G.B., Franchin, M., Shahidi, F. (2019). Should We Ban Total Phenolics and Antioxidant Screening Methods? The Link Between Antioxidant Potential and Activation of NF-Κb Using Phenolic Compounds from Grape By–Products. Food Chemistry, 290, 229-238.
  • Candar, S., Korkutal, İ. ve Bahar, E. (2019). Effect of Canopy Microclimate on Merlot (Vitis vinifera L.) Grape Composition. Applied Ecology and Environmental Research, 17 (6), 15431-15446.
  • Friedel, M., Stoll, M., Patz, C. D., Will, F. ve Dietrich, H. (2015). Impact of Light Exposure on Fruit Composition of White'riesling'grape Berries (Vitis vinifera L.). Vitis–Journal of Grapevine Research, 54(3), 107-116.
  • Haselgrove, L., Botting, D., Van Heeswijck, R., Hoj, P.B., Dry, P.R., Ford, C., Land, P.G.I. (2000). Canopy Microclimate and Berry Composition: The Effect of Bunch Exposure on the Phenolic Composition of Vitis vinifera L. cv. Shiraz Grape Berries. Australian Journal of Grape and Wine Research, 6(2), 141-149.
  • Hunter, J.J. (1997). Implications of Seasonal Canopy Management and Growth Compensation in Grapevine. S., Afr. J., Enol. Vitic., 21(2), 81-91.
  • Jones, G. V., & Davis, R. E. (2000). Climate Influences on Grapevine Phenology, Grape Composition, and Wine Production and Quality For Bordeaux, France. American Journal of Enology and Viticulture, 51(3), 249-261.
  • Keller, M., Zhang, Y. U. N., Shrestha, P. M., Biondi, M., & Bondada, B. R. (2015). Sugar Demand of Ripening Grape Berries Leads to Recycling of Surplus Phloem Water Via The Xylem. Plant, Cell Environment, 38(6), 1048-1059.
  • Martínez–Lüscher, J., Brillante, L., & Kurtural, S. K. (2019). Flavonol Profile Is A Reliable Indicator to Assess Canopy Architecture and the Exposure of Red Wine Grapes to Solar Radiation. Frontiers in Plant Science, 10(10), 1-15.
  • Matese, A., Crisci, A., Di Gennaro, S. F., Primicerio, J., Tomasi, D., Marcuzzo, P., & Guidoni, S. (2014). Spatial Variability of Meteorological Conditions at Different Scales in Viticulture. Agricultural and Forest Meteorology, 189, 159-167.
  • Molitor, D., & Keller, M. (2016). Yield of Muller–Thurgau and Riesling Grapevines is Altered By Meteorological Conditions in the Current and Previous Growing Seasons. OENO One, 50(4), 245-258.
  • Pastore, C., Zenoni, S., Fasoli, M., Pezzotti, M., Torbielli, G. B., & Filippetti, I. (2013). Selective Defoliation Affects Plant Growth, Fruit Transcriptional Ripening Program and Flavonoid Metabolism in Grapevine. BMC Plant. Biol., 13(30), 1-16.
  • Petrie, P. R., Trought, M. C. T., & Howell, G. S. (2000). Influence of Leaf Ageing, Leaf Area and Crop Load on Photosynthesis, Stomatal Conductance and Senescence of Grapevine (Vitis vinifera L. cv. Pinot Noir) Leaves. Vitis, 39, 31-36.
  • Petrie, P. R., Trought, M. C. T., & Howell. G. S. (2000). Growth and Dry Matter Partitioning of Pinot Noir (Vitis vinifera L.) in Relation to Leaf Area and Crop Load. Australian Journal of Grape and Wine Research, 6, 40-45.
  • Profio, F., Reynolds, A. G., & Kasimos, A. (2011). Canopy Management and Enzyme Impacts on Merlot, Cabernet Franc, and Cabernet Sauvignon. II. Wine Composition and Quality. American Journal of Enology and Viticulture, 62(2), 152-168.
  • Şahin, E., Dardeniz, A., Çoban, H., & Kaya, Ç. (2023). Yalova İncisi (Vitis vinifera L.) Üzüm Çeşidinde Kademeli Taç Yönetimi Uygulamalarının Omca Mikroklimasına Etkilerinin Belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 10(3), 591-597.
  • Schubert, A., Restagno, M., & Lovisolo, C. (1996). Net Photosynthesus of Grapevine Leaves of Different Age Exposed to High or Low Light Intensities. Adv. Hort. Sci., 10, 163-166.
  • Song, J. Q., Smart, R., Wang, H., Dambergs, B., Sparrow, A., & Qian, M. C. (2015). Effect of Grape Bunch Sunlight Exposure and UV Radiation on Phenolics and Volatile Composition of Vitis vinifera L. Cv. Pinot Noir Wine. Food Chemistry, 173, 424-431.
  • Spayd, S. E., Tarara, J. M., Mee, D. L., & Ferguson, J. C. (2002). Separation of Sunlight and Temperature Effects on the Composition of Vitis vinifera Cv. Merlot Berries. American Journal of Enology and Viticulture, 53(3), 171-182.
  • Torres, N., Martínez–Lüscher, J., Porte, E., & Kurtural, S. K. (2020). Optimal Ranges and Thresholds of Grape Berry Solar Radiation for Flavonoid Biosynthesis in Warm Climates. Frontiers in Plant Science, 11(931), 1-15.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bahçe Bitkileri Yetiştirme ve Islahı (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Esra Şahin 0000-0003-3850-3407

Harun Çoban 0009-0005-0599-2031

Alper Dardeniz 0000-0003-3480-662X

Çağlar Kaya 0000-0002-7054-3081

Sefer Demir 0009-0007-7124-3770

Berna Avcı Bu kişi benim 0009-0000-8588-0657

Tuğçe Yanlıç Bu kişi benim 0009-0006-6865-5013

Yayımlanma Tarihi 30 Aralık 2024
Gönderilme Tarihi 6 Eylül 2024
Kabul Tarihi 10 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 5 Sayı: 2

Kaynak Göster

APA Şahin, E., Çoban, H., Dardeniz, A., … Kaya, Ç. (2024). Cardinal (Vitis vinifera L.) Üzüm Çeşidinde Taç Yönetimi Uygulamasının Omca Taç Mikroklimasına Etkilerinin Belirlenmesi. BİLİM-TEKNOLOJİ-YENİLİK EKOSİSTEMİ DERGİSİ, 5(2), 59-66.