Araştırma Makalesi
BibTex RIS Kaynak Göster

Çift Beslemeli Asenkron Generatör Tabanlı Rüzgar Türbinlerinde Azaltılmış Derece Modeli Tabanlı Aktif-Reaktif Kompanzatör Modelin Geliştirilmesi

Yıl 2025, Cilt: 7 Sayı: 1, 103 - 110, 30.04.2025
https://doi.org/10.46387/bjesr.1648871

Öz

Şebekeye bağlı olan ÇBAG tabanlı Rüzgar Türbinleri geçici kararlılık durumlarından çok etkilenmektedir. Geçici kararlılık durumlarında ÇBAG’da aşırı akımların ve salınımların olması sisteme zararlar verebilmektedir. Bunları ortadan kaldırmak için bu çalışmada azaltılmış derece modeli tabanlı aktif-reaktif kompanzatör modellerin geliştirilmesi amaçlanmıştır. Sistemde hesaplama kolaylığının sağlanması ve benzetim çalışması performansının arttırılması için azaltılmış derece modeli geliştirilirken, stator devresinde aktif kompanzatör modeli ve rotor devresinde de pasif kompanzatör modeli geliştirilmiştir. Yapılan çalışmada geleneksel olarak kullanılan model ile önerilen modellerin karşılaştırmaları yapılmıştır. 3 faz arızası, 2 faz arızası ve 1 faz toprak arızasında karşılaştırmalar 34.5 kV bara gerilimi, ÇBAG çıkış gerilimi, açısal hız ve aktif güç parametrelerine göre yapılmıştır. Yapılan çalışma sonucunda, geliştirilen modelin geleneksel modele göre salınımları kısa sürede sönümlediği ve sistemin kısa süre içerisinde kararlı hale getirdiği görülmüştür.

Kaynakça

  • M. Rahimi and M. Parniani, “Coordinated control approaches for low-voltage ride-through enhancement in wind turbines with doubly fed induction generators,” IEEE Transactions on Energy Conversion, vol.25, pp. 873-883, 2010.
  • A.D. Hansen , G. Michalke , P. Sørensen, T. Lund and F. Iov, “Coordinated voltage control of DFIG wind turbines in uninterrupted operation during grid faults,” Wind Energy, vol.10, pp. 51-68, 2007.
  • J. Liang, W. Qiao and R.G. Harley, “Feed-forward transient current control for low-voltage ride-through enhancement of DFIG wind turbines,” IEEE Transactions on Energy Conversion, vol. 25, pp. 836-843, 2010.
  • S. Foster, L. Xu and B.Fox, “Coordinated reactive power control for facilitating fault ride through of doubly fed induction generator and fixed speed induction generator-based wind farms,” IET Renewable Power Generation, vol. 4, pp. 128-138, 2010.
  • S. Hu, X. Lin , Y. Kang, and X. Zou, “An improved low-voltage ride-through control strategy of doubly fed induction generatör during grid faults,” IEEE Transactions on Power Electronics, vol. 26, pp. 3653-3665, 2011.
  • S. Chondrogiannis and M. Barnes , “Specification of rotor side voltage source inverter of a doubly-fed induction generator for achieving ride-through capability,” IET Renewable Power Generation, vol. 2, pp. 139-150, 2007.
  • J. Dai , D. Xu, B. Wu, and N.R. Zargari, “Unified DC-link current control for low-voltage ride-through in current-source-converter-based wind energy conversion systems,” IEEE Transactions on Power Electronics, vol. 26, pp. 288-297, 2011.
  • Y. Mishra , S. Mishra, M. Tripathy, N. Senroy and Z.Y. Dong, “Improving stability of a DFIG-based wind power system with tuned damping controller,” IEEE Transactions on Energy Conversion, vol.24, pp. 650-660, 2009.
  • A.H. Kasem, E.F. El-Saadany, H. H. El-Tamaly, M. A. A.Wahab, ‘‘An improved fault ride-through strategy for doubly fed induction generator-based wind turbines,’’ IET Renewable Power Generation, vol.2, pp. 201-214, 2007.
  • M.K.Döşoğlu,‘‘Nonlinear dynamic modeling for fault ride-through capability of DFIG-based wind farm,’’ Nonlinear Dynamics, vol. 89, pp. 2683-2694, 2017.
  • M.K.Döşoğlu, ‘‘Hybrid control approach for low-voltage ride-through capability in doubly-fed induction generator-based wind turbines,’’ Computers & Electrical Engineering, vol.90, pp. 106972, 2021.
  • M.K. Döşoğlu, ‘‘Hybrid low voltage ride through enhancement for transient stability capability in wind farms,’’ International Journal of Electrical Power & Energy Systems, vol.78, pp. 655-662, 2016.
  • J. Mohammadi, S.Afsharnia, S. Vaez‐Zadeh and S. Farhangi, S. ‘‘Improved fault ride through strategy for doubly fed induction generator based wind turbines under both symmetrical and asymmetrical grid faults,’’ IET renewable power generation, vol.10, no.8, pp. 1114-1122, 2016.
  • J. Mohammadi, S. Afsharnia, E. Ebrahimzadeh, and F. Blaabjerg,‘‘An enhanced LVRT scheme for DFIG-based WECSs under both balanced and unbalanced grid voltage sags,’’ Electric Power Components and Systems, vol.45, no.11, pp. 1242-1252, 2017.
  • J. Mohammadi, S. Afsharnia, and S. Vaez-Zadeh, ‘‘Efficient fault-ride-through control strategy of DFIG-based wind turbines during the grid faults,’’ Energy conversion and management, vol. 78, pp. 88-95, 2014.
  • P.C. Krause, Analysis of electric machinery. McGraw-Hill, 2th ed., New York, 2002.
  • J.B.Ekanayake, L. Holdsworth and N. Jenkins, ‘‘Comparison of 5th order and 3rd order machine models for double fed induction generators (DFIG) wind turbines,’’ Electric Power System Research, vol.67, no.3, pp. 207-215, 2003.
  • J.G. Slootweg, H. Polinder and W.L.Kling, ‘‘Dynamic modelling of a wind turbine with doubly fed induction generator,’’ IEEE Power Engineering Society Summer Meeting vol.1, pp.644-649, 2001.
  • M.K. Döşoğlu, ‘‘Enhancement of dynamic modeling for LVRT capability in DFIG-based wind turbines,’’ Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol. 44, pp. 1345-1356, 2020.
  • M.K. Döşoğlu, ‘‘ÇBAG Tabanlı rüzgar türbinleri için yeni bir düşük gerilim iyileştirme yeteneği stratejisi,’’ International Journal of Technological Sciences Uluslararasi Teknolojik Bilimler Dergisi, vol. 12, no.1, pp. 33-44, 2020.
  • M.K. Döşoğlu, O. Özkaraca and U. Güvenç, ‘‘Novel active–passivecompensator–supercapacitor modeling for low-voltage ride-through capability in DFIG-based wind turbines,’’ Electrical Engineering, vol. 101, pp. 1119-1132, 2019.
  • B. Rona , Ö. Güler, “Power system integration of wind farms and analysis of grid code requirements,” Renewable and Sustainable Energy Reviews, vol. 49, pp. 100-107, 2015.

Enhancement of Reduced Order Model Based Active-Reactive Compensator Model in Doubly Fed Induction Generator-based Wind Turbines

Yıl 2025, Cilt: 7 Sayı: 1, 103 - 110, 30.04.2025
https://doi.org/10.46387/bjesr.1648871

Öz

DFIG based wind turbines connected to the grid are greatly affected by transient stability conditions. In transient stability conditions, excessive currents and oscillations in DFIG can damage the system. In order to eliminate these, the aim of this study is to develop active-reactive compensator models based on reduced order model. While the reduced order model was developed to provide ease of calculation in the system and to increase the performance of the simulation study, an active compensator model was developed in the stator circuit and a passive compensator model was developed in the rotor circuit. In the study, comparisons were made between the traditionally used model and the proposed models. Comparisons were made for 3 phase faults, 2 phase faults and 1 phase ground faults according to the parameters of 34.5 kV bus voltage, DFIG output voltage, angular speed and active power. As a result of the study, it was observed that the developed model damped the oscillations in a short time compared to the traditional model and stabilized the system in a short time.

Kaynakça

  • M. Rahimi and M. Parniani, “Coordinated control approaches for low-voltage ride-through enhancement in wind turbines with doubly fed induction generators,” IEEE Transactions on Energy Conversion, vol.25, pp. 873-883, 2010.
  • A.D. Hansen , G. Michalke , P. Sørensen, T. Lund and F. Iov, “Coordinated voltage control of DFIG wind turbines in uninterrupted operation during grid faults,” Wind Energy, vol.10, pp. 51-68, 2007.
  • J. Liang, W. Qiao and R.G. Harley, “Feed-forward transient current control for low-voltage ride-through enhancement of DFIG wind turbines,” IEEE Transactions on Energy Conversion, vol. 25, pp. 836-843, 2010.
  • S. Foster, L. Xu and B.Fox, “Coordinated reactive power control for facilitating fault ride through of doubly fed induction generator and fixed speed induction generator-based wind farms,” IET Renewable Power Generation, vol. 4, pp. 128-138, 2010.
  • S. Hu, X. Lin , Y. Kang, and X. Zou, “An improved low-voltage ride-through control strategy of doubly fed induction generatör during grid faults,” IEEE Transactions on Power Electronics, vol. 26, pp. 3653-3665, 2011.
  • S. Chondrogiannis and M. Barnes , “Specification of rotor side voltage source inverter of a doubly-fed induction generator for achieving ride-through capability,” IET Renewable Power Generation, vol. 2, pp. 139-150, 2007.
  • J. Dai , D. Xu, B. Wu, and N.R. Zargari, “Unified DC-link current control for low-voltage ride-through in current-source-converter-based wind energy conversion systems,” IEEE Transactions on Power Electronics, vol. 26, pp. 288-297, 2011.
  • Y. Mishra , S. Mishra, M. Tripathy, N. Senroy and Z.Y. Dong, “Improving stability of a DFIG-based wind power system with tuned damping controller,” IEEE Transactions on Energy Conversion, vol.24, pp. 650-660, 2009.
  • A.H. Kasem, E.F. El-Saadany, H. H. El-Tamaly, M. A. A.Wahab, ‘‘An improved fault ride-through strategy for doubly fed induction generator-based wind turbines,’’ IET Renewable Power Generation, vol.2, pp. 201-214, 2007.
  • M.K.Döşoğlu,‘‘Nonlinear dynamic modeling for fault ride-through capability of DFIG-based wind farm,’’ Nonlinear Dynamics, vol. 89, pp. 2683-2694, 2017.
  • M.K.Döşoğlu, ‘‘Hybrid control approach for low-voltage ride-through capability in doubly-fed induction generator-based wind turbines,’’ Computers & Electrical Engineering, vol.90, pp. 106972, 2021.
  • M.K. Döşoğlu, ‘‘Hybrid low voltage ride through enhancement for transient stability capability in wind farms,’’ International Journal of Electrical Power & Energy Systems, vol.78, pp. 655-662, 2016.
  • J. Mohammadi, S.Afsharnia, S. Vaez‐Zadeh and S. Farhangi, S. ‘‘Improved fault ride through strategy for doubly fed induction generator based wind turbines under both symmetrical and asymmetrical grid faults,’’ IET renewable power generation, vol.10, no.8, pp. 1114-1122, 2016.
  • J. Mohammadi, S. Afsharnia, E. Ebrahimzadeh, and F. Blaabjerg,‘‘An enhanced LVRT scheme for DFIG-based WECSs under both balanced and unbalanced grid voltage sags,’’ Electric Power Components and Systems, vol.45, no.11, pp. 1242-1252, 2017.
  • J. Mohammadi, S. Afsharnia, and S. Vaez-Zadeh, ‘‘Efficient fault-ride-through control strategy of DFIG-based wind turbines during the grid faults,’’ Energy conversion and management, vol. 78, pp. 88-95, 2014.
  • P.C. Krause, Analysis of electric machinery. McGraw-Hill, 2th ed., New York, 2002.
  • J.B.Ekanayake, L. Holdsworth and N. Jenkins, ‘‘Comparison of 5th order and 3rd order machine models for double fed induction generators (DFIG) wind turbines,’’ Electric Power System Research, vol.67, no.3, pp. 207-215, 2003.
  • J.G. Slootweg, H. Polinder and W.L.Kling, ‘‘Dynamic modelling of a wind turbine with doubly fed induction generator,’’ IEEE Power Engineering Society Summer Meeting vol.1, pp.644-649, 2001.
  • M.K. Döşoğlu, ‘‘Enhancement of dynamic modeling for LVRT capability in DFIG-based wind turbines,’’ Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol. 44, pp. 1345-1356, 2020.
  • M.K. Döşoğlu, ‘‘ÇBAG Tabanlı rüzgar türbinleri için yeni bir düşük gerilim iyileştirme yeteneği stratejisi,’’ International Journal of Technological Sciences Uluslararasi Teknolojik Bilimler Dergisi, vol. 12, no.1, pp. 33-44, 2020.
  • M.K. Döşoğlu, O. Özkaraca and U. Güvenç, ‘‘Novel active–passivecompensator–supercapacitor modeling for low-voltage ride-through capability in DFIG-based wind turbines,’’ Electrical Engineering, vol. 101, pp. 1119-1132, 2019.
  • B. Rona , Ö. Güler, “Power system integration of wind farms and analysis of grid code requirements,” Renewable and Sustainable Energy Reviews, vol. 49, pp. 100-107, 2015.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Tesisleri
Bölüm Araştırma Makalesi
Yazarlar

Enes Kaymaz 0000-0002-4774-0773

Mehmet Kenan Döşoğlu 0000-0001-8804-7070

Gönderilme Tarihi 28 Şubat 2025
Kabul Tarihi 26 Mart 2025
Erken Görünüm Tarihi 28 Nisan 2025
Yayımlanma Tarihi 30 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 1

Kaynak Göster

APA Kaymaz, E., & Döşoğlu, M. K. (2025). Çift Beslemeli Asenkron Generatör Tabanlı Rüzgar Türbinlerinde Azaltılmış Derece Modeli Tabanlı Aktif-Reaktif Kompanzatör Modelin Geliştirilmesi. Mühendislik Bilimleri ve Araştırmaları Dergisi, 7(1), 103-110. https://doi.org/10.46387/bjesr.1648871
AMA Kaymaz E, Döşoğlu MK. Çift Beslemeli Asenkron Generatör Tabanlı Rüzgar Türbinlerinde Azaltılmış Derece Modeli Tabanlı Aktif-Reaktif Kompanzatör Modelin Geliştirilmesi. Müh.Bil.ve Araş.Dergisi. Nisan 2025;7(1):103-110. doi:10.46387/bjesr.1648871
Chicago Kaymaz, Enes, ve Mehmet Kenan Döşoğlu. “Çift Beslemeli Asenkron Generatör Tabanlı Rüzgar Türbinlerinde Azaltılmış Derece Modeli Tabanlı Aktif-Reaktif Kompanzatör Modelin Geliştirilmesi”. Mühendislik Bilimleri ve Araştırmaları Dergisi 7, sy. 1 (Nisan 2025): 103-10. https://doi.org/10.46387/bjesr.1648871.
EndNote Kaymaz E, Döşoğlu MK (01 Nisan 2025) Çift Beslemeli Asenkron Generatör Tabanlı Rüzgar Türbinlerinde Azaltılmış Derece Modeli Tabanlı Aktif-Reaktif Kompanzatör Modelin Geliştirilmesi. Mühendislik Bilimleri ve Araştırmaları Dergisi 7 1 103–110.
IEEE E. Kaymaz ve M. K. Döşoğlu, “Çift Beslemeli Asenkron Generatör Tabanlı Rüzgar Türbinlerinde Azaltılmış Derece Modeli Tabanlı Aktif-Reaktif Kompanzatör Modelin Geliştirilmesi”, Müh.Bil.ve Araş.Dergisi, c. 7, sy. 1, ss. 103–110, 2025, doi: 10.46387/bjesr.1648871.
ISNAD Kaymaz, Enes - Döşoğlu, Mehmet Kenan. “Çift Beslemeli Asenkron Generatör Tabanlı Rüzgar Türbinlerinde Azaltılmış Derece Modeli Tabanlı Aktif-Reaktif Kompanzatör Modelin Geliştirilmesi”. Mühendislik Bilimleri ve Araştırmaları Dergisi 7/1 (Nisan2025), 103-110. https://doi.org/10.46387/bjesr.1648871.
JAMA Kaymaz E, Döşoğlu MK. Çift Beslemeli Asenkron Generatör Tabanlı Rüzgar Türbinlerinde Azaltılmış Derece Modeli Tabanlı Aktif-Reaktif Kompanzatör Modelin Geliştirilmesi. Müh.Bil.ve Araş.Dergisi. 2025;7:103–110.
MLA Kaymaz, Enes ve Mehmet Kenan Döşoğlu. “Çift Beslemeli Asenkron Generatör Tabanlı Rüzgar Türbinlerinde Azaltılmış Derece Modeli Tabanlı Aktif-Reaktif Kompanzatör Modelin Geliştirilmesi”. Mühendislik Bilimleri ve Araştırmaları Dergisi, c. 7, sy. 1, 2025, ss. 103-10, doi:10.46387/bjesr.1648871.
Vancouver Kaymaz E, Döşoğlu MK. Çift Beslemeli Asenkron Generatör Tabanlı Rüzgar Türbinlerinde Azaltılmış Derece Modeli Tabanlı Aktif-Reaktif Kompanzatör Modelin Geliştirilmesi. Müh.Bil.ve Araş.Dergisi. 2025;7(1):103-10.