Araştırma Makalesi
BibTex RIS Kaynak Göster

ASSESSING THE POTENTIAL OF HYPOXIA-TARGETING AGENTS AS GSTP1 INHIBITORS IN OVERCOMING CANCER DRUG RESISTANCE

Yıl 2025, Cilt: 15 Sayı: 2, 178 - 185, 15.06.2025
https://doi.org/10.16919/bozoktip.1603238

Öz

Objective: The persistent challenge of drug resistance in cancer therapy is closely linked to the detoxification activity of glutathione S-transferase pi (GSTP1). This study aims to assess the potential of hypoxia-targeting agents as GSTP1 inhibitors to address drug resistance mechanisms in cancer.
Materials and Methods: Molecular docking simulations were performed using the crystal structure of GSTP1 (PDB ID: 2GSS). Eight hypoxia-targeting agents were tested, including BAY 87-2243, Vadimezan, SLC-0111, Acriflavine, PX-478, Evofosfamide, Bevacizumab, and the reference GSTP1 inhibitor ethacrynic acid. Binding affinities were calculated using AutoDock Vina, and interaction profiles were visualized with Discovery Studio.
Results: Among the tested compounds, BAY 87-2243 exhibited the highest binding affinity to GSTP1 with a binding energy of -9.1 kcal/mol, surpassing ethacrynic acid (-6.7 kcal/mol). Vadimezan (-7.9 kcal/mol) and SLC-0111 (-7.2 kcal/mol) also demonstrated strong inhibitory potential. Key interactions included hydrogen bonds with residues GLN A:51 and ARG A:13 and hydrophobic interactions with PHE A:8. Other compounds displayed lower binding affinities, ranging from -6.6 to -5.7 kcal/mol.
Conclusion: Hypoxia-targeting agents, particularly BAY 87-2243, Vadimezan, and SLC-0111, show promising GSTP1 inhibition potential, offering dual functionality to modulate tumor hypoxia and counteract drug resistance. These findings warrant further in vitro and in vivo studies to explore their clinical application in cancer therapy.

Kaynakça

  • 1. Ozcan M, Esendagli G, Musdal Y, Canpinar H, Bacanlı M, Anlar HG, et al. Dual actions of the antioxidant chlorophyllin, a glutathione transferase P1‐1 inhibitor, in tumorigenesis and tumor progression. J Cell Biochem. 2019;120(5):7045-55.
  • 2. Townsend DM, Tew KD. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene. 2003;22(47):7369-75.
  • 3. Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 2019;18:1-15.
  • 4. Singleton DC, Macann A, Wilson WR. Therapeutic targeting of the hypoxic tumour microenvironment. Nat Rev Clin Oncol. 2021;18(12):751-72.
  • 5. Angeli A, Carta F, Nocentini A, Winum J-Y, Zalubovskis R, Akdemir A, et al. Carbonic anhydrase inhibitors targeting metabolism and tumor microenvironment. Metabolites. 2020;10(10):412.
  • 6. Baguley BC, Siemann DW. Temporal aspects of the action of ASA404 (vadimezan; DMXAA). Expert Opin Investig Drugs. 2010;19(11):1413- 25.
  • 7. DiGiacomo JW, Gilkes DM. Therapeutic strategies to block the hypoxic response. Hypoxia Cancer Metastasis. 2019:141-57.
  • 8. Helbig L, Koi L, Brüchner K, Gurtner K, Hess-Stumpp H, Unterschemmann K, et al. BAY 87–2243, a novel inhibitor of hypoxia-induced gene activation, improves local tumor control after fractionated irradiation in a schedule-dependent manner in head and neck human xenografts. Radiat Oncol. 2014;9:1-10.
  • 9. Rapisarda A, Hollingshead M, Uranchimeg B, Bonomi CA, Borgel SD, Carter JP, et al. Increased antitumor activity of bevacizumab in combination with hypoxia inducible factor-1 inhibition. Mol Cancer Ther. 2009;8(7):1867-77.
  • 10. Raccagni I, Valtorta S, Moresco RM, Belloli S. Tumour hypoxia: lessons learnt from preclinical imaging. Clin Transl Imaging. 2017;5:407-25.
  • 11. Wu X-Y, Ma W, Gurung K, Guo C-H. Mechanisms of tumor resistance to small-molecule vascular disrupting agents: treatment and rationale of combination therapy. J Formos Med Assoc. 2013;112(3):115-24.
  • 12. Mokhtari RB, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, et al. Combination therapy in combating cancer. Oncotarget. 2017;8(23):38022.
  • 13. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2023 update. Nucleic Acids Res. 2023;51(D1):1373-80.
  • 14. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012;4:1-17.
  • 15. Oakley AJ, Rossjohn J, Lo Bello M, Caccuri AM, Federici G, Parker MW. The three-dimensional structure of the human Pi class glutathione transferase P1-1 in complex with the inhibitor ethacrynic acid and its glutathione conjugate. Biochemistry. 1997;36(3):576-85.
  • 16. Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings. J Chem Inf Model. 2021;61(8):3891-8.
  • 17. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455- 61.
  • 18. Ozcan M, Aydemir D, Bacanlı M, Anlar HG, Ulusu NN, Aksoy Y. Protective effects of antioxidant chlorophyllin in chemically induced breast cancer model in vivo. Biol Trace Elem Res. 2021;199:4475-88.
  • 19. Ozcan M, Çiçek Ç, Gök M. GSTP-1 Enzimi İçin Kuersetin Türevlerinin İnhibitör Potansiyeli: Metoksillenmiş Türevlerin Moleküler Docking Çalışması. Sağlık Araştırmaları Derg. 2024;2(2):130-40.
  • 20. Tew KD. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res. 2016;76(1):7-9.
  • 21. Ruzza P, Rosato A, Rossi CR, Floreani M, Quintieri L. Glutathione transferases as targets for cancer therapy. Anticancer Agents Med Chem . 2009;9(7):763-77.
  • 22. McAleese CE, Choudhury C, Butcher NJ, Minchin RF. Hypoxiamediated drug resistance in breast cancers. Cancer Lett. 2021;502:189-99.
  • 23. Rohwer N, Cramer T. Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updat. 2011;14(3):191-201.
  • 24. Wang SQ, Chen JJ, Jiang Y, Lei ZN, Ruan YC, Pan Y, et al. Targeting GSTP1 as therapeutic strategy against lung adenocarcinoma stemness and resistance to tyrosine kinase inhibitors. Adv Sci. 2023;10(7):2205262.
  • 25. Oakley A. Glutathione transferases: a structural perspective. Drug Metab Rev. 2011;43(2):138-51.
  • 26. Saikia S, Bordoloi M. Molecular docking: challenges, advances and its use in drug discovery perspective. Curr Drug Targets. 2019;20(5):501-21.
  • 27. Stanzione F, Giangreco I, Cole JC. Use of molecular docking computational tools in drug discovery. Prog Med Chem. 2021;60:273- 343.
  • 28. Musdal Y, Hegazy UM, Aksoy Y, Mannervik B. FDA-approved drugs and other compounds tested as inhibitors of human glutathione transferase P1-1. Chem Biol Interact. 2013;205(1):53-62.
  • 29. Ozcan M, Burus A, Mender I, Dikmen ZG, Gryaznov SM, Bastug T, et al. Investigation of the inhibitory effects of the telomere-targeted compounds on glutathione S-transferase P1. Naunyn Schmiedebergs Arch Pharmacol. 2025:1-9.
  • 30. Ozcan M, Cicek C, Gok M. Exploring the GSTP1 inhibition potential of photosensitizer compounds for enhanced cancer treatment in photodynamic therapy. Naunyn Schmiedebergs Arch Pharmacol. 2024:1-10.
  • 31. Xu X, Huang M, Zou X. Docking-based inverse virtual screening: methods, applications, and challenges. Biophys Rep. 2018;4:1-16.

Kanser İlaç Direncini Aşmada Hipoksi Hedefli Ajanların GSTP1 İnhibitörleri Olarak Potansiyellerinin Değerlendirilmesi

Yıl 2025, Cilt: 15 Sayı: 2, 178 - 185, 15.06.2025
https://doi.org/10.16919/bozoktip.1603238

Öz

Amaç: Kanser tedavisinde ilaç direncinin kalıcı zorluğu, glutatyon S-transferaz pi (GSTP1) enziminin detoksifikasyon aktivitesi ile yakından ilişkilidir. Bu çalışma, kanser tedavisinde ilaç direnci mekanizmalarını hedeflemek amacıyla hipoksi odaklı ajanların GSTP1 inhibitörleri olarak potansiyelini değerlendirmeyi amaçlamaktadır.
Materyal ve Yöntemler: Moleküler yerleştirme simülasyonları, GSTP1'in kristal yapısı (PDB ID: 2GSS) kullanılarak gerçekleştirildi. BAY 87-2243, Vadimezan, SLC-0111, Akflavin, PX-478, Evofosfamid, Bevacizumab ve referans GSTP1 inhibitörü olan etakrinik asit dahil olmak üzere sekiz hipoksi odaklı ajan test edildi. Bağlanma afiniteleri AutoDock Vina kullanılarak hesaplandı ve etkileşim profilleri Discovery Studio ile görselleştirildi.
Bulgular: Test edilen bileşikler arasında BAY 87-2243, -9.1 kcal/mol bağlanma enerjisi ile GSTP1'e en yüksek bağlanma afinitesini gösterdi ve etakrinik asiti (-6.7 kcal/mol) geride bıraktı. Vadimezan (-7.9 kcal/mol) ve SLC-0111 (-7.2 kcal/mol) de güçlü inhibitör potansiyeli sergiledi. Önemli etkileşimler arasında GLN A:51 ve ARG A:13 kalıntıları ile hidrojen bağları ve PHE A:8 ile hidrofobik etkileşimler yer aldı. Diğer bileşikler, -6.6 ile -5.7 kcal/mol arasında değişen daha düşük bağlanma afiniteleri gösterdi.
Sonuç: Hipoksi odaklı ajanlar, özellikle BAY 87-2243, Vadimezan ve SLC-0111, GSTP1 inhibisyon potansiyeli göstererek tümör hipoksisini modüle etme ve ilaç direncini azaltmada çift işlevli bir yaklaşım sunmaktadır. Bu bulgular, kanser tedavisinde klinik uygulamalarını keşfetmek için ileri in vitro ve in vivo çalışmaların yapılmasını gerektirmektedir.

Kaynakça

  • 1. Ozcan M, Esendagli G, Musdal Y, Canpinar H, Bacanlı M, Anlar HG, et al. Dual actions of the antioxidant chlorophyllin, a glutathione transferase P1‐1 inhibitor, in tumorigenesis and tumor progression. J Cell Biochem. 2019;120(5):7045-55.
  • 2. Townsend DM, Tew KD. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene. 2003;22(47):7369-75.
  • 3. Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 2019;18:1-15.
  • 4. Singleton DC, Macann A, Wilson WR. Therapeutic targeting of the hypoxic tumour microenvironment. Nat Rev Clin Oncol. 2021;18(12):751-72.
  • 5. Angeli A, Carta F, Nocentini A, Winum J-Y, Zalubovskis R, Akdemir A, et al. Carbonic anhydrase inhibitors targeting metabolism and tumor microenvironment. Metabolites. 2020;10(10):412.
  • 6. Baguley BC, Siemann DW. Temporal aspects of the action of ASA404 (vadimezan; DMXAA). Expert Opin Investig Drugs. 2010;19(11):1413- 25.
  • 7. DiGiacomo JW, Gilkes DM. Therapeutic strategies to block the hypoxic response. Hypoxia Cancer Metastasis. 2019:141-57.
  • 8. Helbig L, Koi L, Brüchner K, Gurtner K, Hess-Stumpp H, Unterschemmann K, et al. BAY 87–2243, a novel inhibitor of hypoxia-induced gene activation, improves local tumor control after fractionated irradiation in a schedule-dependent manner in head and neck human xenografts. Radiat Oncol. 2014;9:1-10.
  • 9. Rapisarda A, Hollingshead M, Uranchimeg B, Bonomi CA, Borgel SD, Carter JP, et al. Increased antitumor activity of bevacizumab in combination with hypoxia inducible factor-1 inhibition. Mol Cancer Ther. 2009;8(7):1867-77.
  • 10. Raccagni I, Valtorta S, Moresco RM, Belloli S. Tumour hypoxia: lessons learnt from preclinical imaging. Clin Transl Imaging. 2017;5:407-25.
  • 11. Wu X-Y, Ma W, Gurung K, Guo C-H. Mechanisms of tumor resistance to small-molecule vascular disrupting agents: treatment and rationale of combination therapy. J Formos Med Assoc. 2013;112(3):115-24.
  • 12. Mokhtari RB, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, et al. Combination therapy in combating cancer. Oncotarget. 2017;8(23):38022.
  • 13. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2023 update. Nucleic Acids Res. 2023;51(D1):1373-80.
  • 14. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012;4:1-17.
  • 15. Oakley AJ, Rossjohn J, Lo Bello M, Caccuri AM, Federici G, Parker MW. The three-dimensional structure of the human Pi class glutathione transferase P1-1 in complex with the inhibitor ethacrynic acid and its glutathione conjugate. Biochemistry. 1997;36(3):576-85.
  • 16. Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings. J Chem Inf Model. 2021;61(8):3891-8.
  • 17. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455- 61.
  • 18. Ozcan M, Aydemir D, Bacanlı M, Anlar HG, Ulusu NN, Aksoy Y. Protective effects of antioxidant chlorophyllin in chemically induced breast cancer model in vivo. Biol Trace Elem Res. 2021;199:4475-88.
  • 19. Ozcan M, Çiçek Ç, Gök M. GSTP-1 Enzimi İçin Kuersetin Türevlerinin İnhibitör Potansiyeli: Metoksillenmiş Türevlerin Moleküler Docking Çalışması. Sağlık Araştırmaları Derg. 2024;2(2):130-40.
  • 20. Tew KD. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res. 2016;76(1):7-9.
  • 21. Ruzza P, Rosato A, Rossi CR, Floreani M, Quintieri L. Glutathione transferases as targets for cancer therapy. Anticancer Agents Med Chem . 2009;9(7):763-77.
  • 22. McAleese CE, Choudhury C, Butcher NJ, Minchin RF. Hypoxiamediated drug resistance in breast cancers. Cancer Lett. 2021;502:189-99.
  • 23. Rohwer N, Cramer T. Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updat. 2011;14(3):191-201.
  • 24. Wang SQ, Chen JJ, Jiang Y, Lei ZN, Ruan YC, Pan Y, et al. Targeting GSTP1 as therapeutic strategy against lung adenocarcinoma stemness and resistance to tyrosine kinase inhibitors. Adv Sci. 2023;10(7):2205262.
  • 25. Oakley A. Glutathione transferases: a structural perspective. Drug Metab Rev. 2011;43(2):138-51.
  • 26. Saikia S, Bordoloi M. Molecular docking: challenges, advances and its use in drug discovery perspective. Curr Drug Targets. 2019;20(5):501-21.
  • 27. Stanzione F, Giangreco I, Cole JC. Use of molecular docking computational tools in drug discovery. Prog Med Chem. 2021;60:273- 343.
  • 28. Musdal Y, Hegazy UM, Aksoy Y, Mannervik B. FDA-approved drugs and other compounds tested as inhibitors of human glutathione transferase P1-1. Chem Biol Interact. 2013;205(1):53-62.
  • 29. Ozcan M, Burus A, Mender I, Dikmen ZG, Gryaznov SM, Bastug T, et al. Investigation of the inhibitory effects of the telomere-targeted compounds on glutathione S-transferase P1. Naunyn Schmiedebergs Arch Pharmacol. 2025:1-9.
  • 30. Ozcan M, Cicek C, Gok M. Exploring the GSTP1 inhibition potential of photosensitizer compounds for enhanced cancer treatment in photodynamic therapy. Naunyn Schmiedebergs Arch Pharmacol. 2024:1-10.
  • 31. Xu X, Huang M, Zou X. Docking-based inverse virtual screening: methods, applications, and challenges. Biophys Rep. 2018;4:1-16.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tıbbi biyokimya - Proteinler, Peptitler ve Proteomik
Bölüm Orjinal Çalışma
Yazarlar

Mehmet Özcan 0000-0002-1222-2802

Müjgan Ercan 0000-0002-9291-4197

Yayımlanma Tarihi 15 Haziran 2025
Gönderilme Tarihi 17 Aralık 2024
Kabul Tarihi 7 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 2

Kaynak Göster

APA Özcan, M., & Ercan, M. (2025). ASSESSING THE POTENTIAL OF HYPOXIA-TARGETING AGENTS AS GSTP1 INHIBITORS IN OVERCOMING CANCER DRUG RESISTANCE. Bozok Tıp Dergisi, 15(2), 178-185. https://doi.org/10.16919/bozoktip.1603238
AMA Özcan M, Ercan M. ASSESSING THE POTENTIAL OF HYPOXIA-TARGETING AGENTS AS GSTP1 INHIBITORS IN OVERCOMING CANCER DRUG RESISTANCE. Bozok Tıp Dergisi. Haziran 2025;15(2):178-185. doi:10.16919/bozoktip.1603238
Chicago Özcan, Mehmet, ve Müjgan Ercan. “ASSESSING THE POTENTIAL OF HYPOXIA-TARGETING AGENTS AS GSTP1 INHIBITORS IN OVERCOMING CANCER DRUG RESISTANCE”. Bozok Tıp Dergisi 15, sy. 2 (Haziran 2025): 178-85. https://doi.org/10.16919/bozoktip.1603238.
EndNote Özcan M, Ercan M (01 Haziran 2025) ASSESSING THE POTENTIAL OF HYPOXIA-TARGETING AGENTS AS GSTP1 INHIBITORS IN OVERCOMING CANCER DRUG RESISTANCE. Bozok Tıp Dergisi 15 2 178–185.
IEEE M. Özcan ve M. Ercan, “ASSESSING THE POTENTIAL OF HYPOXIA-TARGETING AGENTS AS GSTP1 INHIBITORS IN OVERCOMING CANCER DRUG RESISTANCE”, Bozok Tıp Dergisi, c. 15, sy. 2, ss. 178–185, 2025, doi: 10.16919/bozoktip.1603238.
ISNAD Özcan, Mehmet - Ercan, Müjgan. “ASSESSING THE POTENTIAL OF HYPOXIA-TARGETING AGENTS AS GSTP1 INHIBITORS IN OVERCOMING CANCER DRUG RESISTANCE”. Bozok Tıp Dergisi 15/2 (Haziran2025), 178-185. https://doi.org/10.16919/bozoktip.1603238.
JAMA Özcan M, Ercan M. ASSESSING THE POTENTIAL OF HYPOXIA-TARGETING AGENTS AS GSTP1 INHIBITORS IN OVERCOMING CANCER DRUG RESISTANCE. Bozok Tıp Dergisi. 2025;15:178–185.
MLA Özcan, Mehmet ve Müjgan Ercan. “ASSESSING THE POTENTIAL OF HYPOXIA-TARGETING AGENTS AS GSTP1 INHIBITORS IN OVERCOMING CANCER DRUG RESISTANCE”. Bozok Tıp Dergisi, c. 15, sy. 2, 2025, ss. 178-85, doi:10.16919/bozoktip.1603238.
Vancouver Özcan M, Ercan M. ASSESSING THE POTENTIAL OF HYPOXIA-TARGETING AGENTS AS GSTP1 INHIBITORS IN OVERCOMING CANCER DRUG RESISTANCE. Bozok Tıp Dergisi. 2025;15(2):178-85.
Copyright © BOZOK Üniversitesi - Tıp Fakültesi