Araştırma Makalesi
BibTex RIS Kaynak Göster

A User - Friendly Signal-Processing App For Harmonics

Yıl 2024, Cilt: 6 Sayı: 2, 153 - 164, 29.10.2024
https://doi.org/10.46387/bjesr.1470226

Öz

Harmonics, especially the 3^rd,5^th, and 7^th components, are significant disturbances in power systems, occurring simultaneously and at varying time intervals. Measurements of these components depend on factors such as fundamental frequency deviation, event duration, amplitude values, and noise levels. Accurate detection and measurement are crucial for effective harmonic mitigation and preventive strategies. This study introduces a harmonic signal analysis application utilizing methods like FFT, STFT, CWT, EMD, and HHT, with individual user interfaces for in-phase and time-variant harmonic signals. The application provides results for amplitude, frequency, event time intervals, and noise effects simultaneously. Test results at a 60 dB signal-to-noise ratio (SNR) reveal that FFT achieves precise frequency and amplitude results due to its high resolution, whereas other methods offering time-frequency domain results exhibit lower resolution. EMD, in particular, demonstrates high errors in frequency and amplitude responses, reducing four frequency components to three. HHT, utilizing EMD results, yields higher accuracy with minimal errors compared to other methods. This application, combined with test results, facilitates signal synthesis and comparative analysis in time and time-frequency domains.

Kaynakça

  • “General guide on harmonics and interharmonics measurements and measuring instruments for power supply networks and attached devices used for the measurements”, IEC Standard 61000-4-7, 2009.
  • “Testing and measurement techniques - Power quality measurement methods”, IEC Standard 61000-4-30, 2015.
  • “Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions”, IEEE 1459-Standard, 2010.
  • “Recommended Practice for Monitoring Electric Power Quality”, IEEE 1159, 2009.
  • S. Akkaya and Ö. Salor, “Flicker Detection Algorithm Based on the Whole Voltage Frequency Spectrum for New Generation Lamps – Enhanced VPD Flickermeter Model and Flicker Curve”, Electric Power Components and Systems, vol. 49, no. 6-7, pp. 637–651, 2021.
  • S. Akkaya and Ö. Salor, “New flickermeter sensitive to high-frequency interharmonics and robust to fundamental frequency deviations of the power system”, IET Science, Measurement and Technology, vol. 13, no. 6, pp. 783-793, 2019.
  • S. Akkaya and Ö. Salor, “A new flicker detection method for new generation lamps both robust to fundamental frequency deviation and based on the whole voltage frequency spectrum”, Electronics (Switzerland), vol. 7, no. 6, pp. 1-24, 2018.
  • S. Akkaya and Ö.S. Durna, “Enhanced spectral decomposition method for light flicker evaluation of incandescent lamps caused by electric arc furnaces,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 18, no. 2, pp. 987–1005, 2018.
  • S. Akkaya, “A Review of the Experimental Studies on Analysis of Power Quality Disturbances”, In Pioneer And Contemporary Studies In Engineering, Chapter. 24, pp. 454-478, 2023.
  • S. Akkaya, “An Overview of the Empirical Investigations into the Classification of Power Quality Disturbances”, In Pioneer And Contemporary Studies In Engineering, Chapter. 22, pp. 410-431, 2023.
  • S. Akkaya, “A Conspectus of PQD Analysis”, In 5th ICAENS 2023, pp. 325-329, Konya, Türkiye, 2023.
  • S. Akkaya, “Empirical Investigations: Power Quality Disturbance Classification”, In 5th ICAENS 2023, pp. 320-324, Konya, Türkiye, 2023.
  • S. Akkaya, E. Yüksek, and H.M. Akgün, “A New Comparative Approach Based on Features of Subcomponents and Machine Learning Algorithms to Detect and Classify Power Quality Disturbances”, Electric Power Components and Systems, vol. 52, no. 8, pp. 1269-1292, 2024.
  • M., and S. G.J. Frigo, “FFTW: An Adaptive Software Architecture For The FFT,” In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, vol. 3, pp. 1381– 1384, 1998.
  • B. Sharpe, “Invertibility of overlap-add processing- STFT-accessed Dec 2023”, Accessed: Dec. 02, 2023. [Online]. Available: https://gauss256.github.io/blog/cola.html
  • J.M. Lilly, “Element analysis: A wavelet-based method for analysing time localized events in noisy time series,” In Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 473, no. 2200, Dec. 2017.
  • J. Bedi and D. Toshniwal, “Empirical Mode Decomposition Based Deep Learning for Electricity Demand Forecasting,” IEEE Access, vol. 6, pp. 49144–49156, 2018.
  • Norden E., Huang and S.S. Shen, “Hilbert-Huang transform and its applications”, In Interdisciplinary Mathematical Sciences, World Scientific, vol. 2, 2014.
  • Y. Guo et al., “A Hilbert-Huang Transform-Based Traffic Estimation Algorithm To Power Line Communications,” In Proceedings - IEEE International Conference on Industrial Internet Cloud, pp. 132–137, 2019.

Harmonikler İçin Kullanıcı Dostu Bir Sinyal İşleme Uygulaması

Yıl 2024, Cilt: 6 Sayı: 2, 153 - 164, 29.10.2024
https://doi.org/10.46387/bjesr.1470226

Öz

Harmonikler, özellikle 3., 5. ve 7. bileşenler, güç sistemlerinde aynı anda ve değişen zaman aralıklarında meydana gelen önemli bozulmalardır. Bu bileşenlerin ölçümleri temel frekans sapması, olay süresi, genlik değerleri ve gürültü seviyeleri gibi faktörlere bağlıdır. Etkin harmonik azaltma ve önleyici stratejiler için doğru tespit ve ölçüm çok önemlidir. Bu çalışmada, FFT, STFT, CWT, EMD ve HHT gibi yöntemleri kullanan, faz içi ve zaman değişkenli harmonik sinyaller için ayrı kullanıcı arayüzlerine sahip bir harmonik sinyal analizi uygulaması tanıtılmaktadır. Uygulama aynı anda genlik, frekans, olay zaman aralıkları ve gürültü efektleri için sonuçlar sağlar. 60 dB sinyal-gürültü oranındaki (SNR) test sonuçları, FFT'nin yüksek çözünürlüğü nedeniyle hassas frekans ve genlik sonuçları elde ettiğini, oysa zaman-frekans alanı sonuçları sunan diğer yöntemlerin daha düşük çözünürlük sergilediğini ortaya koyuyor. Özellikle EMD, frekans ve genlik yanıtlarında yüksek hatalar göstererek dört frekans bileşenini üçe indiriyor. EMD sonuçlarını kullanan HHT, diğer yöntemlere kıyasla minimum hatayla daha yüksek doğruluk sağlar. Test sonuçlarıyla birleştirilen bu uygulama, zaman ve zaman-frekans alanlarında sinyal sentezini ve karşılaştırmalı analizi kolaylaştırır.

Kaynakça

  • “General guide on harmonics and interharmonics measurements and measuring instruments for power supply networks and attached devices used for the measurements”, IEC Standard 61000-4-7, 2009.
  • “Testing and measurement techniques - Power quality measurement methods”, IEC Standard 61000-4-30, 2015.
  • “Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions”, IEEE 1459-Standard, 2010.
  • “Recommended Practice for Monitoring Electric Power Quality”, IEEE 1159, 2009.
  • S. Akkaya and Ö. Salor, “Flicker Detection Algorithm Based on the Whole Voltage Frequency Spectrum for New Generation Lamps – Enhanced VPD Flickermeter Model and Flicker Curve”, Electric Power Components and Systems, vol. 49, no. 6-7, pp. 637–651, 2021.
  • S. Akkaya and Ö. Salor, “New flickermeter sensitive to high-frequency interharmonics and robust to fundamental frequency deviations of the power system”, IET Science, Measurement and Technology, vol. 13, no. 6, pp. 783-793, 2019.
  • S. Akkaya and Ö. Salor, “A new flicker detection method for new generation lamps both robust to fundamental frequency deviation and based on the whole voltage frequency spectrum”, Electronics (Switzerland), vol. 7, no. 6, pp. 1-24, 2018.
  • S. Akkaya and Ö.S. Durna, “Enhanced spectral decomposition method for light flicker evaluation of incandescent lamps caused by electric arc furnaces,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 18, no. 2, pp. 987–1005, 2018.
  • S. Akkaya, “A Review of the Experimental Studies on Analysis of Power Quality Disturbances”, In Pioneer And Contemporary Studies In Engineering, Chapter. 24, pp. 454-478, 2023.
  • S. Akkaya, “An Overview of the Empirical Investigations into the Classification of Power Quality Disturbances”, In Pioneer And Contemporary Studies In Engineering, Chapter. 22, pp. 410-431, 2023.
  • S. Akkaya, “A Conspectus of PQD Analysis”, In 5th ICAENS 2023, pp. 325-329, Konya, Türkiye, 2023.
  • S. Akkaya, “Empirical Investigations: Power Quality Disturbance Classification”, In 5th ICAENS 2023, pp. 320-324, Konya, Türkiye, 2023.
  • S. Akkaya, E. Yüksek, and H.M. Akgün, “A New Comparative Approach Based on Features of Subcomponents and Machine Learning Algorithms to Detect and Classify Power Quality Disturbances”, Electric Power Components and Systems, vol. 52, no. 8, pp. 1269-1292, 2024.
  • M., and S. G.J. Frigo, “FFTW: An Adaptive Software Architecture For The FFT,” In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, vol. 3, pp. 1381– 1384, 1998.
  • B. Sharpe, “Invertibility of overlap-add processing- STFT-accessed Dec 2023”, Accessed: Dec. 02, 2023. [Online]. Available: https://gauss256.github.io/blog/cola.html
  • J.M. Lilly, “Element analysis: A wavelet-based method for analysing time localized events in noisy time series,” In Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 473, no. 2200, Dec. 2017.
  • J. Bedi and D. Toshniwal, “Empirical Mode Decomposition Based Deep Learning for Electricity Demand Forecasting,” IEEE Access, vol. 6, pp. 49144–49156, 2018.
  • Norden E., Huang and S.S. Shen, “Hilbert-Huang transform and its applications”, In Interdisciplinary Mathematical Sciences, World Scientific, vol. 2, 2014.
  • Y. Guo et al., “A Hilbert-Huang Transform-Based Traffic Estimation Algorithm To Power Line Communications,” In Proceedings - IEEE International Conference on Industrial Internet Cloud, pp. 132–137, 2019.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Devreleri ve Sistemleri, Elektrik Enerjisi Taşıma, Şebeke ve Sistemleri, Elektronik, Sensörler ve Dijital Donanım (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Sıtkı Akkaya 0000-0002-3257-7838

Erken Görünüm Tarihi 25 Ekim 2024
Yayımlanma Tarihi 29 Ekim 2024
Gönderilme Tarihi 18 Nisan 2024
Kabul Tarihi 23 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 6 Sayı: 2

Kaynak Göster

APA Akkaya, S. (2024). A User - Friendly Signal-Processing App For Harmonics. Mühendislik Bilimleri Ve Araştırmaları Dergisi, 6(2), 153-164. https://doi.org/10.46387/bjesr.1470226
AMA Akkaya S. A User - Friendly Signal-Processing App For Harmonics. Müh.Bil.ve Araş.Dergisi. Ekim 2024;6(2):153-164. doi:10.46387/bjesr.1470226
Chicago Akkaya, Sıtkı. “A User - Friendly Signal-Processing App For Harmonics”. Mühendislik Bilimleri Ve Araştırmaları Dergisi 6, sy. 2 (Ekim 2024): 153-64. https://doi.org/10.46387/bjesr.1470226.
EndNote Akkaya S (01 Ekim 2024) A User - Friendly Signal-Processing App For Harmonics. Mühendislik Bilimleri ve Araştırmaları Dergisi 6 2 153–164.
IEEE S. Akkaya, “A User - Friendly Signal-Processing App For Harmonics”, Müh.Bil.ve Araş.Dergisi, c. 6, sy. 2, ss. 153–164, 2024, doi: 10.46387/bjesr.1470226.
ISNAD Akkaya, Sıtkı. “A User - Friendly Signal-Processing App For Harmonics”. Mühendislik Bilimleri ve Araştırmaları Dergisi 6/2 (Ekim 2024), 153-164. https://doi.org/10.46387/bjesr.1470226.
JAMA Akkaya S. A User - Friendly Signal-Processing App For Harmonics. Müh.Bil.ve Araş.Dergisi. 2024;6:153–164.
MLA Akkaya, Sıtkı. “A User - Friendly Signal-Processing App For Harmonics”. Mühendislik Bilimleri Ve Araştırmaları Dergisi, c. 6, sy. 2, 2024, ss. 153-64, doi:10.46387/bjesr.1470226.
Vancouver Akkaya S. A User - Friendly Signal-Processing App For Harmonics. Müh.Bil.ve Araş.Dergisi. 2024;6(2):153-64.