Farklı Yöntemlerle Sentezlenmiş olan ZnO’in Organik Güneş Hücrelerinde Verim Üzerine Etkisi
Yıl 2021,
Cilt: 3 Sayı: 1, 133 - 140, 29.04.2021
Semih Yurtdaş
,
Mustafa Karaman
,
Cem Tozlu
Öz
Bu çalışmada ITO/ZnO/P3HT:PCBM/MoO3/Ag yapısına sahip güneş hücresi üretilmiş olup farklı yöntemlerle sentezlenmiş olan ZnO’in aygıt verimi üzerindeki etkisi incelenmiştir. Sentez yöntemi olarak, sol-jel, nanokristal ve çözelti prosesi kullanılmıştır. Öncelikle her bir farklı sentez yöntemi için XRD ile karakterizasyon yapılmıştır. Daha sonrasında ise elde edilen ZnO çözeltileri ile kaplamalar yapılarak aygıtlar üretilmiştir. Yapılan aygıtların verim değerleri, 100 mw/cm2 güneş ışıması altında Keithley 2400 kaynak ölçer cihazı yardımı ile belirlenmiştir. Elde edilen bulgulara göre en yüksek verime (%2,90) sol-jel yöntemiyle sentezlenen ZnO ile ulaşılmıştır. Ayrıca sol-jel yönteminin, diğer yöntemlere göre daha ucuz ekipmanlara ve nispeten zararsız kimyasallara gereksinim duymasından dolayı ekstra avantajları vardır. Sonuç olarak organik güneş hücrelerinde kullanılacak olan ZnO için en uygun sentez yöntemi sol-jel yöntemi olduğu belirlenmiştir
Kaynakça
- [1] A. L.R Jackson, ‘‘Renewable energy vs. biodiversity: Policy conflicts and the future of nature conversation’’ Global Environmental Change, vol. 21, no. 4, pp. 1195-1208, October, 2011.
- [2] M. S. Özdemir, A. Dalcalı and C. Ocak, “Akarsu Tipi Hidroelektrik Santraller ve Bu Santrallerde Kullanılan Türbin-Generatörler”, Mühendislik Bilimleri ve Araştırmaları Dergisi, vol.2, no.2, pp. 69-75, October, 2020.
- [3] M. Yılmazlar, “Yarı İletkenler, Yarı İletken Teknolojileri ve Kullanım Alanları”, Bilimin Teknolojideki Uygulamaları, 1th ed. Ankara, Turkey: Pegem Akademi, 2020, ch. 2, pp. 19.
- [4] Y. He, Z. Li, J. Li, X. Zhang, C. Liu, H. Li, L. Shen, W. Guo, S. Ruan, "The role of Au nanorods highly efficient inverted low band gap polymer solar cells," Appl. Phys. Lett., vol. 105, no. 223305, pp. 1-5, December, 2014.
- [5] M. Shirvani, and L. Naji, “Interface engineering of electrochemically deposited ZnO nanorods as electron transport layer in polymer solar cells using organic dyes”, Materials Chemistry and Physics, vol. 259, no. 124064, pp. 1-13, February, 2021.
- [6] P. Mahendia, G. Chauhan, H. Wadhwa, G. Kandhol, S. Mahendia, R. Srivastava, O. P. Sinha, T. D. Clemons, S. Kumar, “Study of induced structural, optical and electrochemical properties of Poly(3-hexylthiophene) (P3HT), [6,6]-phenyl-C61-butyric-acid-methyl-ester (PCBM) and their blend as an effect of graphene doping”, Journal of Physics and Chemistry of Solids, vol. 148, no. 109644, pp. 1-9, January, 2021.
- [7] F. C. Hsu, Y. A. Lin, C. P. Li, “Stable polymer solar cells using conjugated polymer as solvent barrier for organic electron transport layer”, Organic Electronics, vol. 89, no. 106008, pp. 1-6, February, 2021.
- [8] M. E. Ragoussi, and T. Torres, “New generation solar cells: concepts, trends and perspectives”, Chemical Communications, vol. 51, no.19, pp. 3957-397, January, 2015.
- [9] G. Li, R. Zhu, Y. Yang, “Polymer solar cells”, Nature Photonics, vol. 6, pp. 153-161, Februay, 2012.
- [10] J. L. Delgado, P. A. Bouit, S. Filippone, M. A. Herranz, N. Martin, “Organic photovoltaics: a chemical approach”, Chemical Communications, vol. 46, no. 27, pp. 4853-4865, May, 2010.
- [11] P. Heremans, D. Cheyns, B. P. Rand, “Strategies for Increasing the Efficiency of Heterojunction Organic Solar Cells: Material Selection and Device Architecture”, Accounts of Chemical Research, vol. 42, no. 11, pp. 1740-1747, September, 2009.
- [12] J. Huang, Z. Yin, and Q. Zheng, “Applications of ZnO in Organic and Hybrid Solar Cells”, Energy and Environ. Sci., vol. 4, pp. 3861-3877, July, 2011.
- [13] T. Yang, W. Cai, D. Qin, E. Wang, L. Lan, X. Gong, J. Peng, Y. Cao, “Solution-Processed Zinc Oxide Thin Film as a Buffer Layer for Polymer Solar Cells with an Inverted Device Structure”, The Journal of Physical Chemistry C, vol. 114, no. 14, pp. 6849-6853, March, 2010.
- [14] O. M. Ntwaeaborwa, R. Zhou, L. Qian, S. S. Pitale, J. Xue, H. C. Swart, P. H. Holloway, “Post-fabrication annealing effects on the performance of P3HT:PCBM solar cells with/without ZnO nanoparticles”, Physica B, vol. 407, no. 10, pp. 1631-1633, May, 2012.
- [15] H. Y. Park, I. Ryu, J. Kim, S. Jeong, S. Yim, Y. S. Jang, “PbS Quantum Dot Solar Cells Integrated with Sol−Gel-Derived ZnO as an n‑Type Charge-Selective Layer”, The Journal of Physical Chemistry C, vol. 118, no. 31, pp. 17374−17382, July, 2014.
- [16] N. Taşaltın, B. Karaca, “SPDA:Ag Nanotel Ağ Elektrotlu Organik Güneş Hücresi”, Mühendislik Bilimleri ve Araştırmaları Dergisi, vol. 1, no. 1, pp. 24-34, October, 2019.
- [17] Z. Liang , Q. Zhang , O. Wiranwetchayan , J. Xi , Z. Yang, K. Park, C. Li, G. Cao, “Effects of the Morphology of a ZnO Buffer Layer on the Photovoltaic Performance of Inverted Polymer Solar Cells”, Adv. Funct. Mater., vol. 22, no. 10, pp. 2194–2201, March, 2012.
- [18] C. Pacholski, A. Kornowski, H. Weller, “Self-Assembly of ZnO:From Nanodots to Nanorods”, Angew. Chem. Int. Ed., vol. 41, no. 7, pp. 1188-1191, January, 2002.
- [19] Z. Lin, J. Chang, C. Jiang, J. Zhang, J. Wub, C. Zhu, “Enhanced inverted organic solar cell performance by post-treatments of solution-processed ZnO buffer layers”, RSC Adv., vol. 4, no. 13, pp. 6646–6651, January, 2014.
- [20] A. Mutlu, M. Can, C. Tozlu, “Performance improvement of organic solar cell via incorporation of donor type self-assembled interfacial monolayer”, Thin Solid Films, vol. 685, pp. 88-96, September, 2019.
- [21] Y. Bai, C. Zhao, Q. Guo, J. Zhang, S. Hu, J. Liu, T. Hayat, A. Alsaedi, Z. Tan, “Enhancing the electron blocking ability of n-type MoO3 by doping with ptype NiOx for efficient nonfullerene polymer solar cells”, Organic Electronics, vol. 68, pp. 168-175, May, 2019.