Araştırma Makalesi
BibTex RIS Kaynak Göster

Makine Öğrenmesi ve Optimizasyon Yöntemleri ile Uzun Dönem Elektrik Enerjisi Tahmini: Türkiye Örneği

Yıl 2023, , 285 - 292, 27.10.2023
https://doi.org/10.46387/bjesr.1306577

Öz

Sanayileşmenin hızla artması enerji ihtiyacını günümüzde artmıştır. Bununla birlikte ortaya çıkan bu enerji ihtiyacını karşılayabilmek için ön görülebilecek enerji tahminlerini yapabilmek için optimizasyon ve makine öğrenme algoritmaları ön plana çıkmıştır. Parçacık sürü optimizasyonu (PSO), Lineer Regresyon (LR) ve Gauss Süreç Regresyonu (GSR) bu algoritmalar içerisinde yer almaktadır. Bu çalışmada PSO, LR ve GSR algoritmaları kullanılarak Türkiye’nin 2020-2040 yılları arasındaki enerji talep tahmini yapılmıştır. Bu tahmin işlemlerinin yapılabilmesi için 1980-2019 yılları arasında geçmiş nüfus, ihracat, ithalat, gayri safi yurtiçi hâsıla (GSYH) giriş verileri olarak kullanılırken enerji tüketimi çıkış verisi olarak kullanılmıştır. PSO, LR ve GSR yöntemlerinin performans sonuçlarını değerlendirebilmek için regresyon kare (R2) değeri, kök ortalama kare hatası (RMSE), ortalama kare hatası (MSE) ve ortalama mutlak hata (MAE) hata metrikleri kullanıldı. R2, RMSE, MSE ve MAE değerleri göz önünde bulundurulduğunda bütün yöntemlerin başarılı sonuçlar verdiği gözlemlenmiştir.

Kaynakça

  • M.E. Gunay “Forecasting annual gross electricity demand by artificial neural networks using predicted values of socio-economic indicators and climatic conditions: Case of Turkey”, Energy Policy, vol. 90, no.1, pp. 92–101, 2016.
  • M. Saglam, C. Spataru and O.A. Karaman “Electricity Demand Forecasting with Use of Artificial Intelligence: The Case of Gokceada Island”, Energies, vol.15 no.16, pp. 1-22, 2022.
  • A. Zeng, H. Ho and Y. Yu “Prediction of building electricity usage using Gaussian Process Regression”, Journal of Building Engineering, vol.28, no.1, pp.1-8, 2019.
  • D. Sen, K.M. Tunç and M.E. Günay “Forecasting electricity consumption of OECD countries: A global machine learning modeling approach”, Util. Policy, vol. 70, no. 1, pp. 1-15, 2021.
  • H. Zhai, and C. Jinxing “Combining PSO-SVR and Random Forest Based Feature Selection for Day-ahead Peak Load Forecasting”, Engineering Letters vol. 30, no. 1, pp. 1-7, 2022.
  • M.P. Raju and A.J. Laxmi “IOT based online load forecasting using machine learning algorithms”, Procedia Computer Science, vol. 171, no.1, pp 551-560, 2020.
  • Y. Lu and G.A. Wang “Load forecasting model based on support vector regression with whale optimization algorithm”, Multimed Tools Appl vol. 82, no. 1, pp. 9939–9959, 2023.
  • P. Ramsami, and R.T.A. King “Neural Network Frameworks for Electricity Forecasting in Mauritius and Rodrigues Islands. In Proceedings of the 2021” 2021 IEEE PES/IAS Power Africa, pp. 1–5, 2021.
  • Y. Huang, N. Hasan, C. Deng, and Y. Bao “Multivariate empirical mode decomposition based hybrid model for day-ahead peak load forecasting”, Energy, vol. 239, pp. 1-15, 2022.
  • G. F. Fan, L. Z. Zhang, M. Yu, W. C. Hong and S. Q. Dong “Applications of random forest in multivariable response surface for short-term load forecasting”, International Journal of Electrical Power and Energy Systems, vol. 139, pp. 1-17, 2022.
  • S. Dua, S. Gautam, M. Garg, R. Mahla, M. Chaudhary and S. Vadhera “Short Term Load Forecasting using Machine Learning Techniques”, 2022 2nd International Conference on Intelligent Technologies (CONIT), pp. 1-6, 2022.
  • B. Ibrahim, L. Rabelo, E. Gutierrez-Franco and N. Clavijo-Buritica “Machine Learning for Short-Term Load Forecasting in Smart Grids”, Energies, vol. 15, no. 21, pp. 1-19, 2022.
  • K.A. Abdulsalam, and O.M. Babatunde “Electrical energy demand forecasting model using artificial neural network: A case study of Lagos State Nigeria”, International Journal of Data and Network Science, vol. 3, no. 4, pp. 305–322, 2019.
  • S. Tosun, A. Öztürk, and F. Taşpinar “Short Term Load Forecasting for Turkey Energy Distribution System with Artificial Neural Networks”, Tehnički vjesnik, vol. 26, no. 6, pp. 1545-1553, 2019.
  • E. Özkan “Parçacık Sürü Optimizasyonu ve Genetik Algoritma Kullanarak Türkiye’nin 2050 Yılına Kadar Enerji Tüketim Tahmininin Yapılması”, Yüksek Lisans Tezi, Osmaniye Korkut Ata Üniversitesi, Türkiye. pp. 59-60, 2018.
  • O. Martins, O.O. Ade-Ikuesan, and A. Oyedeji “Ogun Eyaletinde doğrusal regresyon uzun vadeli enerji talep tahmini modellemesi”, Nijerya Uygulamalı Bilimler ve Çevre Yönetimi Dergisi, vol. 23, no. 4, pp. 753, 2019.
  • E. Yakut, ve E. Özkan “Parçacık Sürü Optimizasyonu ve Genetik Algoritma Kullanılarak Ekonomik Göstergelerle Enerji Tüketim Tahmininin Modellenmesi: 1979-2050 Yılları Arasında Türkiye'de Bir Uygulama”, Alfanümerik Günlük, vol. 8, no.1, pp. 59-78, 2020.
  • M. Kayakuş “The Estimation of Turkey's Energy Demand Through Artificial Neural Networks and Support Vector Regression Methods, Alphanumeric Journal, vol. 8, no. 2, pp. 227-236, 2020.
  • Ö.A. Karaman, and M. Sağlam “Performance Analysıs of Modern Methods For Estımatıng Electrıcıty Energy Consumptıon Per Capıta”, International Informatics Congress (IIC2022), pp. 20-25, 2022.
  • Ö.A. Karaman, and M. Sağlam “Performance Analysıs Of Modern Methods For Estımatıng Instantaneous Peak Load”, International Informatics Congress (IIC2022), pp. 25-30, 2022.
  • https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik (Erişim: 10 Haziran 2023).
  • Türkiye Elektrik İletim A.Ş. Erişim adresi: https://www.teias.gov.tr/enUS/interconnections (Erişim: 10 Mayıs 2023).
  • Türkiye İstatistik Kurumu. Erişim adresi: https://data.tuik.gov.tr/Kategori/GetKategori?p=nufus-ve-demografi-109&dil=1 (Erişim: 10 Mayıs 2023).
  • World Bank, Erişim adresi: https://data.worldbank.org/?intcid=ecr_hp_BeltD_en_ext (Erişim: 10 Mayıs 2023).
  • M.S.Kıran, E. Özceylan, M. Gündüz, and T. Paksoy “A novel hybrid approach based on particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey”, Energy conversion and management, vol. 53, no. 1, pp. 75-83, 2012.
  • M. Saglam, C. Spataru, O.A. Karaman “Forecasting Electricity Demand in Turkey Using Optimization and Machine Learning Algorithms”, Energies, vol. 16, no. 11, p. 4499, 2023.
  • M. Binici “Turkey's energy consumption forecast by using mathematical modeling”, Master Thesis, Sivas Cumhuriyet University, Turkey, pp. 50-51, 2019.
  • Y. Guan, D. Li, S. Xue, and Y. Xi “Feature-fusion-kernel-based Gaussian process model for probabilistic long-term load forecasting”, Neurocomputing, vol. 426, pp. 174-184, 2021.
  • M. Korkmaz, A. Doğan and V. Kırmacı “Karşıt Akışlı Ranque – Hilsch Vorteks Tüpünün Lineer Regresyon, Destek Vektör Makineleri ve Gauss Süreç Regresyonu Yöntemi ile Performans Analizi”, Gazi Mühendislik Bilimleri Dergisi ,vol. 8, pp. 361-370, 2022.
  • A. Anand, and L. Suganthi “Hybrid GA-PSO Optimization of Artificial Neural Network for Forecasting Electricity Demand”, Energies (Basel), vol. 11, no. 4, pp. 1-15, 2018.
  • W.Chen, M. Panahi, H.R. Pourghasemi “Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling”, CATENA, vol. 157, pp. 310–324, 2017.
  • W. Zhang, W. Zhang, J. Wang and X. Niu “Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting”, Applied Energy, vol. 277, pp. 1-19, 2020.

Long-Term Electricity Demand Forecasting with Machine Learning and Optimization Methods: The Case of Turkey

Yıl 2023, , 285 - 292, 27.10.2023
https://doi.org/10.46387/bjesr.1306577

Öz

The rapid spread of industrialization has increased the need for energy today. However, optimization and machine learning algorithms have come to the fore in order to make predictable energy estimates in order to meet this emerging energy need. Particle swarm optimization (PSO), Lineer Regresyon (LR) and support vector regression (SVR) are included in these algorithms. In this study, using PSO, LR and GSR algorithms, Turkey's energy demand estimation between the years 2020-2040 was carried out. In order to make these estimations, the past population, exports, imports, gross domestic product (GDP) between 1980-2019 were used as input data, while energy consumption was used as output data. Regression square (R2) value, root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE) error metrics were used to evaluate the performance results of the PSO, LR, and GSR methods. Considering the R2, RMSE, MSE and MAE values, it has been determined that all methods have successful results.

Kaynakça

  • M.E. Gunay “Forecasting annual gross electricity demand by artificial neural networks using predicted values of socio-economic indicators and climatic conditions: Case of Turkey”, Energy Policy, vol. 90, no.1, pp. 92–101, 2016.
  • M. Saglam, C. Spataru and O.A. Karaman “Electricity Demand Forecasting with Use of Artificial Intelligence: The Case of Gokceada Island”, Energies, vol.15 no.16, pp. 1-22, 2022.
  • A. Zeng, H. Ho and Y. Yu “Prediction of building electricity usage using Gaussian Process Regression”, Journal of Building Engineering, vol.28, no.1, pp.1-8, 2019.
  • D. Sen, K.M. Tunç and M.E. Günay “Forecasting electricity consumption of OECD countries: A global machine learning modeling approach”, Util. Policy, vol. 70, no. 1, pp. 1-15, 2021.
  • H. Zhai, and C. Jinxing “Combining PSO-SVR and Random Forest Based Feature Selection for Day-ahead Peak Load Forecasting”, Engineering Letters vol. 30, no. 1, pp. 1-7, 2022.
  • M.P. Raju and A.J. Laxmi “IOT based online load forecasting using machine learning algorithms”, Procedia Computer Science, vol. 171, no.1, pp 551-560, 2020.
  • Y. Lu and G.A. Wang “Load forecasting model based on support vector regression with whale optimization algorithm”, Multimed Tools Appl vol. 82, no. 1, pp. 9939–9959, 2023.
  • P. Ramsami, and R.T.A. King “Neural Network Frameworks for Electricity Forecasting in Mauritius and Rodrigues Islands. In Proceedings of the 2021” 2021 IEEE PES/IAS Power Africa, pp. 1–5, 2021.
  • Y. Huang, N. Hasan, C. Deng, and Y. Bao “Multivariate empirical mode decomposition based hybrid model for day-ahead peak load forecasting”, Energy, vol. 239, pp. 1-15, 2022.
  • G. F. Fan, L. Z. Zhang, M. Yu, W. C. Hong and S. Q. Dong “Applications of random forest in multivariable response surface for short-term load forecasting”, International Journal of Electrical Power and Energy Systems, vol. 139, pp. 1-17, 2022.
  • S. Dua, S. Gautam, M. Garg, R. Mahla, M. Chaudhary and S. Vadhera “Short Term Load Forecasting using Machine Learning Techniques”, 2022 2nd International Conference on Intelligent Technologies (CONIT), pp. 1-6, 2022.
  • B. Ibrahim, L. Rabelo, E. Gutierrez-Franco and N. Clavijo-Buritica “Machine Learning for Short-Term Load Forecasting in Smart Grids”, Energies, vol. 15, no. 21, pp. 1-19, 2022.
  • K.A. Abdulsalam, and O.M. Babatunde “Electrical energy demand forecasting model using artificial neural network: A case study of Lagos State Nigeria”, International Journal of Data and Network Science, vol. 3, no. 4, pp. 305–322, 2019.
  • S. Tosun, A. Öztürk, and F. Taşpinar “Short Term Load Forecasting for Turkey Energy Distribution System with Artificial Neural Networks”, Tehnički vjesnik, vol. 26, no. 6, pp. 1545-1553, 2019.
  • E. Özkan “Parçacık Sürü Optimizasyonu ve Genetik Algoritma Kullanarak Türkiye’nin 2050 Yılına Kadar Enerji Tüketim Tahmininin Yapılması”, Yüksek Lisans Tezi, Osmaniye Korkut Ata Üniversitesi, Türkiye. pp. 59-60, 2018.
  • O. Martins, O.O. Ade-Ikuesan, and A. Oyedeji “Ogun Eyaletinde doğrusal regresyon uzun vadeli enerji talep tahmini modellemesi”, Nijerya Uygulamalı Bilimler ve Çevre Yönetimi Dergisi, vol. 23, no. 4, pp. 753, 2019.
  • E. Yakut, ve E. Özkan “Parçacık Sürü Optimizasyonu ve Genetik Algoritma Kullanılarak Ekonomik Göstergelerle Enerji Tüketim Tahmininin Modellenmesi: 1979-2050 Yılları Arasında Türkiye'de Bir Uygulama”, Alfanümerik Günlük, vol. 8, no.1, pp. 59-78, 2020.
  • M. Kayakuş “The Estimation of Turkey's Energy Demand Through Artificial Neural Networks and Support Vector Regression Methods, Alphanumeric Journal, vol. 8, no. 2, pp. 227-236, 2020.
  • Ö.A. Karaman, and M. Sağlam “Performance Analysıs of Modern Methods For Estımatıng Electrıcıty Energy Consumptıon Per Capıta”, International Informatics Congress (IIC2022), pp. 20-25, 2022.
  • Ö.A. Karaman, and M. Sağlam “Performance Analysıs Of Modern Methods For Estımatıng Instantaneous Peak Load”, International Informatics Congress (IIC2022), pp. 25-30, 2022.
  • https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik (Erişim: 10 Haziran 2023).
  • Türkiye Elektrik İletim A.Ş. Erişim adresi: https://www.teias.gov.tr/enUS/interconnections (Erişim: 10 Mayıs 2023).
  • Türkiye İstatistik Kurumu. Erişim adresi: https://data.tuik.gov.tr/Kategori/GetKategori?p=nufus-ve-demografi-109&dil=1 (Erişim: 10 Mayıs 2023).
  • World Bank, Erişim adresi: https://data.worldbank.org/?intcid=ecr_hp_BeltD_en_ext (Erişim: 10 Mayıs 2023).
  • M.S.Kıran, E. Özceylan, M. Gündüz, and T. Paksoy “A novel hybrid approach based on particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey”, Energy conversion and management, vol. 53, no. 1, pp. 75-83, 2012.
  • M. Saglam, C. Spataru, O.A. Karaman “Forecasting Electricity Demand in Turkey Using Optimization and Machine Learning Algorithms”, Energies, vol. 16, no. 11, p. 4499, 2023.
  • M. Binici “Turkey's energy consumption forecast by using mathematical modeling”, Master Thesis, Sivas Cumhuriyet University, Turkey, pp. 50-51, 2019.
  • Y. Guan, D. Li, S. Xue, and Y. Xi “Feature-fusion-kernel-based Gaussian process model for probabilistic long-term load forecasting”, Neurocomputing, vol. 426, pp. 174-184, 2021.
  • M. Korkmaz, A. Doğan and V. Kırmacı “Karşıt Akışlı Ranque – Hilsch Vorteks Tüpünün Lineer Regresyon, Destek Vektör Makineleri ve Gauss Süreç Regresyonu Yöntemi ile Performans Analizi”, Gazi Mühendislik Bilimleri Dergisi ,vol. 8, pp. 361-370, 2022.
  • A. Anand, and L. Suganthi “Hybrid GA-PSO Optimization of Artificial Neural Network for Forecasting Electricity Demand”, Energies (Basel), vol. 11, no. 4, pp. 1-15, 2018.
  • W.Chen, M. Panahi, H.R. Pourghasemi “Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling”, CATENA, vol. 157, pp. 310–324, 2017.
  • W. Zhang, W. Zhang, J. Wang and X. Niu “Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting”, Applied Energy, vol. 277, pp. 1-19, 2020.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Ömer Ali Karaman 0000-0003-1640-861X

Yasin Bektaş 0000-0002-3681-0123

Erken Görünüm Tarihi 18 Ekim 2023
Yayımlanma Tarihi 27 Ekim 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Karaman, Ö. A., & Bektaş, Y. (2023). Makine Öğrenmesi ve Optimizasyon Yöntemleri ile Uzun Dönem Elektrik Enerjisi Tahmini: Türkiye Örneği. Mühendislik Bilimleri Ve Araştırmaları Dergisi, 5(2), 285-292. https://doi.org/10.46387/bjesr.1306577
AMA Karaman ÖA, Bektaş Y. Makine Öğrenmesi ve Optimizasyon Yöntemleri ile Uzun Dönem Elektrik Enerjisi Tahmini: Türkiye Örneği. Müh.Bil.ve Araş.Dergisi. Ekim 2023;5(2):285-292. doi:10.46387/bjesr.1306577
Chicago Karaman, Ömer Ali, ve Yasin Bektaş. “Makine Öğrenmesi Ve Optimizasyon Yöntemleri Ile Uzun Dönem Elektrik Enerjisi Tahmini: Türkiye Örneği”. Mühendislik Bilimleri Ve Araştırmaları Dergisi 5, sy. 2 (Ekim 2023): 285-92. https://doi.org/10.46387/bjesr.1306577.
EndNote Karaman ÖA, Bektaş Y (01 Ekim 2023) Makine Öğrenmesi ve Optimizasyon Yöntemleri ile Uzun Dönem Elektrik Enerjisi Tahmini: Türkiye Örneği. Mühendislik Bilimleri ve Araştırmaları Dergisi 5 2 285–292.
IEEE Ö. A. Karaman ve Y. Bektaş, “Makine Öğrenmesi ve Optimizasyon Yöntemleri ile Uzun Dönem Elektrik Enerjisi Tahmini: Türkiye Örneği”, Müh.Bil.ve Araş.Dergisi, c. 5, sy. 2, ss. 285–292, 2023, doi: 10.46387/bjesr.1306577.
ISNAD Karaman, Ömer Ali - Bektaş, Yasin. “Makine Öğrenmesi Ve Optimizasyon Yöntemleri Ile Uzun Dönem Elektrik Enerjisi Tahmini: Türkiye Örneği”. Mühendislik Bilimleri ve Araştırmaları Dergisi 5/2 (Ekim 2023), 285-292. https://doi.org/10.46387/bjesr.1306577.
JAMA Karaman ÖA, Bektaş Y. Makine Öğrenmesi ve Optimizasyon Yöntemleri ile Uzun Dönem Elektrik Enerjisi Tahmini: Türkiye Örneği. Müh.Bil.ve Araş.Dergisi. 2023;5:285–292.
MLA Karaman, Ömer Ali ve Yasin Bektaş. “Makine Öğrenmesi Ve Optimizasyon Yöntemleri Ile Uzun Dönem Elektrik Enerjisi Tahmini: Türkiye Örneği”. Mühendislik Bilimleri Ve Araştırmaları Dergisi, c. 5, sy. 2, 2023, ss. 285-92, doi:10.46387/bjesr.1306577.
Vancouver Karaman ÖA, Bektaş Y. Makine Öğrenmesi ve Optimizasyon Yöntemleri ile Uzun Dönem Elektrik Enerjisi Tahmini: Türkiye Örneği. Müh.Bil.ve Araş.Dergisi. 2023;5(2):285-92.