Çay atıklarından üretilen aktif karbonla bor karbür sentezi
Yıl 2025,
Cilt: 10 Sayı: 4, 131 - 139, 31.12.2025
Merve Nazlı Güneş
,
Birce Pekmezci
,
Pınar Değirmencioğlu
Öz
Çalışma kapsamında çay atığı hem aktif karbon (AC) hem de ileri mühendislik seramiği olan bor karbür (B4C) üretmek için kullanılmıştır. Türkiye’de büyük miktarlarda oluşan çay atıkları, düşük ekonomik değere sahip olmasına rağmen biyokütle tabanlı bir hammadde kaynağı olarak önemli bir potansiyel taşımaktadır. Çalışmanın ilk aşamasında, çay atıkları potasyum hidroksit (KOH) ile kimyasal olarak aktive edilmiş ve 1500°C’de karbonizasyon işlemi uygulanmıştır. Elde edilen AC; elementel analiz, yüzey alanı ve porozite analizi (BET, Brunauer-Emmett-Teller), Fourier dönüşümlü kızılötesi spektroskopisi (FTIR), termogravimetrik ve diferansiyel termal (TGA/DTA) ve X-Işını difraksiyonu (XRD) teknikleriyle karakterize edilmiş ve 1301 m2/g gibi çok yüksek bir yüzey alanı ile mikromezogözenek yapısına sahip olduğu belirlenmiştir. İkinci aşamada, sentezlenen AC borik asit (H3BO3) ile karbotermik indirgemeye tabi tutularak B4C sentezi gerçekleştirilmiştir. Yapılan analizler (XRD ve FT-IR), çay atığı kökenli AC kullanımıyla B4C’nin başarıyla sentezlendiğini göstermektedir. Sonuçlar, düşük maliyetli ve yerli atık kaynaklarının stratejik öneme sahip ileri mühendislik seramiklerinin üretiminde değerlendirilebileceğini göstermektedir. Böylece çalışma, yalnızca atıkların geri kazanımına katkı sunmakla kalmamakta, aynı zamanda sürdürülebilir malzeme bilimi açısından literatüre güçlü ve yenilikçi bir katkı sunmaktadır.
Teşekkür
Bu çalışma, 1919B012460365 kodlu TÜBİTAK projesi tarafından desteklenmiştir. Ayrıca çalışmaya desteklerinden dolayı TENMAK BOREN’e ve çalışmaya katkıda bulunan Hümeysa Culum ve Beyda Kahraman’a da teşekkür ederiz.
Kaynakça
-
Demirarslan, K. O. (2020). Literature survey on greenhouse gases and mathematical estimates from solid waste management. Duzce University Journal of Science and Technology, 8(1), 363-380. https://doi.org/10.29130/dubited.568588
-
Borghei, S. A., Zare, M. H., Ahmadi, M., Sadeghi, M. H., Marjani, A., Shirazian, S., & Ghadiri, M. (2021). Synthesis of multi-application activated carbon from oak seeds by KOH activation for methylene blue adsorption and electrochemical supercapacitor electrode. Arabian Journal of Chemistry, 14, 202102. https://doi.org/10.1016/j.arabjc.2020.102958
-
Gezer, B. (2020). Cu (II) adsorption with activated carbon obtained from sea urchin prepared by ultrasound-assisted method. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(2), 770-780. https://doi. org/10.28948/ngumuh.700773
-
Han, Q., Wang, J., Goodman, B.A., Xie, J., & Liu, Z. (2020). High adsorption of methylene blue by activated carbon prepared from phosphoric acid treated eucalyptus residue. Powder Technology, 366, 239-248. https://doi.org/10.1016/j.powtec.2020.02.013
-
Mamaní, A., Ramírez, N., Deiana, C., Giménez, M., & Sardella, F. (2019). Highly microporous sorbents from lignocellulosic biomass: Different activation routes and their application to dyes adsorption. Journal of Environmental Chemical Engineering, 7(5), 103148. https://doi.org/10.1016/j.jece.2019.103148
-
Heibati, B., Rodriguez-Couto, S., Al-Ghouti, M. A., Asif, M., Tyagi, I., Agarwal, S., & Gupta, V.K. (2015). Kinetics and thermodynamics of enhanced adsorption of the dye AR 18 using activated carbons prepared from walnut and poplar woods. Journal of Molecular Liquids, 208, 99-105. https://doi.org/10.1016/j.molliq.2015.03.057
-
Dogan, M. Y., Tasdemir, H. M., Arbag, H., Yasyerli, N., & Yasyerli, S. (2024). H2 production via H2S decomposition over activated carbon supported Fe-and W-catalysts. International Journal of Hydrogen Energy, 75, 483-495. https://doi.org/10.1016/j.ijhydene.2024.02.316
-
Rai, M. K., Shahi, G., Meena, V., Meena, R., Chakraborty, S., Singh, R. S., & Rai, B. N. (2016). Removal of hexavalent chromium Cr (VI) using activated carbon prepared from mango kernel activated with H3PO4. Resource-Efficient Technologies, 2, S63-S70. https://doi.org/10.1016/j.reffit.2016.11.011
-
Demirbas, E., Dizge, N., Sulak, M. T., & Kobya, M. (2009). Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon. Chemical Engineering Journal, 148(2-3), 480- 487. https://doi.org/10.1016/j.cej.2008.09.027
-
Zhao, J., Yu, L., Ma, H., Zhou, F., Yang, K., & Wu, G. (2020). Corn stalk-based activated carbon synthesized by a novel activation method for high-performance adsorption of hexavalent chromium in aqueous solutions. Journal of Colloid and Interface Science, 578, 650-659. https://doi.org/10.1016/j.jcis.2020.06.031
-
Erkal H. (2024). Tarım Ürünleri Piyasaları: Çay. Agricultural Economics and Policy Development Institute. https://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF%20 Tar%C4%B1m%20%C3%9Cr%C3%BCnleri%20Piyasalar%C4%B1/2024-Temmuz%20Tar%C4%B1m%20%C3%9Cr%C3%BCnleri%20Raporu/%C3%87ay%20Tar%C4%B1m%20%C3%9Cr%C3%BCnleri%20Piyasalar%C4%B1%20 Raporu%20Temmuz-2024-v4.pdf
-
Debnath, B., Dibyajyoti, H., & Purkait, M. K. (2022). Environmental remediation by tea waste and its derivative products: A review on present status and technological advancements. Chemosphere, 300, 134480. https://doi.org/10.1016/j.chemosphere.2022.134480
-
Wang, Z., Ahmad, W., Zhu, A., Zhao, S., Ouyang, Q., & Chen, Q. (2024). Recent advances review in tea waste: High-value applications, processing technology, and value-added products. Science of the Total Environment, 946, 174225. https://doi.org/10.1016/j. scitotenv.2024.174225
-
Kaya, N., Çavdar, Ş., & Koralay, H. (2020). Investigation of microhardness properties of MgB2 produced by using carbon doped boron by CVD method. Gazi University Journal of Science Part C: Design and Technology, 8(1), 192-204. https://doi.org/10.29109/gujsc.661258
-
Pimentel, C. H., Díaz-Fernández, L., Gómez-Díaz, D., Freire, M. S., & González-Álvarez, J. (2023). Separation of CO2 using biochar and KOH and ZnCl2 activated carbons derived from pine sawdust. Journal of Environmental Chemical Engineering, 11(6), 111378. https://doi.org/10.1016/j.jece.2023.111378
-
Fan, M., Shao, Y., Wang, Y., Sun, J., He, H., Jiang, … & Hu, X. (2024). Preparation of activated carbon with recycled ZnCl2 for maximizing utilization efficiency of the activating agent and minimizing generation of liquid waste. Chemical Engineering Journal, 500, 157278. https://doi.org/10.1016/j.cej.2024.157278
-
Gao, Y., Yue, Q., Gao, B., & Li, A. (2020). Insight into activated carbon from different kinds of chemical activating agents: A review. Science of The Total Environment, 746, 141094. https://doi.org/10.1016/j.scitotenv.2020.141094
-
Peng, C., Yan, X., Wang, R., Lang, J., Ou, Y., & Xue, Q. (2013). Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes. Electrochimica Acta, 87, 401- 408. https://doi.org/10.1016/j.electacta.2012.09.082
-
Gundogdu, A., Duran, C., Senturk, H. B., Soylak, M., Imamoglu, M., & Onal, Y. (2013). Physicochemical characteristics of a novel activated carbon produced from tea industry waste. Journal of Analytical and Applied Pyrolysis, 104, 249-259. https://doi.org/10.1016/j.jaap.2013.08.005
-
Tuli, F. J., Hossain, A., Kibria, A. K. M. F., Tareq, A. R. M., Mamun, S. M. M. A., & Ullah, A. K. M. A. (2020). Removal of methylene blue from water by low-cost activated carbon prepared from tea waste: A study of adsorption isotherm and kinetics. Environmental Nanotechnology, Monitoring & Management, 14, 100354. https://doi.org/10.1016/j.enmm.2020.100354
-
Tabak, A., Sevimli, K., Kaya, M., & Çağlar, B. (2019). Preparation and characterization of a novel activated carbon component via chemical activation of tea woody stem. Journal of Thermal Analysis and Calorimetry, 138, 3885-3895. https://doi.org/10.1007/s10973-019-08590-4
-
Kakiage, M., Tahara, N., Yanase, I., & Kobayashi, H. (2011). Low-temperature synthesis of boron carbide powder from condensed boric acid-glycerin product. Materials Letters, 65(12), 1839-1841. https://doi. org/10.1016/j.matlet.2011.03.046
-
Alizadeh, A., Taheri-Nassaj, E., Ehsani, N., & Baharvandi, H. R. (2006). Production of boron carbide powder by carbothermic reduction from boron oxide and petroleum coke or carbon active. Advances in Applied Ceramics: Structural, Functional and Bioceramics, 105(6), 291-296. https://doi.org/10.1179/174367606X146685
-
Bilgiç, G., Balıkçıoğlu Güzel, A., & Şahin, M. (2024). Boron carbide: Physicochemical properties, synthesis and applications in defense technologies. Savunma Bilimleri Dergisi, 20(1), 1-18. https://dergipark.org.tr/tr/pub/khosbd
-
Gaylan, Y., Avar, B., Panigrahi, M., Aygün, B., & Karabulut, A. (2023) Effect of the B4C content on microstructure, microhardness, corrosion, and neutron shielding properties of Al-B4C composites. Ceramics International, 49(3), 5479-5488. https://doi.org/10.1016/j.ceramint.2022.10.071
-
Eom, S. H., Shin, J. Y., Kim, S. H., Kim, B. J., Lee, S. Y., & Lee, C. H. (2021). Recycling black tea waste biomass as activated porous carbon for long life cycle supercapacitor electrodes. Materials, 14(6), 6592, 2021. https://doi.org/10.3390/ma14216592
-
Dogan, M. Y., Yasyerli, S., Tasdemir, H. M., Arbag, H., & Yasyerli, N. (2026). H2 production from H2S over activated carbon prepared at different carbonization temperatures as efficient microwave catalyst. Renewable Energy, 256(Part D), 124191. https://doi.org/10.1016/j.renene.2025.124191
-
Avcıoğlu, S., Buldu, M., Kaya, F., Üstündağ, C. B., Kam, E., Menceloğlu, Y. Z., … & Kaya, C. (2020). Processing and properties of boron carbide (B4C) reinforced LDPE Composites for radiation shielding. Ceramics International, 46(1), 343-352. https://doi.org/10.1016/j.ceramint.2019.08.268
-
Bhowmick, S., Sun, G., & Alpas, A. T. (2016). Low friction behaviour of boron carbide coatings (B4C) sliding against Ti-6Al-4V. Surface and Coatings Technology, 308, 316- 327. https://doi.org/10.1016/j.surfcoat.2016.05.092
-
Boussebha, H., Bakan, S., & Kurt, A. O. (2021). A novel approach in the synthesis of B4C powder. Open Ceramics, 6, 100133. https://doi.org/10.1016/j.oceram.2021.100133
Boron carbide synthesis using activated carbon derived from tea waste
Yıl 2025,
Cilt: 10 Sayı: 4, 131 - 139, 31.12.2025
Merve Nazlı Güneş
,
Birce Pekmezci
,
Pınar Değirmencioğlu
Öz
In this study, tea waste was used to produce both activated carbon and the advanced ceramic material boron carbide (B4C). Although Tea waste is generated in large quantities in Türkiye and has low economic value, it carries significant potential as a biomass-based raw material source. In the first stage of the study, the tea waste was chemically activated with KOH and carbonized at 1500°C. The obtained activated carbon was characterized by elemental analysis, Brunauer-Emmett-Teller (BET) surface area and porosity analysis, Fourier Transform Infrared (FTIR) spectroscopy, Thermogravimetric Analysis/Differential Thermal Analysis (TGA/DTA), and X-ray Diffraction (XRD) analysis, and it was determined to have a very high surface area of 1301 m²/g with a micro-mesoporous structure. In the second stage, the synthesized activated carbon was subjected to carbothermal reduction with boric acid, and the synthesis of B4C was achieved. The analyses (XRD and FTIR) showed that boron carbide was successfully synthesized using tea waste-derived activated carbon. The results demonstrate that low-cost and domestic waste resources can be utilized in the production of advanced engineering ceramics of strategic importance. Thus, this study not only contributes to the recovery of waste but also provides a strong and innovative contribution to the literature in terms of sustainable materials science.
Teşekkür
This study was supported by the TÜBİTAK with the project code 1919B012460365. We would also like to thank TENMAK BOREN for their support, and Hümeysa Culum and Beyda Kahraman for their contributions to the study.
Kaynakça
-
Demirarslan, K. O. (2020). Literature survey on greenhouse gases and mathematical estimates from solid waste management. Duzce University Journal of Science and Technology, 8(1), 363-380. https://doi.org/10.29130/dubited.568588
-
Borghei, S. A., Zare, M. H., Ahmadi, M., Sadeghi, M. H., Marjani, A., Shirazian, S., & Ghadiri, M. (2021). Synthesis of multi-application activated carbon from oak seeds by KOH activation for methylene blue adsorption and electrochemical supercapacitor electrode. Arabian Journal of Chemistry, 14, 202102. https://doi.org/10.1016/j.arabjc.2020.102958
-
Gezer, B. (2020). Cu (II) adsorption with activated carbon obtained from sea urchin prepared by ultrasound-assisted method. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(2), 770-780. https://doi. org/10.28948/ngumuh.700773
-
Han, Q., Wang, J., Goodman, B.A., Xie, J., & Liu, Z. (2020). High adsorption of methylene blue by activated carbon prepared from phosphoric acid treated eucalyptus residue. Powder Technology, 366, 239-248. https://doi.org/10.1016/j.powtec.2020.02.013
-
Mamaní, A., Ramírez, N., Deiana, C., Giménez, M., & Sardella, F. (2019). Highly microporous sorbents from lignocellulosic biomass: Different activation routes and their application to dyes adsorption. Journal of Environmental Chemical Engineering, 7(5), 103148. https://doi.org/10.1016/j.jece.2019.103148
-
Heibati, B., Rodriguez-Couto, S., Al-Ghouti, M. A., Asif, M., Tyagi, I., Agarwal, S., & Gupta, V.K. (2015). Kinetics and thermodynamics of enhanced adsorption of the dye AR 18 using activated carbons prepared from walnut and poplar woods. Journal of Molecular Liquids, 208, 99-105. https://doi.org/10.1016/j.molliq.2015.03.057
-
Dogan, M. Y., Tasdemir, H. M., Arbag, H., Yasyerli, N., & Yasyerli, S. (2024). H2 production via H2S decomposition over activated carbon supported Fe-and W-catalysts. International Journal of Hydrogen Energy, 75, 483-495. https://doi.org/10.1016/j.ijhydene.2024.02.316
-
Rai, M. K., Shahi, G., Meena, V., Meena, R., Chakraborty, S., Singh, R. S., & Rai, B. N. (2016). Removal of hexavalent chromium Cr (VI) using activated carbon prepared from mango kernel activated with H3PO4. Resource-Efficient Technologies, 2, S63-S70. https://doi.org/10.1016/j.reffit.2016.11.011
-
Demirbas, E., Dizge, N., Sulak, M. T., & Kobya, M. (2009). Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon. Chemical Engineering Journal, 148(2-3), 480- 487. https://doi.org/10.1016/j.cej.2008.09.027
-
Zhao, J., Yu, L., Ma, H., Zhou, F., Yang, K., & Wu, G. (2020). Corn stalk-based activated carbon synthesized by a novel activation method for high-performance adsorption of hexavalent chromium in aqueous solutions. Journal of Colloid and Interface Science, 578, 650-659. https://doi.org/10.1016/j.jcis.2020.06.031
-
Erkal H. (2024). Tarım Ürünleri Piyasaları: Çay. Agricultural Economics and Policy Development Institute. https://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF%20 Tar%C4%B1m%20%C3%9Cr%C3%BCnleri%20Piyasalar%C4%B1/2024-Temmuz%20Tar%C4%B1m%20%C3%9Cr%C3%BCnleri%20Raporu/%C3%87ay%20Tar%C4%B1m%20%C3%9Cr%C3%BCnleri%20Piyasalar%C4%B1%20 Raporu%20Temmuz-2024-v4.pdf
-
Debnath, B., Dibyajyoti, H., & Purkait, M. K. (2022). Environmental remediation by tea waste and its derivative products: A review on present status and technological advancements. Chemosphere, 300, 134480. https://doi.org/10.1016/j.chemosphere.2022.134480
-
Wang, Z., Ahmad, W., Zhu, A., Zhao, S., Ouyang, Q., & Chen, Q. (2024). Recent advances review in tea waste: High-value applications, processing technology, and value-added products. Science of the Total Environment, 946, 174225. https://doi.org/10.1016/j. scitotenv.2024.174225
-
Kaya, N., Çavdar, Ş., & Koralay, H. (2020). Investigation of microhardness properties of MgB2 produced by using carbon doped boron by CVD method. Gazi University Journal of Science Part C: Design and Technology, 8(1), 192-204. https://doi.org/10.29109/gujsc.661258
-
Pimentel, C. H., Díaz-Fernández, L., Gómez-Díaz, D., Freire, M. S., & González-Álvarez, J. (2023). Separation of CO2 using biochar and KOH and ZnCl2 activated carbons derived from pine sawdust. Journal of Environmental Chemical Engineering, 11(6), 111378. https://doi.org/10.1016/j.jece.2023.111378
-
Fan, M., Shao, Y., Wang, Y., Sun, J., He, H., Jiang, … & Hu, X. (2024). Preparation of activated carbon with recycled ZnCl2 for maximizing utilization efficiency of the activating agent and minimizing generation of liquid waste. Chemical Engineering Journal, 500, 157278. https://doi.org/10.1016/j.cej.2024.157278
-
Gao, Y., Yue, Q., Gao, B., & Li, A. (2020). Insight into activated carbon from different kinds of chemical activating agents: A review. Science of The Total Environment, 746, 141094. https://doi.org/10.1016/j.scitotenv.2020.141094
-
Peng, C., Yan, X., Wang, R., Lang, J., Ou, Y., & Xue, Q. (2013). Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes. Electrochimica Acta, 87, 401- 408. https://doi.org/10.1016/j.electacta.2012.09.082
-
Gundogdu, A., Duran, C., Senturk, H. B., Soylak, M., Imamoglu, M., & Onal, Y. (2013). Physicochemical characteristics of a novel activated carbon produced from tea industry waste. Journal of Analytical and Applied Pyrolysis, 104, 249-259. https://doi.org/10.1016/j.jaap.2013.08.005
-
Tuli, F. J., Hossain, A., Kibria, A. K. M. F., Tareq, A. R. M., Mamun, S. M. M. A., & Ullah, A. K. M. A. (2020). Removal of methylene blue from water by low-cost activated carbon prepared from tea waste: A study of adsorption isotherm and kinetics. Environmental Nanotechnology, Monitoring & Management, 14, 100354. https://doi.org/10.1016/j.enmm.2020.100354
-
Tabak, A., Sevimli, K., Kaya, M., & Çağlar, B. (2019). Preparation and characterization of a novel activated carbon component via chemical activation of tea woody stem. Journal of Thermal Analysis and Calorimetry, 138, 3885-3895. https://doi.org/10.1007/s10973-019-08590-4
-
Kakiage, M., Tahara, N., Yanase, I., & Kobayashi, H. (2011). Low-temperature synthesis of boron carbide powder from condensed boric acid-glycerin product. Materials Letters, 65(12), 1839-1841. https://doi. org/10.1016/j.matlet.2011.03.046
-
Alizadeh, A., Taheri-Nassaj, E., Ehsani, N., & Baharvandi, H. R. (2006). Production of boron carbide powder by carbothermic reduction from boron oxide and petroleum coke or carbon active. Advances in Applied Ceramics: Structural, Functional and Bioceramics, 105(6), 291-296. https://doi.org/10.1179/174367606X146685
-
Bilgiç, G., Balıkçıoğlu Güzel, A., & Şahin, M. (2024). Boron carbide: Physicochemical properties, synthesis and applications in defense technologies. Savunma Bilimleri Dergisi, 20(1), 1-18. https://dergipark.org.tr/tr/pub/khosbd
-
Gaylan, Y., Avar, B., Panigrahi, M., Aygün, B., & Karabulut, A. (2023) Effect of the B4C content on microstructure, microhardness, corrosion, and neutron shielding properties of Al-B4C composites. Ceramics International, 49(3), 5479-5488. https://doi.org/10.1016/j.ceramint.2022.10.071
-
Eom, S. H., Shin, J. Y., Kim, S. H., Kim, B. J., Lee, S. Y., & Lee, C. H. (2021). Recycling black tea waste biomass as activated porous carbon for long life cycle supercapacitor electrodes. Materials, 14(6), 6592, 2021. https://doi.org/10.3390/ma14216592
-
Dogan, M. Y., Yasyerli, S., Tasdemir, H. M., Arbag, H., & Yasyerli, N. (2026). H2 production from H2S over activated carbon prepared at different carbonization temperatures as efficient microwave catalyst. Renewable Energy, 256(Part D), 124191. https://doi.org/10.1016/j.renene.2025.124191
-
Avcıoğlu, S., Buldu, M., Kaya, F., Üstündağ, C. B., Kam, E., Menceloğlu, Y. Z., … & Kaya, C. (2020). Processing and properties of boron carbide (B4C) reinforced LDPE Composites for radiation shielding. Ceramics International, 46(1), 343-352. https://doi.org/10.1016/j.ceramint.2019.08.268
-
Bhowmick, S., Sun, G., & Alpas, A. T. (2016). Low friction behaviour of boron carbide coatings (B4C) sliding against Ti-6Al-4V. Surface and Coatings Technology, 308, 316- 327. https://doi.org/10.1016/j.surfcoat.2016.05.092
-
Boussebha, H., Bakan, S., & Kurt, A. O. (2021). A novel approach in the synthesis of B4C powder. Open Ceramics, 6, 100133. https://doi.org/10.1016/j.oceram.2021.100133