Araştırma Makalesi
BibTex RIS Kaynak Göster

HASTANE SEÇİMİNDE AMBULANS HİZMETİ: TÜRKİYE YOZGAT İLİ OPTİMİZASYON İLE KESİKLİ-OLAY SİMÜLASYON UYGULAMASI

Yıl 2021, Cilt: 3 Sayı: 1, 112 - 122, 29.04.2021
https://doi.org/10.46387/bjesr.902298

Öz

Bu çalışma, ambulans hizmetinde hastayı en yakın hastaneye değil, hastanın hastalığına daha iyi yanıt veren uygun bir hastaneye sevk etmek için yeni bir yaklaşım geliştirmeyi amaçlamaktadır. Bir hastanede personel ve ekipman eksikliği nedeniyle, hastaların başka bir hastaneye nakledilme olasılığı çok yüksektir. Bu araştırmada geliştirilmiş bir ambulans hizmeti akış şeması için ayrık olay simülasyon yöntemiyle bir vaka çalışması gerçekleştirildi. Vaka çalışması, iki hastane (şehir ve üniversite), bir acil çağrı merkezi ve altı ambulans istasyonu sahip Yozgat ilinde gerçekleştirilmiştir. Her bir ambulans istasyonun bir adet olmak üzere ambulans aracı bulunmaktadır. Kullanılan veriler Ocak 2018'den Ocak 2019'a kadar olan bir yılı kapsamaktadır. Bu çalışma için geliştirilen yöntem ambulans hizmetinde %21,14'lük bir iyileşme sağlanmıştır. Bulgular arasında dikkat çeken en önemli nokta, hastanın en yakın hastaneden ziyade en uygun hastaneye sevk edilmesinin hem sevk süresi hem de hastanın hayatı tehdit edici durumu açısından önemli olduğu bu çalışma ile tespit edilmiştir.

Kaynakça

  • [1] T. Van Barneveld, C. Jagtenberg, S. Bhulai, and R. Van der Mei, “Real-time ambulance relocation: Assessing real-time redeployment strategies for ambulance relocation,” Socioecon. Plann. Sci., vol. 62, pp. 129–142, Jun. 2018, doi: 10.1016/j.seps.2017.11.001.
  • [1] T. Van Barneveld, C. Jagtenberg, S. Bhulai, and R. Van der Mei, “Real-time ambulance relocation: Assessing real-time redeployment strategies for ambulance relocation,” Socioecon. Plann. Sci., vol. 62, pp. 129–142, Jun. 2018, doi: 10.1016/j.seps.2017.11.001.
  • [2] M. Peyravi, S. Khodakarim, P. Örtenwall, and A. Khorram-Manesh, “Does temporary location of ambulances (‘fluid deployment’) affect response times and patient outcome?,” Int. J. Emerg. Med., vol. 8, no. 1, p. 37, Oct. 2015, doi: 10.1186/s12245-015-0084-1.
  • [2] M. Peyravi, S. Khodakarim, P. Örtenwall, and A. Khorram-Manesh, “Does temporary location of ambulances (‘fluid deployment’) affect response times and patient outcome?,” Int. J. Emerg. Med., vol. 8, no. 1, p. 37, Oct. 2015, doi: 10.1186/s12245-015-0084-1.
  • [3] X. Fu, A. Presbitero, S. V. Kovalchuk, and V. V. Krzhizhanovskaya, “Coupling Game Theory and Discrete-Event Simulation for Model-Based Ambulance Dispatching,” in Procedia Computer Science, Jan. 2018, vol. 136, pp. 398–407, doi: 10.1016/j.procs.2018.08.274.
  • [3] X. Fu, A. Presbitero, S. V. Kovalchuk, and V. V. Krzhizhanovskaya, “Coupling Game Theory and Discrete-Event Simulation for Model-Based Ambulance Dispatching,” in Procedia Computer Science, Jan. 2018, vol. 136, pp. 398–407, doi: 10.1016/j.procs.2018.08.274.
  • [4] C.-H. Lin, C.-Y. Kao, and C.-Y. Huang, “Managing emergency department overcrowding via ambulance diversion: A discrete event simulation model,” J. Formos. Med. Assoc., vol. 114, no. 1, pp. 64–71, Jan. 2015, doi: 10.1016/j.jfma.2012.09.007.
  • [4] C.-H. Lin, C.-Y. Kao, and C.-Y. Huang, “Managing emergency department overcrowding via ambulance diversion: A discrete event simulation model,” J. Formos. Med. Assoc., vol. 114, no. 1, pp. 64–71, Jan. 2015, doi: 10.1016/j.jfma.2012.09.007.
  • [5] R. McCormack and G. Coates, “A simulation model to enable the optimization of ambulance fleet allocation and base station location for increased patient survival,” Eur. J. Oper. Res., vol. 247, no. 1, pp. 294–309, Nov. 2015, doi: 10.1016/j.ejor.2015.05.040.
  • [5] R. McCormack and G. Coates, “A simulation model to enable the optimization of ambulance fleet allocation and base station location for increased patient survival,” Eur. J. Oper. Res., vol. 247, no. 1, pp. 294–309, Nov. 2015, doi: 10.1016/j.ejor.2015.05.040.
  • [6] S. Nickel, M. Reuter-Oppermann, and F. Saldanha-da-Gama, “Ambulance location under stochastic demand: A sampling approach,” Oper. Res. Heal. Care, vol. 8, pp. 24–32, Mar. 2016, doi: 10.1016/J.ORHC.2015.06.006.
  • [6] S. Nickel, M. Reuter-Oppermann, and F. Saldanha-da-Gama, “Ambulance location under stochastic demand: A sampling approach,” Oper. Res. Heal. Care, vol. 8, pp. 24–32, Mar. 2016, doi: 10.1016/J.ORHC.2015.06.006.
  • [7] V. Bélanger, A. Ruiz, and P. Soriano, “Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles,” Eur. J. Oper. Res., vol. 272, no. 1, pp. 1–23, Jan. 2019, doi: 10.1016/J.EJOR.2018.02.055.
  • [7] V. Bélanger, A. Ruiz, and P. Soriano, “Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles,” Eur. J. Oper. Res., vol. 272, no. 1, pp. 1–23, Jan. 2019, doi: 10.1016/J.EJOR.2018.02.055.
  • [8] J. C. Dibene, Y. Maldonado, C. Vera, M. de Oliveira, L. Trujillo, and O. Schütze, “Optimizing the location of ambulances in Tijuana, Mexico,” Comput. Biol. Med., vol. 80, pp. 107–115, Jan. 2017, doi: 10.1016/J.COMPBIOMED.2016.11.016.
  • [8] J. C. Dibene, Y. Maldonado, C. Vera, M. de Oliveira, L. Trujillo, and O. Schütze, “Optimizing the location of ambulances in Tijuana, Mexico,” Comput. Biol. Med., vol. 80, pp. 107–115, Jan. 2017, doi: 10.1016/J.COMPBIOMED.2016.11.016.
  • [9] L. Abdullah, C. W. R. Adawiyah, and C. W. Kamal, “A decision making method based on interval type-2 fuzzy sets: An approach for ambulance location preference,” Appl. Comput. Informatics, vol. 14, no. 1, pp. 65–72, Jan. 2018, doi: 10.1016/J.ACI.2017.04.003.
  • [9] L. Abdullah, C. W. R. Adawiyah, and C. W. Kamal, “A decision making method based on interval type-2 fuzzy sets: An approach for ambulance location preference,” Appl. Comput. Informatics, vol. 14, no. 1, pp. 65–72, Jan. 2018, doi: 10.1016/J.ACI.2017.04.003.
  • [10] M. A. Zaffar, H. K. Rajagopalan, C. Saydam, M. Mayorga, and E. Sharer, “Coverage, survivability or response time: A comparative study of performance statistics used in ambulance location models via simulation–optimization,” Oper. Res. Heal. Care, vol. 11, pp. 1–12, Dec. 2016, doi: 10.1016/J.ORHC.2016.08.001.
  • [10] M. A. Zaffar, H. K. Rajagopalan, C. Saydam, M. Mayorga, and E. Sharer, “Coverage, survivability or response time: A comparative study of performance statistics used in ambulance location models via simulation–optimization,” Oper. Res. Heal. Care, vol. 11, pp. 1–12, Dec. 2016, doi: 10.1016/J.ORHC.2016.08.001.
  • [11] G. C. Alexander, L. P. Casalino, and D. O. Meltzer, “Patient-Physician Communication About Out-of-Pocket Costs,” JAMA, vol. 290, no. 7, pp. 953–958, 2003.
  • [11] G. C. Alexander, L. P. Casalino, and D. O. Meltzer, “Patient-Physician Communication About Out-of-Pocket Costs,” JAMA, vol. 290, no. 7, pp. 953–958, 2003.
  • [12] D. C. Ferreira, R. C. Marques, and A. M. Nunes, “Pay for performance in health care: a new best practice tariff-based tool using a log-linear piecewise frontier function and a dual--primal approach for unique solutions,” Oper. Res., pp. 1–46, Jun. 2019, doi: 10.1007/s12351-019-00502-3.
  • [12] D. C. Ferreira, R. C. Marques, and A. M. Nunes, “Pay for performance in health care: a new best practice tariff-based tool using a log-linear piecewise frontier function and a dual--primal approach for unique solutions,” Oper. Res., pp. 1–46, Jun. 2019, doi: 10.1007/s12351-019-00502-3.
  • [13] V. Schmid, “Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming,” Eur. J. Oper. Res., vol. 219, no. 3, pp. 611–621, Jun. 2012, doi: 10.1016/j.ejor.2011.10.043.
  • [13] V. Schmid, “Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming,” Eur. J. Oper. Res., vol. 219, no. 3, pp. 611–621, Jun. 2012, doi: 10.1016/j.ejor.2011.10.043.
  • [14] A. P. Iannoni, R. Morabito, and C. Saydam, “An optimization approach for ambulance location and the districting of the response segments on highways,” Eur. J. Oper. Res., vol. 195, no. 2, pp. 528–542, Jun. 2009, doi: 10.1016/j.ejor.2008.02.003.
  • [14] A. P. Iannoni, R. Morabito, and C. Saydam, “An optimization approach for ambulance location and the districting of the response segments on highways,” Eur. J. Oper. Res., vol. 195, no. 2, pp. 528–542, Jun. 2009, doi: 10.1016/j.ejor.2008.02.003.
  • [15] C.-H. Wu and K. P. Hwang, “Using a Discrete-event Simulation to Balance Ambulance Availability and Demand in Static Deployment Systems,” Acad. Emerg. Med., vol. 16, no. 12, pp. 1359–1366, Dec. 2009, doi: 10.1111/j.1553-2712.2009.00583.x.
  • [15] C.-H. Wu and K. P. Hwang, “Using a Discrete-event Simulation to Balance Ambulance Availability and Demand in Static Deployment Systems,” Acad. Emerg. Med., vol. 16, no. 12, pp. 1359–1366, Dec. 2009, doi: 10.1111/j.1553-2712.2009.00583.x.
  • [16] H. Morohosi and T. Furuta, “Optimization model and simulation for improving ambulance service system,” 2013.
  • [16] H. Morohosi and T. Furuta, “Optimization model and simulation for improving ambulance service system,” 2013.
  • [17] D. Bertsimas and Y. Ng, “Robust and Stochastic Formulations for Ambulance Deployment and Dispatch,” Eur. J. Oper. Res., May 2019, doi: 10.1016/J.EJOR.2019.05.011.
  • [17] D. Bertsimas and Y. Ng, “Robust and Stochastic Formulations for Ambulance Deployment and Dispatch,” Eur. J. Oper. Res., May 2019, doi: 10.1016/J.EJOR.2019.05.011.
  • [18] S. S. W. Lam, C. B. L. Ng, F. N. H. L. Nguyen, Y. Y. Ng, and M. E. H. Ong, “Simulation-based decision support framework for dynamic ambulance redeployment in Singapore,” Int. J. Med. Inform., vol. 106, pp. 37–47, Oct. 2017, doi: 10.1016/J.IJMEDINF.2017.06.005.
  • [18] S. S. W. Lam, C. B. L. Ng, F. N. H. L. Nguyen, Y. Y. Ng, and M. E. H. Ong, “Simulation-based decision support framework for dynamic ambulance redeployment in Singapore,” Int. J. Med. Inform., vol. 106, pp. 37–47, Oct. 2017, doi: 10.1016/J.IJMEDINF.2017.06.005.
  • [19] M. Swalehe and S. G. Aktas, “Dynamic Ambulance Deployment to Reduce Ambulance Response Times Using Geographic Information Systems: A Case Study of Odunpazari District of Eskisehir Province, Turkey,” Procedia Environ. Sci., vol. 36, pp. 199–206, Jan. 2016, doi: 10.1016/J.PROENV.2016.09.033.
  • [19] M. Swalehe and S. G. Aktas, “Dynamic Ambulance Deployment to Reduce Ambulance Response Times Using Geographic Information Systems: A Case Study of Odunpazari District of Eskisehir Province, Turkey,” Procedia Environ. Sci., vol. 36, pp. 199–206, Jan. 2016, doi: 10.1016/J.PROENV.2016.09.033.
  • [20] A. D. Hanchate, M. K. Paasche-Orlow, K. S. Dyer, W. E. Baker, C. Feng, and J. Feldman, “Geographic Variation in Use of Ambulance Transport to the Emergency Department,” Ann. Emerg. Med., vol. 70, no. 4, pp. 533-543.e7, Oct. 2017, doi: 10.1016/J.ANNEMERGMED.2017.03.029.
  • [20] A. D. Hanchate, M. K. Paasche-Orlow, K. S. Dyer, W. E. Baker, C. Feng, and J. Feldman, “Geographic Variation in Use of Ambulance Transport to the Emergency Department,” Ann. Emerg. Med., vol. 70, no. 4, pp. 533-543.e7, Oct. 2017, doi: 10.1016/J.ANNEMERGMED.2017.03.029.
  • [21] S. Enayati, M. E. Mayorga, H. K. Rajagopalan, and C. Saydam, “Real-time ambulance redeployment approach to improve service coverage with fair and restricted workload for EMS providers,” Omega, vol. 79, pp. 67–80, Sep. 2018, doi: 10.1016/J.OMEGA.2017.08.001.
  • [21] S. Enayati, M. E. Mayorga, H. K. Rajagopalan, and C. Saydam, “Real-time ambulance redeployment approach to improve service coverage with fair and restricted workload for EMS providers,” Omega, vol. 79, pp. 67–80, Sep. 2018, doi: 10.1016/J.OMEGA.2017.08.001.
  • [22] A. Shahabi, S. Raissi, K. Khalili-Damghani, and M. Rafei, “Designing a resilient skip-stop schedule in rapid rail transit using a simulation-based optimization methodology,” Oper. Res., pp. 1–31, Oct. 2019, doi: 10.1007/s12351-019-00523-y.
  • [22] A. Shahabi, S. Raissi, K. Khalili-Damghani, and M. Rafei, “Designing a resilient skip-stop schedule in rapid rail transit using a simulation-based optimization methodology,” Oper. Res., pp. 1–31, Oct. 2019, doi: 10.1007/s12351-019-00523-y.
  • [23] C. Swoveland, D. Uyeno, I. Vertinsky, and R. Vickson, “A simulation-based methodology for optimization of ambulance service policies,” Socioecon. Plann. Sci., vol. 7, no. 6, pp. 697–703, Dec. 1973, doi: 10.1016/0038-0121(73)90033-5.
  • [23] C. Swoveland, D. Uyeno, I. Vertinsky, and R. Vickson, “A simulation-based methodology for optimization of ambulance service policies,” Socioecon. Plann. Sci., vol. 7, no. 6, pp. 697–703, Dec. 1973, doi: 10.1016/0038-0121(73)90033-5.
  • [24] TürkiyeCumhuriyetiÇevreveŞehircilikBakanlığı, “Yozgat İli,” Türkiye Cumhuriyeti Çevre ve Şehircilik Bakanlığı, 2021. https://yozgat.csb.gov.tr/genel-bilgiler-i-2301.
  • [24] TürkiyeCumhuriyetiÇevreveŞehircilikBakanlığı, “Yozgat İli,” Türkiye Cumhuriyeti Çevre ve Şehircilik Bakanlığı, 2021. https://yozgat.csb.gov.tr/genel-bilgiler-i-2301.
  • [25] YOZGAT VALİLİĞİ ÇEVRE VE ŞEHİRCİLİK İL MÜDÜRLÜĞÜ, “YOZGAT İLİ 2017 YILI ÇEVRE DURUM RAPORU,” 2017.
  • [25] YOZGAT VALİLİĞİ ÇEVRE VE ŞEHİRCİLİK İL MÜDÜRLÜĞÜ, “YOZGAT İLİ 2017 YILI ÇEVRE DURUM RAPORU,” 2017.
  • [26] 112 Acil Çağrı Merkezi, “YOZGAT 112 ACİL ÇAĞRI MERKEZİ MÜDÜRLÜĞÜ,” 2020.
  • [26] 112 Acil Çağrı Merkezi, “YOZGAT 112 ACİL ÇAĞRI MERKEZİ MÜDÜRLÜĞÜ,” 2020.
  • [27] Turkish Statitical Institute, “Adrese Dayalı Nüfus Kayıt Sistemi,” 2020. https://biruni.tuik.gov.tr/medas/?kn=95&locale=tr.
  • [27] Turkish Statitical Institute, “Adrese Dayalı Nüfus Kayıt Sistemi,” 2020. https://biruni.tuik.gov.tr/medas/?kn=95&locale=tr.
  • [28] State Turkish Meteorological Service, “Extreme Maximum, Minimum and Average Temperatures Measured in Long Period (°C),” 2019. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=YOZGAT.
  • [28] State Turkish Meteorological Service, “Extreme Maximum, Minimum and Average Temperatures Measured in Long Period (°C),” 2019. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=YOZGAT.
  • [29] Turkish State Meteorological Service, “The average temperature between 1970 and 2016 in Turkey,” 2019.
  • [29] Turkish State Meteorological Service, “The average temperature between 1970 and 2016 in Turkey,” 2019.
  • [30] S. S. Wei Lam, Z. C. Zhang, H. C. Oh, Y. Y. Ng, W. Wah, and M. E. Hock Ong, “Reducing Ambulance Response Times Using Discrete Event Simulation,” Prehospital Emerg. Care, vol. 18, no. 2, pp. 207–216, Apr. 2014, doi: 10.3109/10903127.2013.836266.
  • [30] S. S. Wei Lam, Z. C. Zhang, H. C. Oh, Y. Y. Ng, W. Wah, and M. E. Hock Ong, “Reducing Ambulance Response Times Using Discrete Event Simulation,” Prehospital Emerg. Care, vol. 18, no. 2, pp. 207–216, Apr. 2014, doi: 10.3109/10903127.2013.836266.
  • [31] M. E. H. Ong et al., “Reducing Ambulance Response Times Using Geospatial-Time Analysis of Ambulance Deployment,” Acad. Emerg. Med., vol. 17, no. 9, pp. 951–957, Sep. 2010, doi: 10.1111/j.1553-2712.2010.00860.x.
  • [31] M. E. H. Ong et al., “Reducing Ambulance Response Times Using Geospatial-Time Analysis of Ambulance Deployment,” Acad. Emerg. Med., vol. 17, no. 9, pp. 951–957, Sep. 2010, doi: 10.1111/j.1553-2712.2010.00860.x.

AMBULANCE SERVICE FOR HOSPITAL SELECTION: OPTIMIZATION WITH DISCRETE-EVENT SIMULATION APPLICATION FOR YOZGAT PROVINCE OF TURKEY

Yıl 2021, Cilt: 3 Sayı: 1, 112 - 122, 29.04.2021
https://doi.org/10.46387/bjesr.902298

Öz

This study aims to develop a new approach in the ambulance service to refer the patient not to the nearest hospital but to a suitable hospital that responds better to his/her illness. Due to the lack of staff and equipment in a hospital, patients are often very likely to be transferred to another hospital. A case study was performed with a discrete-event simulation method for an improved ambulance service flowchart in this research. The case study was conducted in Yozgat province of Turkey, including two hospitals (city and university), one emergency call center, and six ambulance stations. Each of them has one vehicle. The data used covers the one-year from January 2018 to January 2019. The method developed for this study resulted in a 21.14 % improvement in ambulance service. The most crucial point that was noteworthy among the findings was that referral of the patient to the most appropriate hospital, rather than the nearest hospital, was important in terms of both dispatching time and the life-threatening condition of the patient.

Kaynakça

  • [1] T. Van Barneveld, C. Jagtenberg, S. Bhulai, and R. Van der Mei, “Real-time ambulance relocation: Assessing real-time redeployment strategies for ambulance relocation,” Socioecon. Plann. Sci., vol. 62, pp. 129–142, Jun. 2018, doi: 10.1016/j.seps.2017.11.001.
  • [1] T. Van Barneveld, C. Jagtenberg, S. Bhulai, and R. Van der Mei, “Real-time ambulance relocation: Assessing real-time redeployment strategies for ambulance relocation,” Socioecon. Plann. Sci., vol. 62, pp. 129–142, Jun. 2018, doi: 10.1016/j.seps.2017.11.001.
  • [2] M. Peyravi, S. Khodakarim, P. Örtenwall, and A. Khorram-Manesh, “Does temporary location of ambulances (‘fluid deployment’) affect response times and patient outcome?,” Int. J. Emerg. Med., vol. 8, no. 1, p. 37, Oct. 2015, doi: 10.1186/s12245-015-0084-1.
  • [2] M. Peyravi, S. Khodakarim, P. Örtenwall, and A. Khorram-Manesh, “Does temporary location of ambulances (‘fluid deployment’) affect response times and patient outcome?,” Int. J. Emerg. Med., vol. 8, no. 1, p. 37, Oct. 2015, doi: 10.1186/s12245-015-0084-1.
  • [3] X. Fu, A. Presbitero, S. V. Kovalchuk, and V. V. Krzhizhanovskaya, “Coupling Game Theory and Discrete-Event Simulation for Model-Based Ambulance Dispatching,” in Procedia Computer Science, Jan. 2018, vol. 136, pp. 398–407, doi: 10.1016/j.procs.2018.08.274.
  • [3] X. Fu, A. Presbitero, S. V. Kovalchuk, and V. V. Krzhizhanovskaya, “Coupling Game Theory and Discrete-Event Simulation for Model-Based Ambulance Dispatching,” in Procedia Computer Science, Jan. 2018, vol. 136, pp. 398–407, doi: 10.1016/j.procs.2018.08.274.
  • [4] C.-H. Lin, C.-Y. Kao, and C.-Y. Huang, “Managing emergency department overcrowding via ambulance diversion: A discrete event simulation model,” J. Formos. Med. Assoc., vol. 114, no. 1, pp. 64–71, Jan. 2015, doi: 10.1016/j.jfma.2012.09.007.
  • [4] C.-H. Lin, C.-Y. Kao, and C.-Y. Huang, “Managing emergency department overcrowding via ambulance diversion: A discrete event simulation model,” J. Formos. Med. Assoc., vol. 114, no. 1, pp. 64–71, Jan. 2015, doi: 10.1016/j.jfma.2012.09.007.
  • [5] R. McCormack and G. Coates, “A simulation model to enable the optimization of ambulance fleet allocation and base station location for increased patient survival,” Eur. J. Oper. Res., vol. 247, no. 1, pp. 294–309, Nov. 2015, doi: 10.1016/j.ejor.2015.05.040.
  • [5] R. McCormack and G. Coates, “A simulation model to enable the optimization of ambulance fleet allocation and base station location for increased patient survival,” Eur. J. Oper. Res., vol. 247, no. 1, pp. 294–309, Nov. 2015, doi: 10.1016/j.ejor.2015.05.040.
  • [6] S. Nickel, M. Reuter-Oppermann, and F. Saldanha-da-Gama, “Ambulance location under stochastic demand: A sampling approach,” Oper. Res. Heal. Care, vol. 8, pp. 24–32, Mar. 2016, doi: 10.1016/J.ORHC.2015.06.006.
  • [6] S. Nickel, M. Reuter-Oppermann, and F. Saldanha-da-Gama, “Ambulance location under stochastic demand: A sampling approach,” Oper. Res. Heal. Care, vol. 8, pp. 24–32, Mar. 2016, doi: 10.1016/J.ORHC.2015.06.006.
  • [7] V. Bélanger, A. Ruiz, and P. Soriano, “Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles,” Eur. J. Oper. Res., vol. 272, no. 1, pp. 1–23, Jan. 2019, doi: 10.1016/J.EJOR.2018.02.055.
  • [7] V. Bélanger, A. Ruiz, and P. Soriano, “Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles,” Eur. J. Oper. Res., vol. 272, no. 1, pp. 1–23, Jan. 2019, doi: 10.1016/J.EJOR.2018.02.055.
  • [8] J. C. Dibene, Y. Maldonado, C. Vera, M. de Oliveira, L. Trujillo, and O. Schütze, “Optimizing the location of ambulances in Tijuana, Mexico,” Comput. Biol. Med., vol. 80, pp. 107–115, Jan. 2017, doi: 10.1016/J.COMPBIOMED.2016.11.016.
  • [8] J. C. Dibene, Y. Maldonado, C. Vera, M. de Oliveira, L. Trujillo, and O. Schütze, “Optimizing the location of ambulances in Tijuana, Mexico,” Comput. Biol. Med., vol. 80, pp. 107–115, Jan. 2017, doi: 10.1016/J.COMPBIOMED.2016.11.016.
  • [9] L. Abdullah, C. W. R. Adawiyah, and C. W. Kamal, “A decision making method based on interval type-2 fuzzy sets: An approach for ambulance location preference,” Appl. Comput. Informatics, vol. 14, no. 1, pp. 65–72, Jan. 2018, doi: 10.1016/J.ACI.2017.04.003.
  • [9] L. Abdullah, C. W. R. Adawiyah, and C. W. Kamal, “A decision making method based on interval type-2 fuzzy sets: An approach for ambulance location preference,” Appl. Comput. Informatics, vol. 14, no. 1, pp. 65–72, Jan. 2018, doi: 10.1016/J.ACI.2017.04.003.
  • [10] M. A. Zaffar, H. K. Rajagopalan, C. Saydam, M. Mayorga, and E. Sharer, “Coverage, survivability or response time: A comparative study of performance statistics used in ambulance location models via simulation–optimization,” Oper. Res. Heal. Care, vol. 11, pp. 1–12, Dec. 2016, doi: 10.1016/J.ORHC.2016.08.001.
  • [10] M. A. Zaffar, H. K. Rajagopalan, C. Saydam, M. Mayorga, and E. Sharer, “Coverage, survivability or response time: A comparative study of performance statistics used in ambulance location models via simulation–optimization,” Oper. Res. Heal. Care, vol. 11, pp. 1–12, Dec. 2016, doi: 10.1016/J.ORHC.2016.08.001.
  • [11] G. C. Alexander, L. P. Casalino, and D. O. Meltzer, “Patient-Physician Communication About Out-of-Pocket Costs,” JAMA, vol. 290, no. 7, pp. 953–958, 2003.
  • [11] G. C. Alexander, L. P. Casalino, and D. O. Meltzer, “Patient-Physician Communication About Out-of-Pocket Costs,” JAMA, vol. 290, no. 7, pp. 953–958, 2003.
  • [12] D. C. Ferreira, R. C. Marques, and A. M. Nunes, “Pay for performance in health care: a new best practice tariff-based tool using a log-linear piecewise frontier function and a dual--primal approach for unique solutions,” Oper. Res., pp. 1–46, Jun. 2019, doi: 10.1007/s12351-019-00502-3.
  • [12] D. C. Ferreira, R. C. Marques, and A. M. Nunes, “Pay for performance in health care: a new best practice tariff-based tool using a log-linear piecewise frontier function and a dual--primal approach for unique solutions,” Oper. Res., pp. 1–46, Jun. 2019, doi: 10.1007/s12351-019-00502-3.
  • [13] V. Schmid, “Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming,” Eur. J. Oper. Res., vol. 219, no. 3, pp. 611–621, Jun. 2012, doi: 10.1016/j.ejor.2011.10.043.
  • [13] V. Schmid, “Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming,” Eur. J. Oper. Res., vol. 219, no. 3, pp. 611–621, Jun. 2012, doi: 10.1016/j.ejor.2011.10.043.
  • [14] A. P. Iannoni, R. Morabito, and C. Saydam, “An optimization approach for ambulance location and the districting of the response segments on highways,” Eur. J. Oper. Res., vol. 195, no. 2, pp. 528–542, Jun. 2009, doi: 10.1016/j.ejor.2008.02.003.
  • [14] A. P. Iannoni, R. Morabito, and C. Saydam, “An optimization approach for ambulance location and the districting of the response segments on highways,” Eur. J. Oper. Res., vol. 195, no. 2, pp. 528–542, Jun. 2009, doi: 10.1016/j.ejor.2008.02.003.
  • [15] C.-H. Wu and K. P. Hwang, “Using a Discrete-event Simulation to Balance Ambulance Availability and Demand in Static Deployment Systems,” Acad. Emerg. Med., vol. 16, no. 12, pp. 1359–1366, Dec. 2009, doi: 10.1111/j.1553-2712.2009.00583.x.
  • [15] C.-H. Wu and K. P. Hwang, “Using a Discrete-event Simulation to Balance Ambulance Availability and Demand in Static Deployment Systems,” Acad. Emerg. Med., vol. 16, no. 12, pp. 1359–1366, Dec. 2009, doi: 10.1111/j.1553-2712.2009.00583.x.
  • [16] H. Morohosi and T. Furuta, “Optimization model and simulation for improving ambulance service system,” 2013.
  • [16] H. Morohosi and T. Furuta, “Optimization model and simulation for improving ambulance service system,” 2013.
  • [17] D. Bertsimas and Y. Ng, “Robust and Stochastic Formulations for Ambulance Deployment and Dispatch,” Eur. J. Oper. Res., May 2019, doi: 10.1016/J.EJOR.2019.05.011.
  • [17] D. Bertsimas and Y. Ng, “Robust and Stochastic Formulations for Ambulance Deployment and Dispatch,” Eur. J. Oper. Res., May 2019, doi: 10.1016/J.EJOR.2019.05.011.
  • [18] S. S. W. Lam, C. B. L. Ng, F. N. H. L. Nguyen, Y. Y. Ng, and M. E. H. Ong, “Simulation-based decision support framework for dynamic ambulance redeployment in Singapore,” Int. J. Med. Inform., vol. 106, pp. 37–47, Oct. 2017, doi: 10.1016/J.IJMEDINF.2017.06.005.
  • [18] S. S. W. Lam, C. B. L. Ng, F. N. H. L. Nguyen, Y. Y. Ng, and M. E. H. Ong, “Simulation-based decision support framework for dynamic ambulance redeployment in Singapore,” Int. J. Med. Inform., vol. 106, pp. 37–47, Oct. 2017, doi: 10.1016/J.IJMEDINF.2017.06.005.
  • [19] M. Swalehe and S. G. Aktas, “Dynamic Ambulance Deployment to Reduce Ambulance Response Times Using Geographic Information Systems: A Case Study of Odunpazari District of Eskisehir Province, Turkey,” Procedia Environ. Sci., vol. 36, pp. 199–206, Jan. 2016, doi: 10.1016/J.PROENV.2016.09.033.
  • [19] M. Swalehe and S. G. Aktas, “Dynamic Ambulance Deployment to Reduce Ambulance Response Times Using Geographic Information Systems: A Case Study of Odunpazari District of Eskisehir Province, Turkey,” Procedia Environ. Sci., vol. 36, pp. 199–206, Jan. 2016, doi: 10.1016/J.PROENV.2016.09.033.
  • [20] A. D. Hanchate, M. K. Paasche-Orlow, K. S. Dyer, W. E. Baker, C. Feng, and J. Feldman, “Geographic Variation in Use of Ambulance Transport to the Emergency Department,” Ann. Emerg. Med., vol. 70, no. 4, pp. 533-543.e7, Oct. 2017, doi: 10.1016/J.ANNEMERGMED.2017.03.029.
  • [20] A. D. Hanchate, M. K. Paasche-Orlow, K. S. Dyer, W. E. Baker, C. Feng, and J. Feldman, “Geographic Variation in Use of Ambulance Transport to the Emergency Department,” Ann. Emerg. Med., vol. 70, no. 4, pp. 533-543.e7, Oct. 2017, doi: 10.1016/J.ANNEMERGMED.2017.03.029.
  • [21] S. Enayati, M. E. Mayorga, H. K. Rajagopalan, and C. Saydam, “Real-time ambulance redeployment approach to improve service coverage with fair and restricted workload for EMS providers,” Omega, vol. 79, pp. 67–80, Sep. 2018, doi: 10.1016/J.OMEGA.2017.08.001.
  • [21] S. Enayati, M. E. Mayorga, H. K. Rajagopalan, and C. Saydam, “Real-time ambulance redeployment approach to improve service coverage with fair and restricted workload for EMS providers,” Omega, vol. 79, pp. 67–80, Sep. 2018, doi: 10.1016/J.OMEGA.2017.08.001.
  • [22] A. Shahabi, S. Raissi, K. Khalili-Damghani, and M. Rafei, “Designing a resilient skip-stop schedule in rapid rail transit using a simulation-based optimization methodology,” Oper. Res., pp. 1–31, Oct. 2019, doi: 10.1007/s12351-019-00523-y.
  • [22] A. Shahabi, S. Raissi, K. Khalili-Damghani, and M. Rafei, “Designing a resilient skip-stop schedule in rapid rail transit using a simulation-based optimization methodology,” Oper. Res., pp. 1–31, Oct. 2019, doi: 10.1007/s12351-019-00523-y.
  • [23] C. Swoveland, D. Uyeno, I. Vertinsky, and R. Vickson, “A simulation-based methodology for optimization of ambulance service policies,” Socioecon. Plann. Sci., vol. 7, no. 6, pp. 697–703, Dec. 1973, doi: 10.1016/0038-0121(73)90033-5.
  • [23] C. Swoveland, D. Uyeno, I. Vertinsky, and R. Vickson, “A simulation-based methodology for optimization of ambulance service policies,” Socioecon. Plann. Sci., vol. 7, no. 6, pp. 697–703, Dec. 1973, doi: 10.1016/0038-0121(73)90033-5.
  • [24] TürkiyeCumhuriyetiÇevreveŞehircilikBakanlığı, “Yozgat İli,” Türkiye Cumhuriyeti Çevre ve Şehircilik Bakanlığı, 2021. https://yozgat.csb.gov.tr/genel-bilgiler-i-2301.
  • [24] TürkiyeCumhuriyetiÇevreveŞehircilikBakanlığı, “Yozgat İli,” Türkiye Cumhuriyeti Çevre ve Şehircilik Bakanlığı, 2021. https://yozgat.csb.gov.tr/genel-bilgiler-i-2301.
  • [25] YOZGAT VALİLİĞİ ÇEVRE VE ŞEHİRCİLİK İL MÜDÜRLÜĞÜ, “YOZGAT İLİ 2017 YILI ÇEVRE DURUM RAPORU,” 2017.
  • [25] YOZGAT VALİLİĞİ ÇEVRE VE ŞEHİRCİLİK İL MÜDÜRLÜĞÜ, “YOZGAT İLİ 2017 YILI ÇEVRE DURUM RAPORU,” 2017.
  • [26] 112 Acil Çağrı Merkezi, “YOZGAT 112 ACİL ÇAĞRI MERKEZİ MÜDÜRLÜĞÜ,” 2020.
  • [26] 112 Acil Çağrı Merkezi, “YOZGAT 112 ACİL ÇAĞRI MERKEZİ MÜDÜRLÜĞÜ,” 2020.
  • [27] Turkish Statitical Institute, “Adrese Dayalı Nüfus Kayıt Sistemi,” 2020. https://biruni.tuik.gov.tr/medas/?kn=95&locale=tr.
  • [27] Turkish Statitical Institute, “Adrese Dayalı Nüfus Kayıt Sistemi,” 2020. https://biruni.tuik.gov.tr/medas/?kn=95&locale=tr.
  • [28] State Turkish Meteorological Service, “Extreme Maximum, Minimum and Average Temperatures Measured in Long Period (°C),” 2019. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=YOZGAT.
  • [28] State Turkish Meteorological Service, “Extreme Maximum, Minimum and Average Temperatures Measured in Long Period (°C),” 2019. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=YOZGAT.
  • [29] Turkish State Meteorological Service, “The average temperature between 1970 and 2016 in Turkey,” 2019.
  • [29] Turkish State Meteorological Service, “The average temperature between 1970 and 2016 in Turkey,” 2019.
  • [30] S. S. Wei Lam, Z. C. Zhang, H. C. Oh, Y. Y. Ng, W. Wah, and M. E. Hock Ong, “Reducing Ambulance Response Times Using Discrete Event Simulation,” Prehospital Emerg. Care, vol. 18, no. 2, pp. 207–216, Apr. 2014, doi: 10.3109/10903127.2013.836266.
  • [30] S. S. Wei Lam, Z. C. Zhang, H. C. Oh, Y. Y. Ng, W. Wah, and M. E. Hock Ong, “Reducing Ambulance Response Times Using Discrete Event Simulation,” Prehospital Emerg. Care, vol. 18, no. 2, pp. 207–216, Apr. 2014, doi: 10.3109/10903127.2013.836266.
  • [31] M. E. H. Ong et al., “Reducing Ambulance Response Times Using Geospatial-Time Analysis of Ambulance Deployment,” Acad. Emerg. Med., vol. 17, no. 9, pp. 951–957, Sep. 2010, doi: 10.1111/j.1553-2712.2010.00860.x.
  • [31] M. E. H. Ong et al., “Reducing Ambulance Response Times Using Geospatial-Time Analysis of Ambulance Deployment,” Acad. Emerg. Med., vol. 17, no. 9, pp. 951–957, Sep. 2010, doi: 10.1111/j.1553-2712.2010.00860.x.
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Endüstri Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Yasemin Ayaz Atalan 0000-0001-7767-0342

Yayımlanma Tarihi 29 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 3 Sayı: 1

Kaynak Göster

APA Ayaz Atalan, Y. (2021). AMBULANCE SERVICE FOR HOSPITAL SELECTION: OPTIMIZATION WITH DISCRETE-EVENT SIMULATION APPLICATION FOR YOZGAT PROVINCE OF TURKEY. Mühendislik Bilimleri Ve Araştırmaları Dergisi, 3(1), 112-122. https://doi.org/10.46387/bjesr.902298
AMA Ayaz Atalan Y. AMBULANCE SERVICE FOR HOSPITAL SELECTION: OPTIMIZATION WITH DISCRETE-EVENT SIMULATION APPLICATION FOR YOZGAT PROVINCE OF TURKEY. Müh.Bil.ve Araş.Dergisi. Nisan 2021;3(1):112-122. doi:10.46387/bjesr.902298
Chicago Ayaz Atalan, Yasemin. “AMBULANCE SERVICE FOR HOSPITAL SELECTION: OPTIMIZATION WITH DISCRETE-EVENT SIMULATION APPLICATION FOR YOZGAT PROVINCE OF TURKEY”. Mühendislik Bilimleri Ve Araştırmaları Dergisi 3, sy. 1 (Nisan 2021): 112-22. https://doi.org/10.46387/bjesr.902298.
EndNote Ayaz Atalan Y (01 Nisan 2021) AMBULANCE SERVICE FOR HOSPITAL SELECTION: OPTIMIZATION WITH DISCRETE-EVENT SIMULATION APPLICATION FOR YOZGAT PROVINCE OF TURKEY. Mühendislik Bilimleri ve Araştırmaları Dergisi 3 1 112–122.
IEEE Y. Ayaz Atalan, “AMBULANCE SERVICE FOR HOSPITAL SELECTION: OPTIMIZATION WITH DISCRETE-EVENT SIMULATION APPLICATION FOR YOZGAT PROVINCE OF TURKEY”, Müh.Bil.ve Araş.Dergisi, c. 3, sy. 1, ss. 112–122, 2021, doi: 10.46387/bjesr.902298.
ISNAD Ayaz Atalan, Yasemin. “AMBULANCE SERVICE FOR HOSPITAL SELECTION: OPTIMIZATION WITH DISCRETE-EVENT SIMULATION APPLICATION FOR YOZGAT PROVINCE OF TURKEY”. Mühendislik Bilimleri ve Araştırmaları Dergisi 3/1 (Nisan 2021), 112-122. https://doi.org/10.46387/bjesr.902298.
JAMA Ayaz Atalan Y. AMBULANCE SERVICE FOR HOSPITAL SELECTION: OPTIMIZATION WITH DISCRETE-EVENT SIMULATION APPLICATION FOR YOZGAT PROVINCE OF TURKEY. Müh.Bil.ve Araş.Dergisi. 2021;3:112–122.
MLA Ayaz Atalan, Yasemin. “AMBULANCE SERVICE FOR HOSPITAL SELECTION: OPTIMIZATION WITH DISCRETE-EVENT SIMULATION APPLICATION FOR YOZGAT PROVINCE OF TURKEY”. Mühendislik Bilimleri Ve Araştırmaları Dergisi, c. 3, sy. 1, 2021, ss. 112-2, doi:10.46387/bjesr.902298.
Vancouver Ayaz Atalan Y. AMBULANCE SERVICE FOR HOSPITAL SELECTION: OPTIMIZATION WITH DISCRETE-EVENT SIMULATION APPLICATION FOR YOZGAT PROVINCE OF TURKEY. Müh.Bil.ve Araş.Dergisi. 2021;3(1):112-2.