Araştırma Makalesi
BibTex RIS Kaynak Göster

SIVI BİYOPSIDE SİRKÜLE TÜMÖR HÜCRESİ YAKALAMAK İÇİN DNA APTAMERİ-İMMOBİLİZE EDİLMİŞ BLOK KOPOLİMER YÜZEY

Yıl 2025, Cilt: 15 Sayı: 3, 345 - 353, 15.09.2025
https://doi.org/10.16919/bozoktip.1700824

Öz

Amaç: Dolaşımdaki sıvı biyopsi bileşenlerini tespit etmek, erken kanser tanısı ve hastalık ilerlemesinin izlenmesi için önemlidir. Mevcut biyosensörler, dolaşımdaki kanser hücrelerini hastalığın ileri evrelerinde tespit edebilmektedir, bu da daha etkili tekniklerin araştırılmasına yol açmaktadır. Bu çalışmada, dolaşımdaki kanser hücrelerinin hassas tespiti için AS1411 aptameriyle fonksiyonelleştirilmiş ve PGMA-b-PPDSMA blok kopolimeriyle modifiye edilmiş yeni bir yüzey geliştirilmiştir.
Gereç ve Yöntemler: PGMA-b-PPDSMA blok kopolimeri, NMR spektroskopisi ve GPC ile sentezlenmiş ve karakterize edilmiştir. Cam lamlar, APTES ile modifiye edilerek blok kopolimerin PGMA epoksi grupları aracılığıyla kovalan bağlanması sağlanmıştır. PPDS'nin piridil disülfid grupları, tiol-modifiye edilmiş anti-nükleolin DNA aptameri (AS1411)'nin bölgesel immobilizasyonunu mümkün kılmıştır. Immobilizasyon verimliliği ve aptamer spesifitesi, MCF-7 meme kanseri hücreleri ile floresan mikroskopi kullanılarak doğrulanmıştır.
Bulgular: NMR ve GPC sonuçları, 4.8 kDa PGMA ve 1.2 kDa PPDSMA bloklarından oluşan 6 kDa moleküler ağırlığa sahip PGMA-b-PPDS blok kopolimerinin sentezlendiğini ve saflaştırıldığını göstermiştir. Cam yüzeylerdeki APTES modifikasyonu, FTIR spektrumundaki 1500-1650 cm-¹ aralığında NH2 grubuna ait emilim sinyalleriyle doğrulanmıştır. Tiol-modifiye AS1411 aptamerinin PGMA-b-PPDS blok kopolimerinin PPDS grubuna bağlanma verimliliği, reaksiyonla oluşan piridin-2-tiyon yan ürününün 250-400 nm arasında emilim değişimi ile zaman içinde izlenmiştir.
Sonuç: DAPI boyama ve yıkama işlemlerinden sonra elde edilen floresan mikroskopi görüntüleri, AS1411 ile modifiye edilmiş yüzeylere MCF-7 hücrelerinin seçici bağlandığını göstermiştir. Bu sonuçlar, yüzeyin erken evre sıvı biyopsi uygulamalarında dolaşımdaki kanser hücrelerinin hassas bir şekilde yakalanması için umut verici bir platform sunduğunu göstermektedir.

Proje Numarası

22.TEMATİK.012

Kaynakça

  • 1. Velpula T, Buddolla V. Enhancing detection and monitoring of circulating tumor cells: Integrative approaches in liquid biopsy advances. J Liquid Biopsy. 2025;29(8):100297.
  • 2. Ruiz-Espigares J, Nieto D, Moroni L, Jiménez G, Marchal JA. Evolution of metastasis study models toward metastasis-on-a-chip: the ultimate model. Small. 2021;17(14):2006009.
  • 3. Ma L, Guo H, Zhao Y, Liu Z, Wang C, Bu J, et al. Liquid biopsy in cancer current: status, challenges and future prospects. Signal Transduct Target Ther. 2024;9(1):336.
  • 4. Cheng F, Su L, Qian C. Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer. Oncotarget. 2016;7(30):48832- 41.
  • 5. Ghorbanizamani F, Moulahoum H, Guler Celik E, Zihnioglu F, Beduk T, Goksel T, et al. Design of polymeric surfaces as platforms for streamlined cancer diagnostics in liquid biopsies. Biosensors. 2023;13(3):400.
  • 6. Shabbir H, Csapó E, Wojnicki M. Carbon quantum dots: the role of surface functional groups and proposed mechanisms for metal ion sensing. Inorganics. 2023;11(6):262.
  • 7. Pilvenyte G, Ratautaite V, Boguzaite R, Ramanavicius A, Viter R, Ramanavicius S. Molecularly imprinted polymers for the determination of cancer biomarkers. Int J Mol Sci. 2023;24(4):4105.
  • 8. Wu X, Chen J, Wu M, Zhao J. Aptamers: active targeting ligands for cancer diagnosis and therapy. Theranostics. 2015;5(4):322–32.
  • 9. Bamrungsap S, Chen T, Shukoor MI, Chen Z, Sefah K, Chen Y, et al. Pattern recognition of cancer cells using aptamer-conjugated magnetic nanoparticles. ACS Nano. 2012;6(5):3974–81.
  • 10. Liu H, Xu S, He Z, Deng A, Zhu J. Supersandwich cytosensor for selective and ultrasensitive detection of cancer cells using aptamer-DNA concatamer-quantum dots probes. Anal Chem. 2013;85(6):3385–92.
  • 11. Riener CK, Kada G, Gruber HJ. Quick measurement of protein sulfhydryls with Ellman's reagent and with 4,4′-dithiodipyridine. Anal Bioanal Chem. 2002;373(4):266–76.
  • 12. Nandimandalam M, Costantini F, Lovecchio N, Iannascoli L, Nascetti A, de Cesare G, et al. Split aptamers immobilized on polymer brushes integrated in a lab-on-chip system based on an array of amorphous silicon photosensors: a novel sensor assay. Materials. 2021;14(23):7210.
  • 13. Peng H, Rübsam K, Huang X, Jakob F, Karperien M, Schwaneberg U, et al. Reactive copolymers based on N-vinyl lactams with pyridyl disulfide side groups via RAFT polymerization and postmodification via thiol–disulfide exchange reaction. Macromolecules. 2016;49(19):7141–54.
  • 14. Gudipati CS, Tan MB, Hussain H, Liu Y, He C, Davis TP. Synthesis of poly(glycidyl methacrylate)-block-poly(pentafluorostyrene) by RAFT: precursor to novel amphiphilic poly(glyceryl methacrylate)- block-poly(pentafluorostyrene). Macromol Rapid Commun. 2008;29(23):1902–7.
  • 15. Stetsenko MO, Rudenko SP, Maksimenko LS, Serdega BK, Pluchery O, Snegir SV. Optical properties of gold nanoparticle assemblies on a glass surface. Nanoscale Res Lett. 2017;12(1):148.
  • 16. Do PQT, Huong VT, Phuong NTT, Nguyen TH, Ta HKT, Ju H, et al. The highly sensitive determination of serotonin by using gold nanoparticles (Au NPs) with a localized surface plasmon resonance (LSPR) absorption wavelength in the visible region. RSC Adv. 2020;10(51):30858–69.
  • 17. Marangoni S, Rech I, Ghioni M, Maccagnani P, Chiari M, Cretich M, et al. A 6×8 photon-counting array detector system for fast and sensitive analysis of protein microarrays. Sens Actuators B Chem. 2010;149(2):420–6.
  • 18. Oberhaus FV, Frense D, Beckmann D. Immobilization techniques for aptamers on gold electrodes for the electrochemical detection of proteins: a review. Biosensors (Basel). 2020;10(5):45.
  • 19. Liu K, Lin S, Zhu S, Chen Y, Yin H, Li Z, et al. Hyperspectral microscopy combined with DAPI staining for the identification of hepatic carcinoma cells. Biomed Opt Express. 2020;12(1):173–80.
  • 20. Feng H, Lu X, Wang W, Kang N-G, Mays JW. Block copolymers: synthesis, self-assembly, and applications. Polymers. 2017;9(10):494.
  • 21. Lokitz BS, Wei J, Hinestrosa JP, Ivanov I, Browning JF, Ankner JF, et al. Manipulating interfaces through surface confinement of poly(glycidyl methacrylate)-block-poly(vinyldimethylazlactone), a dually reactive block copolymer. Macromolecules. 2012;45(16):6438–49.
  • 22. Torcello-Gómez A, Wulff-Pérez M, Gálvez-Ruiz MJ, MartínRodríguez A, Cabrerizo-Vílchez M, Maldonado-Valderrama J. Block copolymers at interfaces: interactions with physiological media. Adv Colloid Interface Sci. 2014;206:414–27.
  • 23. Ud din Khan B, Khan M, Hu Q, Park SY. Liquid crystal aptamerBozok Tıp Derg 2025;15(3):345-353 based sensor with a functionalized amphiphilic block copolymer for the detection of m-hydroxy cocaine. Microchem J. 2025;213:113595.
  • 24. Léguillier V, Heddi B, Vidic J. Recent advances in aptamerbased biosensors for bacterial detection. Biosensors (Basel). 2024;14(5):210.
  • 25. de Valega Negrão CVZ, Cerize NNP, Justo-Junior ADS, Liszbinski RB, Meneguetti GP, Araujo L, et al. Iron oxide nanoparticles coated with biodegradable block-copolymer PDMAEMA-b-PM. BioRxiv. 2023;2023-06.
  • 26. Song Q, Yang J, Hall SC, Gurnani P, Perrier S. Pyridyl disulfide reaction chemistry: an efficient strategy toward redoxresponsive cyclic peptide–polymer conjugates. ACS Macro Lett. 2019;8(10):1347–52.
  • 27. Ma W, Wang X, Zhang D, Mu X. Research progress of disulfide bond based tumor microenvironment targeted drug delivery system. Int J Nanomedicine. 2024;24(19):7547–66.
  • 28. Thomas ME, Schmitt LD, Lees AJ. A new, rapid, colorimetric chemodosimeter, 4-(pyrrol-1-yl)pyridine, for nitrite detection in aqueous solution. ACS Omega. 2024;9(35):37278–87.
  • 29. Seo K, Hwang K, Nam KM, Kim MJ, Song YK, Kim CY, et al. Nucleolin-targeting AS1411 aptamer-conjugated nanospheres for targeted treatment of glioblastoma. Pharmaceutics. 2024;16(4):566.
  • 30. Khoshroo A, Fattahi A, Hosseinzadeh L. Development of paperbased aptasensor for circulating tumor cells detection in the breast cancer. J Electroanal Chem. 2022;910:116182.
  • 31. Hu X, Zhang D, Zeng Z, Huang L, Lin X, Hong S. Aptamerbased probes for cancer diagnostics and treatment. Life (Basel). 2022;12(11):1937.
  • 32. Ding L, Wu Y, Liu W, Liu L, Yu F, Yu S at al. Magnetic-assisted self-assembled aptamer/protein hybrid probes for efficient capture and rapid detection of cancer cells in whole blood. Talanta. 2019;205:120129.
  • 33. Dong Z, Tang C, Zhao L, Xu J, Wu Y, Tang X, et al. A microwellassisted multiaptamer immunomagnetic platform for capture and genetic analysis of circulating tumor cells. Adv Healthc Mater. 2018;7(24):e1801231.
  • 34. G Goddard JM, Hotchkiss JH. Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci. 2007;32(7):698–725.

DNA APTAMER-IMMOBILIZED BLOCK COPOLYMER SURFACE FOR CIRCULATING TUMOR CELL CAPTURE IN LIQUID BIOPSY

Yıl 2025, Cilt: 15 Sayı: 3, 345 - 353, 15.09.2025
https://doi.org/10.16919/bozoktip.1700824

Öz

Objective: Detecting circulating liquid biopsy components is essential for early cancer diagnosis and monitoring disease progression. Current biosensors detect circulating tumor cells in later stages, prompting a search for more effective techniques. In this study, we developed a novel surface modified with PGMA-b-PPDSMA block copolymer and functionalized with AS1411 aptamer for sensitive detection of circulating tumor cells.
Materials and Methods: The PGMA-b-PPDSMA block copolymer was synthesized and characterized by NMR spectroscopy and GPC. Glass slides were modified with APTES, allowing covalent attachment of the block copolymer via PGMA epoxy groups. The pyridyl disulfide groups of PPDSMA enabled site-specific immobilization of thiol-modified anti-nucleolin DNA aptamer (AS1411). Immobilization efficiency and aptamer specificity were validated using fluorescence microscopy with MCF-7 breast cancer cells.
Results: NMR and GPC results showed that PGMA-b-PPDSMA block copolymer with a molecular weight of 6 kDa, consisting of 4.8 kDa PGMA and 1.2 kDa PPDSMA block, was synthesized and purified. APTES modification on glass surfaces was confirmed by absorbance signals in the range of 1500-1650 cm-¹ belonging to the NH2 group in the FTIR spectrum. The binding efficiency of thiol-modified AS1411 aptamer to the PPDS group of PGMA-b-PPDSMA block copolymer was followed by absorbance change between 250-400 nm of pyridin-2-thione by-product formed during the reaction with time.
Conclusion: After DAPI staining and washing, Fluorescence microscopy images showed selective binding of MCF-7 cells to the AS1411-modified surfaces. These results suggest the surface provides a promising platform for sensitive capture of circulating cancer cells in early-stage liquid biopsy applications.

Etik Beyan

Ethical approval was not required for this study, as only commercially available or previously established cell lines were used.

Destekleyen Kurum

This study was supported by the Afyonkarahisar Health Sciences University, Scientific Research Project Unit grant 22.TEMATİK.012.

Proje Numarası

22.TEMATİK.012

Kaynakça

  • 1. Velpula T, Buddolla V. Enhancing detection and monitoring of circulating tumor cells: Integrative approaches in liquid biopsy advances. J Liquid Biopsy. 2025;29(8):100297.
  • 2. Ruiz-Espigares J, Nieto D, Moroni L, Jiménez G, Marchal JA. Evolution of metastasis study models toward metastasis-on-a-chip: the ultimate model. Small. 2021;17(14):2006009.
  • 3. Ma L, Guo H, Zhao Y, Liu Z, Wang C, Bu J, et al. Liquid biopsy in cancer current: status, challenges and future prospects. Signal Transduct Target Ther. 2024;9(1):336.
  • 4. Cheng F, Su L, Qian C. Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer. Oncotarget. 2016;7(30):48832- 41.
  • 5. Ghorbanizamani F, Moulahoum H, Guler Celik E, Zihnioglu F, Beduk T, Goksel T, et al. Design of polymeric surfaces as platforms for streamlined cancer diagnostics in liquid biopsies. Biosensors. 2023;13(3):400.
  • 6. Shabbir H, Csapó E, Wojnicki M. Carbon quantum dots: the role of surface functional groups and proposed mechanisms for metal ion sensing. Inorganics. 2023;11(6):262.
  • 7. Pilvenyte G, Ratautaite V, Boguzaite R, Ramanavicius A, Viter R, Ramanavicius S. Molecularly imprinted polymers for the determination of cancer biomarkers. Int J Mol Sci. 2023;24(4):4105.
  • 8. Wu X, Chen J, Wu M, Zhao J. Aptamers: active targeting ligands for cancer diagnosis and therapy. Theranostics. 2015;5(4):322–32.
  • 9. Bamrungsap S, Chen T, Shukoor MI, Chen Z, Sefah K, Chen Y, et al. Pattern recognition of cancer cells using aptamer-conjugated magnetic nanoparticles. ACS Nano. 2012;6(5):3974–81.
  • 10. Liu H, Xu S, He Z, Deng A, Zhu J. Supersandwich cytosensor for selective and ultrasensitive detection of cancer cells using aptamer-DNA concatamer-quantum dots probes. Anal Chem. 2013;85(6):3385–92.
  • 11. Riener CK, Kada G, Gruber HJ. Quick measurement of protein sulfhydryls with Ellman's reagent and with 4,4′-dithiodipyridine. Anal Bioanal Chem. 2002;373(4):266–76.
  • 12. Nandimandalam M, Costantini F, Lovecchio N, Iannascoli L, Nascetti A, de Cesare G, et al. Split aptamers immobilized on polymer brushes integrated in a lab-on-chip system based on an array of amorphous silicon photosensors: a novel sensor assay. Materials. 2021;14(23):7210.
  • 13. Peng H, Rübsam K, Huang X, Jakob F, Karperien M, Schwaneberg U, et al. Reactive copolymers based on N-vinyl lactams with pyridyl disulfide side groups via RAFT polymerization and postmodification via thiol–disulfide exchange reaction. Macromolecules. 2016;49(19):7141–54.
  • 14. Gudipati CS, Tan MB, Hussain H, Liu Y, He C, Davis TP. Synthesis of poly(glycidyl methacrylate)-block-poly(pentafluorostyrene) by RAFT: precursor to novel amphiphilic poly(glyceryl methacrylate)- block-poly(pentafluorostyrene). Macromol Rapid Commun. 2008;29(23):1902–7.
  • 15. Stetsenko MO, Rudenko SP, Maksimenko LS, Serdega BK, Pluchery O, Snegir SV. Optical properties of gold nanoparticle assemblies on a glass surface. Nanoscale Res Lett. 2017;12(1):148.
  • 16. Do PQT, Huong VT, Phuong NTT, Nguyen TH, Ta HKT, Ju H, et al. The highly sensitive determination of serotonin by using gold nanoparticles (Au NPs) with a localized surface plasmon resonance (LSPR) absorption wavelength in the visible region. RSC Adv. 2020;10(51):30858–69.
  • 17. Marangoni S, Rech I, Ghioni M, Maccagnani P, Chiari M, Cretich M, et al. A 6×8 photon-counting array detector system for fast and sensitive analysis of protein microarrays. Sens Actuators B Chem. 2010;149(2):420–6.
  • 18. Oberhaus FV, Frense D, Beckmann D. Immobilization techniques for aptamers on gold electrodes for the electrochemical detection of proteins: a review. Biosensors (Basel). 2020;10(5):45.
  • 19. Liu K, Lin S, Zhu S, Chen Y, Yin H, Li Z, et al. Hyperspectral microscopy combined with DAPI staining for the identification of hepatic carcinoma cells. Biomed Opt Express. 2020;12(1):173–80.
  • 20. Feng H, Lu X, Wang W, Kang N-G, Mays JW. Block copolymers: synthesis, self-assembly, and applications. Polymers. 2017;9(10):494.
  • 21. Lokitz BS, Wei J, Hinestrosa JP, Ivanov I, Browning JF, Ankner JF, et al. Manipulating interfaces through surface confinement of poly(glycidyl methacrylate)-block-poly(vinyldimethylazlactone), a dually reactive block copolymer. Macromolecules. 2012;45(16):6438–49.
  • 22. Torcello-Gómez A, Wulff-Pérez M, Gálvez-Ruiz MJ, MartínRodríguez A, Cabrerizo-Vílchez M, Maldonado-Valderrama J. Block copolymers at interfaces: interactions with physiological media. Adv Colloid Interface Sci. 2014;206:414–27.
  • 23. Ud din Khan B, Khan M, Hu Q, Park SY. Liquid crystal aptamerBozok Tıp Derg 2025;15(3):345-353 based sensor with a functionalized amphiphilic block copolymer for the detection of m-hydroxy cocaine. Microchem J. 2025;213:113595.
  • 24. Léguillier V, Heddi B, Vidic J. Recent advances in aptamerbased biosensors for bacterial detection. Biosensors (Basel). 2024;14(5):210.
  • 25. de Valega Negrão CVZ, Cerize NNP, Justo-Junior ADS, Liszbinski RB, Meneguetti GP, Araujo L, et al. Iron oxide nanoparticles coated with biodegradable block-copolymer PDMAEMA-b-PM. BioRxiv. 2023;2023-06.
  • 26. Song Q, Yang J, Hall SC, Gurnani P, Perrier S. Pyridyl disulfide reaction chemistry: an efficient strategy toward redoxresponsive cyclic peptide–polymer conjugates. ACS Macro Lett. 2019;8(10):1347–52.
  • 27. Ma W, Wang X, Zhang D, Mu X. Research progress of disulfide bond based tumor microenvironment targeted drug delivery system. Int J Nanomedicine. 2024;24(19):7547–66.
  • 28. Thomas ME, Schmitt LD, Lees AJ. A new, rapid, colorimetric chemodosimeter, 4-(pyrrol-1-yl)pyridine, for nitrite detection in aqueous solution. ACS Omega. 2024;9(35):37278–87.
  • 29. Seo K, Hwang K, Nam KM, Kim MJ, Song YK, Kim CY, et al. Nucleolin-targeting AS1411 aptamer-conjugated nanospheres for targeted treatment of glioblastoma. Pharmaceutics. 2024;16(4):566.
  • 30. Khoshroo A, Fattahi A, Hosseinzadeh L. Development of paperbased aptasensor for circulating tumor cells detection in the breast cancer. J Electroanal Chem. 2022;910:116182.
  • 31. Hu X, Zhang D, Zeng Z, Huang L, Lin X, Hong S. Aptamerbased probes for cancer diagnostics and treatment. Life (Basel). 2022;12(11):1937.
  • 32. Ding L, Wu Y, Liu W, Liu L, Yu F, Yu S at al. Magnetic-assisted self-assembled aptamer/protein hybrid probes for efficient capture and rapid detection of cancer cells in whole blood. Talanta. 2019;205:120129.
  • 33. Dong Z, Tang C, Zhao L, Xu J, Wu Y, Tang X, et al. A microwellassisted multiaptamer immunomagnetic platform for capture and genetic analysis of circulating tumor cells. Adv Healthc Mater. 2018;7(24):e1801231.
  • 34. G Goddard JM, Hotchkiss JH. Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci. 2007;32(7):698–725.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kanser Tanısı, Sıvı Biyopsileri
Bölüm Orjinal Çalışma
Yazarlar

Sadık Kağa 0000-0002-6303-7981

Elif Kağa 0000-0002-2279-6105

Proje Numarası 22.TEMATİK.012
Yayımlanma Tarihi 15 Eylül 2025
Gönderilme Tarihi 18 Mayıs 2025
Kabul Tarihi 17 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 3

Kaynak Göster

APA Kağa, S., & Kağa, E. (2025). DNA APTAMER-IMMOBILIZED BLOCK COPOLYMER SURFACE FOR CIRCULATING TUMOR CELL CAPTURE IN LIQUID BIOPSY. Bozok Tıp Dergisi, 15(3), 345-353. https://doi.org/10.16919/bozoktip.1700824
AMA Kağa S, Kağa E. DNA APTAMER-IMMOBILIZED BLOCK COPOLYMER SURFACE FOR CIRCULATING TUMOR CELL CAPTURE IN LIQUID BIOPSY. Bozok Tıp Dergisi. Eylül 2025;15(3):345-353. doi:10.16919/bozoktip.1700824
Chicago Kağa, Sadık, ve Elif Kağa. “DNA APTAMER-IMMOBILIZED BLOCK COPOLYMER SURFACE FOR CIRCULATING TUMOR CELL CAPTURE IN LIQUID BIOPSY”. Bozok Tıp Dergisi 15, sy. 3 (Eylül 2025): 345-53. https://doi.org/10.16919/bozoktip.1700824.
EndNote Kağa S, Kağa E (01 Eylül 2025) DNA APTAMER-IMMOBILIZED BLOCK COPOLYMER SURFACE FOR CIRCULATING TUMOR CELL CAPTURE IN LIQUID BIOPSY. Bozok Tıp Dergisi 15 3 345–353.
IEEE S. Kağa ve E. Kağa, “DNA APTAMER-IMMOBILIZED BLOCK COPOLYMER SURFACE FOR CIRCULATING TUMOR CELL CAPTURE IN LIQUID BIOPSY”, Bozok Tıp Dergisi, c. 15, sy. 3, ss. 345–353, 2025, doi: 10.16919/bozoktip.1700824.
ISNAD Kağa, Sadık - Kağa, Elif. “DNA APTAMER-IMMOBILIZED BLOCK COPOLYMER SURFACE FOR CIRCULATING TUMOR CELL CAPTURE IN LIQUID BIOPSY”. Bozok Tıp Dergisi 15/3 (Eylül2025), 345-353. https://doi.org/10.16919/bozoktip.1700824.
JAMA Kağa S, Kağa E. DNA APTAMER-IMMOBILIZED BLOCK COPOLYMER SURFACE FOR CIRCULATING TUMOR CELL CAPTURE IN LIQUID BIOPSY. Bozok Tıp Dergisi. 2025;15:345–353.
MLA Kağa, Sadık ve Elif Kağa. “DNA APTAMER-IMMOBILIZED BLOCK COPOLYMER SURFACE FOR CIRCULATING TUMOR CELL CAPTURE IN LIQUID BIOPSY”. Bozok Tıp Dergisi, c. 15, sy. 3, 2025, ss. 345-53, doi:10.16919/bozoktip.1700824.
Vancouver Kağa S, Kağa E. DNA APTAMER-IMMOBILIZED BLOCK COPOLYMER SURFACE FOR CIRCULATING TUMOR CELL CAPTURE IN LIQUID BIOPSY. Bozok Tıp Dergisi. 2025;15(3):345-53.
Copyright © BOZOK Üniversitesi - Tıp Fakültesi