Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Biofilm Production and Antibacterial Resistance Profiles of Kocuria varians Isolates from Animal Originated Foods

Yıl 2024, , 48 - 54, 31.12.2024
https://doi.org/10.58833/bozokvetsci.1542031

Öz

This study aimed to determine the prevalence of Kocuria spp., which occur naturally or are used as starter cultures, in meat and dairy products sold in retail food outlets in Kayseri province, as well as to evaluate their biofilm formation capabilities and antibiotic resistance profiles. A total of 70 animal-based food samples were collected from sales outlets, plated on Blood agar, and the different colonies obtained were identified using the Phoenix automated system (BD Diagnostic Systems, Sparks, MD). The biofilm-forming abilities of the isolates were determined using the microplate (MP) method, and their antibiotic susceptibilities were assessed by the disk diffusion test. Of the 70 analyzed samples, 5 (7.14%) were found positive for Kocuria varians, 1 (1.42%) for Corynebacterium matruchotii, 1 (1.42%) for Corynebacterium jeikeium, and 1 (1.42%) for Streptococcus oralis. Among the identified isolates, K. varians isolates from meat products exhibited moderate biofilm-forming ability, while those from cheese showed weak biofilm-forming ability. All K. varians isolates were resistant to oxacillin, and 4 isolates (80%) also exhibited resistance to linezolid and rifampicin, indicating a multidrug resistance profile. The Multiple Antibiotic Resistance (MAR) index of these isolates was determined to be 0.43. In conclusion, the Kocuria varians isolates obtained from meat and dairy products in this study may pose technological and safety challenges in the food industry due to their ability to form biofilms. Additionally, the multidrug resistance observed in these isolates could pose a public health risk by potentially increasing gene transfer to foodborne pathogens.

Kaynakça

  • 1. Abebe E, Gugsa G, Ahmed M. Review on major food-borne zoonotic bacterial pathogens. Journal of tropical medicine 2020; 29: 4674235. 2. Ramos GLDPA, Vigoder HC, dos Santos Nascimento J. Kocuria spp. in foods: biotechnological uses and risks for food safety. Applied Food Biotechnology 2021; 8(2): 79-88.
  • 3. Ziogou A, Giannakodimos I, Giannakodimos A, Baliou S, Ioannou P. Kocuria Species Infections in Humans—A Narrative Review. Microorganisms 2023; 11(9): 2362. 4. Meng X, Chen F, Xiong M, Hao H, Wang KJ. A new pathogenic isolate of Kocuria kristinae identified for the first time in the marine fish Larimichthys crocea. Frontiers in Microbiology 2023;14: 1129568.
  • 5. Tsai CY, Su SH, Cheng YH, Chou YL, Tsai TH, et al. Kocuria varians infection associated with brain abscess: a case report. BMC infectious diseases 2010; 10: 1-4.
  • 6. Machado MAA, Ribeiro WA, Toledo VS, Ramos GLPA, Vigoder HC, et al. Antibiotic resistance and biofilm production in catalase-positive gram-positive cocci isolated from brazilian pasteurized milk. Journal of food quality and hazards control 2020.
  • 7. Youn HY, Seo KH. Isolation and characterization of halophilic Kocuria salsicia strains from cheese brine. Food Science of Animal Resources 2022; 42(2): 252.
  • 8. Kandi V, Palange P, Vaish R, Bhatti AB, Kale V, et al. Emerging bacterial infection: identification and clinical significance of Kocuria species. Cureus 2016; 8(8).
  • 9. Živković Zarić RS, Pejčić AV, Janković SM, Kostić MJ, Milosavljević MN, et al. Antimicrobial treatment of Kocuria kristinae invasive infections: Systematic re: a case report. BMC infectious diseases 2019; 10: 1-4.
  • 10. Gardini F, Tofalo R, Suzzi G. A survey of antibiotic resistance in Micrococcaceae isolated from Italian dry fermented sausages. Journal of Food Protection 2003; 66(6): 937-945.
  • 11. Perrin-Guyomard A, Soumet C, Leclercq R, Doucet-Populaire F, Sanders P. Antibiotic susceptibility of bacteria isolated from pasteurized milk and characterization of macrolide-lincosamide-streptogramin resistance genes. Journal of food protection 2005; 68(2): 347-352.
  • 12. Rodriguez‐Alonso P, Fernandez‐Otero C, Centeno JA, Garabal JI. Antibiotic resistance in lactic acid bacteria and Micrococcaceae/Staphylococcaceae isolates from artisanal raw milk cheeses, and potential implications on cheese making. Journal of food science 2009; 7(6): M284-M293.
  • 13. Gungor C, Barel M, Dishan A, Disli HB, Koskeroglu K, et al. From cattle to pastirma: Contamination source of methicillin susceptible and resistant Staphylococcus aureus (MRSA) along the pastirma production chain. LWT 2021; 151: 112130.
  • 14. Heybet Z, Ozkaya Y, Gundog DA, Gungor C, Onmaz NE. Animal-originated foods as Potential sources of multidrug-resistant diarrheagenic E. coli Pathotypes in Kayseri, Türkiye. Food Control 2024; 164: 110586.
  • 15. Atabey C, Kahraman T, Koluman A. Prevalence and Antibiotic Resistance of Salmonella Spp., E. Coli O157, and L. Monocytogenes in Meat and Dairy Products. Animal Health Production and Hygiene 2021; 10(1): 17-22.
  • 16. Al S, Barel M, Dışhan A, Karadal F, Hızlısoy H, et al. Tüketime Hazır Gıdalarda Listeria monocytogenes Varlığının Araştırılması. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 2020; 17(2): 149-155.
  • 17. Aydin F, Yağiz A, Abay S, Müştak HK., Diker KS. Prevalence of Arcobacter and Campylobacter in beef meat samples and characterization of the recovered isolates. Journal of Consumer Protection and Food Safety 2020; 15: 15-25.
  • 18. Clinical and Laboratory Standards Institute (CLSI). M100-performance standards for antimicrobial susceptibility testing, 2023; 28th ed.
  • 19. Mir R, Salari S, Najimi M, Rashki A. Determination of frequency, multiple antibiotic resistance index and resistotype of Salmonella spp. in chicken meat collected from southeast of Iran. Veterinary medicine and science 2022; 8(1): 229-236.
  • 20. Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of microbiological methods 2000; 40(2): 175-179.
  • 21. Organji SR, Abulreesh HH, Elbanna K, Osman GE, Almalki MH. Diversity and characterization of Staphylococcus spp. in food and dairy products: a foodstuff safety assessment. The Journal of Microbiology, Biotechnology and Food Sciences 2018; 7(6): 586.
  • 22. Khamis A, Raoult D, La Scola B. Comparison between rpoB and 16S rRNA gene sequencing for molecular identification of 168 clinical isolates of Corynebacterium. Journal of clinical microbiology 2005; 43(4): 1934-1936.
  • 23. Weber M, Liedtke J, Plattes S, Lipski A. Bacterial community composition of biofilms in milking machines of two dairy farms assessed by a combination of culture-dependent and–independent methods. PLoS One 2019; 14(9): e0222238.
  • 24. Kołożyn-Krajewska D, Dolatowski ZJ. Probiotic meat products and human nutrition. Process Biochemistry 2012; 47(12): 1761-1772.
  • 25. Mladenović KG, Grujović MŽ, Kiš M, Furmeg S, Tkalec VJ, et al. Enterobacteriaceae in food safety with an emphasis on raw milk and meat. Applied microbiology and biotechnology 2021; 1-13.
  • 26. Kızanlık PK. Microbiological quality evaluation of various types of cheese. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 2018; 15(2): 86-93.
  • 27. Çetin B, Atik A, Karasu S. Kırklareli’nde üretilen yoğurt ve ayranların fizikokimyasal ve mikrobiyolojik kalitesi. Akademik Gıda 2014; 12(2): 57-60.
  • 28. Lukasova J, Sustackova A. Enterococci and Antibiotic Resistance. Acta Vet. Brno 2003; 72: 315-323.
  • 29. Kastner S, Perreten V, Bleuler H, Hugenschmidt G, Lacroix C, et al. Antibiotic susceptibility patterns and resistance genes of starter cultures and probiotic bacteria used in food. Systematic and applied microbiology 2006; 29(2): 145-155.
  • 30. Zarzecka U, Zadernowska A, Chajęcka-Wierzchowska W. Starter cultures as a reservoir of antibiotic resistant microorganisms. Lwt 2020; 127: 109424.
  • 31. Ammor MS, Belén Flórez AB, Van Hoek AHAM, Los Reyes-Gavilán CGA, Aarts HJM, et al. Molecular Characterization of Intrinsic and Acquired Antibiotic Resistance in Lactic Acid Bacteria and Bifidobacteria. International Journal of Food Microbiology and Biotechnology 2008; 14: 6-15.
  • 32. Røder HL, Raghupathi PK, Herschend J, Brejnrod A, Knøchel S, et al. Interspecies interactions result in enhanced biofilm formation by co-cultures of bacteria isolated from a food processing environment. Food Microbiology 2015; 51: 18-24.
  • 33. Garcia-Fernandez N, Hassan A, Anand S. Effect of exopolysaccharides produced by dairy starter cultures on biofilms formed on reverse osmosis membranes. JDS communications 2021; 2(3): 104-109.
  • 34. Lu L, Zhao Y, Li M, Wang X, Zhu J, et al. Contemporary strategies and approaches for characterizing composition and enhancing biofilm penetration targeting bacterial extracellular polymeric substances. Journal of Pharmaceutical Analysis 2023.
  • 35. Wagner EM, Fischel K, Rammer N, Beer C, Palmetzhofer AL, et al. Bacteria of eleven different species isolated from biofilms in a meat processing environment have diverse biofilm forming abilities. International Journal of Food Microbiology 2021; 349: 109232.
  • 36. Sadiq FA, De Reu K, Yang N, Burmølle M, Heyndrickx M. Interspecies interactions in dairy biofilms drive community structure and response against cleaning and disinfection. Biofilm 2024; 7: 100195.
  • 37. Midelet G, Kobilinsky A, Carpentier B. Construction and analysis of fractional multifactorial designs to study attachment strength and transfer of Listeria monocytogenes from pure or mixed biofilms after contact with a solid model food. Applied and Environmental Microbiology 2006; 72(4): 2313-2321.doi: 10.1128/AEM.72.4.2313-2321.
  • 38. Lim ES, Lee JE, Kim JS, Koo OK. Isolation of indigenous bacteria from a cafeteria kitchen and their biofilm formation and disinfectant susceptibility. LWT 2017; 77: 376-382.
  • 39. Pardo SMM, Patel RH, Ramsakal A, Greene J. Disseminated Corynebacterium jeikeium infection in cancer patients. Cureus 2020; 12(6).
  • 40. Li Q, Zhou F, Su Z, Li Y, Li J. Corynebacterium matruchotii: a confirmed calcifying bacterium with a potentially important role in the supragingival plaque. Frontiers in Microbiology 2022; 13: 940643.
  • 41. Almeida E, Puri S, Labossiere A, Elangovan S, Kim J, et al. Bacterial multispecies interaction mechanisms dictate biogeographic arrangement between the oral commensals Corynebacterium matruchotii and Streptococcus mitis. Msystems 2023; 8(5): e00115-23.
  • 42. Do T, Jolley KA, Maiden MC, Gilbert SC, Clark D, et al. Population structure of Streptococcus oralis Microbiology 2009; 155(8): 2593-2602.

Hayvansal Gıdalardan Elde Edilen Kocuria Varians İzolatlarının Biyofilm Üretim Ve Antibakteriyel Direnç Profillerinin Araştırılması

Yıl 2024, , 48 - 54, 31.12.2024
https://doi.org/10.58833/bozokvetsci.1542031

Öz

Bu çalışmada, Kayseri ilinde bulunan perakende gıda satış merkezlerindeki et ve süt ürünlerinde doğal olarak bulunan veya starter kültür olarak kullanılan Kocuria spp. prevalansı, biyofilm oluşturma yetenekleri ve antibiyotik direnç profillerinin araştırılması amaçlandı. Bu kapsamda, satış merkezlerinden toplanan 70 adet hayvansal gıda örneklerinden kanlı agara ekim yapıldı ve elde edilen farklı koloniler Phoenix otomatik sistemi (BD Diagnostic Systems, Sparks, MD) ile identifiye edildi. Elde edilen izolatların biyofilm oluşturma yetenekleri mikroplaka (MP) yöntemi ile antibiyotik duyarlılıkları ise, disk difüzyon testi ile belirlendi. Analiz edilen 70 örneğin 5 (%7.14)’inde Kocuria varians, 1’inde (%1.42) Corynebacterium matruchotii, 1’inde (%1.42) Corynebacterium jeikeium ve 1’inde (%1.42) Streptococcus oralis belirlendi. Tanımlanan izolatlar arasında, et ürünlerinden izole edilen K. varians izolatları orta biyofilm oluşturma yeteneğine sahipken, peynirden elde edilen zayıf biyofilm özelliğine sahipti. Elde edilen K. varians izolatlarının tamamı oksasilin’e dirençli iken 4’ü (%80) linezolid ve rifampisine karşı da direnç göstererek çoklu ilaç direnç (ÇAD) profili sergiledi. Bu izolatların ÇAD indeksi 0.43 olarak belirlendi. Sonuç olarak, bu çalışmada et ve süt ürünlerinden elde edilen Kocuria varians izolatları biyofilm üretebilmeleri nedeniyle gıda sektöründe teknolojik ve güvenlik sorunları oluşturabilir. Ayrıca elde edilen izolatların çoklu antimikrobiyal dirence sahip olmaları, gıda patojenlerine gen aktarımını artırabilme riski nedeniyle halk sağlığı tehdidi oluşturabilir.

Kaynakça

  • 1. Abebe E, Gugsa G, Ahmed M. Review on major food-borne zoonotic bacterial pathogens. Journal of tropical medicine 2020; 29: 4674235. 2. Ramos GLDPA, Vigoder HC, dos Santos Nascimento J. Kocuria spp. in foods: biotechnological uses and risks for food safety. Applied Food Biotechnology 2021; 8(2): 79-88.
  • 3. Ziogou A, Giannakodimos I, Giannakodimos A, Baliou S, Ioannou P. Kocuria Species Infections in Humans—A Narrative Review. Microorganisms 2023; 11(9): 2362. 4. Meng X, Chen F, Xiong M, Hao H, Wang KJ. A new pathogenic isolate of Kocuria kristinae identified for the first time in the marine fish Larimichthys crocea. Frontiers in Microbiology 2023;14: 1129568.
  • 5. Tsai CY, Su SH, Cheng YH, Chou YL, Tsai TH, et al. Kocuria varians infection associated with brain abscess: a case report. BMC infectious diseases 2010; 10: 1-4.
  • 6. Machado MAA, Ribeiro WA, Toledo VS, Ramos GLPA, Vigoder HC, et al. Antibiotic resistance and biofilm production in catalase-positive gram-positive cocci isolated from brazilian pasteurized milk. Journal of food quality and hazards control 2020.
  • 7. Youn HY, Seo KH. Isolation and characterization of halophilic Kocuria salsicia strains from cheese brine. Food Science of Animal Resources 2022; 42(2): 252.
  • 8. Kandi V, Palange P, Vaish R, Bhatti AB, Kale V, et al. Emerging bacterial infection: identification and clinical significance of Kocuria species. Cureus 2016; 8(8).
  • 9. Živković Zarić RS, Pejčić AV, Janković SM, Kostić MJ, Milosavljević MN, et al. Antimicrobial treatment of Kocuria kristinae invasive infections: Systematic re: a case report. BMC infectious diseases 2019; 10: 1-4.
  • 10. Gardini F, Tofalo R, Suzzi G. A survey of antibiotic resistance in Micrococcaceae isolated from Italian dry fermented sausages. Journal of Food Protection 2003; 66(6): 937-945.
  • 11. Perrin-Guyomard A, Soumet C, Leclercq R, Doucet-Populaire F, Sanders P. Antibiotic susceptibility of bacteria isolated from pasteurized milk and characterization of macrolide-lincosamide-streptogramin resistance genes. Journal of food protection 2005; 68(2): 347-352.
  • 12. Rodriguez‐Alonso P, Fernandez‐Otero C, Centeno JA, Garabal JI. Antibiotic resistance in lactic acid bacteria and Micrococcaceae/Staphylococcaceae isolates from artisanal raw milk cheeses, and potential implications on cheese making. Journal of food science 2009; 7(6): M284-M293.
  • 13. Gungor C, Barel M, Dishan A, Disli HB, Koskeroglu K, et al. From cattle to pastirma: Contamination source of methicillin susceptible and resistant Staphylococcus aureus (MRSA) along the pastirma production chain. LWT 2021; 151: 112130.
  • 14. Heybet Z, Ozkaya Y, Gundog DA, Gungor C, Onmaz NE. Animal-originated foods as Potential sources of multidrug-resistant diarrheagenic E. coli Pathotypes in Kayseri, Türkiye. Food Control 2024; 164: 110586.
  • 15. Atabey C, Kahraman T, Koluman A. Prevalence and Antibiotic Resistance of Salmonella Spp., E. Coli O157, and L. Monocytogenes in Meat and Dairy Products. Animal Health Production and Hygiene 2021; 10(1): 17-22.
  • 16. Al S, Barel M, Dışhan A, Karadal F, Hızlısoy H, et al. Tüketime Hazır Gıdalarda Listeria monocytogenes Varlığının Araştırılması. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 2020; 17(2): 149-155.
  • 17. Aydin F, Yağiz A, Abay S, Müştak HK., Diker KS. Prevalence of Arcobacter and Campylobacter in beef meat samples and characterization of the recovered isolates. Journal of Consumer Protection and Food Safety 2020; 15: 15-25.
  • 18. Clinical and Laboratory Standards Institute (CLSI). M100-performance standards for antimicrobial susceptibility testing, 2023; 28th ed.
  • 19. Mir R, Salari S, Najimi M, Rashki A. Determination of frequency, multiple antibiotic resistance index and resistotype of Salmonella spp. in chicken meat collected from southeast of Iran. Veterinary medicine and science 2022; 8(1): 229-236.
  • 20. Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of microbiological methods 2000; 40(2): 175-179.
  • 21. Organji SR, Abulreesh HH, Elbanna K, Osman GE, Almalki MH. Diversity and characterization of Staphylococcus spp. in food and dairy products: a foodstuff safety assessment. The Journal of Microbiology, Biotechnology and Food Sciences 2018; 7(6): 586.
  • 22. Khamis A, Raoult D, La Scola B. Comparison between rpoB and 16S rRNA gene sequencing for molecular identification of 168 clinical isolates of Corynebacterium. Journal of clinical microbiology 2005; 43(4): 1934-1936.
  • 23. Weber M, Liedtke J, Plattes S, Lipski A. Bacterial community composition of biofilms in milking machines of two dairy farms assessed by a combination of culture-dependent and–independent methods. PLoS One 2019; 14(9): e0222238.
  • 24. Kołożyn-Krajewska D, Dolatowski ZJ. Probiotic meat products and human nutrition. Process Biochemistry 2012; 47(12): 1761-1772.
  • 25. Mladenović KG, Grujović MŽ, Kiš M, Furmeg S, Tkalec VJ, et al. Enterobacteriaceae in food safety with an emphasis on raw milk and meat. Applied microbiology and biotechnology 2021; 1-13.
  • 26. Kızanlık PK. Microbiological quality evaluation of various types of cheese. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 2018; 15(2): 86-93.
  • 27. Çetin B, Atik A, Karasu S. Kırklareli’nde üretilen yoğurt ve ayranların fizikokimyasal ve mikrobiyolojik kalitesi. Akademik Gıda 2014; 12(2): 57-60.
  • 28. Lukasova J, Sustackova A. Enterococci and Antibiotic Resistance. Acta Vet. Brno 2003; 72: 315-323.
  • 29. Kastner S, Perreten V, Bleuler H, Hugenschmidt G, Lacroix C, et al. Antibiotic susceptibility patterns and resistance genes of starter cultures and probiotic bacteria used in food. Systematic and applied microbiology 2006; 29(2): 145-155.
  • 30. Zarzecka U, Zadernowska A, Chajęcka-Wierzchowska W. Starter cultures as a reservoir of antibiotic resistant microorganisms. Lwt 2020; 127: 109424.
  • 31. Ammor MS, Belén Flórez AB, Van Hoek AHAM, Los Reyes-Gavilán CGA, Aarts HJM, et al. Molecular Characterization of Intrinsic and Acquired Antibiotic Resistance in Lactic Acid Bacteria and Bifidobacteria. International Journal of Food Microbiology and Biotechnology 2008; 14: 6-15.
  • 32. Røder HL, Raghupathi PK, Herschend J, Brejnrod A, Knøchel S, et al. Interspecies interactions result in enhanced biofilm formation by co-cultures of bacteria isolated from a food processing environment. Food Microbiology 2015; 51: 18-24.
  • 33. Garcia-Fernandez N, Hassan A, Anand S. Effect of exopolysaccharides produced by dairy starter cultures on biofilms formed on reverse osmosis membranes. JDS communications 2021; 2(3): 104-109.
  • 34. Lu L, Zhao Y, Li M, Wang X, Zhu J, et al. Contemporary strategies and approaches for characterizing composition and enhancing biofilm penetration targeting bacterial extracellular polymeric substances. Journal of Pharmaceutical Analysis 2023.
  • 35. Wagner EM, Fischel K, Rammer N, Beer C, Palmetzhofer AL, et al. Bacteria of eleven different species isolated from biofilms in a meat processing environment have diverse biofilm forming abilities. International Journal of Food Microbiology 2021; 349: 109232.
  • 36. Sadiq FA, De Reu K, Yang N, Burmølle M, Heyndrickx M. Interspecies interactions in dairy biofilms drive community structure and response against cleaning and disinfection. Biofilm 2024; 7: 100195.
  • 37. Midelet G, Kobilinsky A, Carpentier B. Construction and analysis of fractional multifactorial designs to study attachment strength and transfer of Listeria monocytogenes from pure or mixed biofilms after contact with a solid model food. Applied and Environmental Microbiology 2006; 72(4): 2313-2321.doi: 10.1128/AEM.72.4.2313-2321.
  • 38. Lim ES, Lee JE, Kim JS, Koo OK. Isolation of indigenous bacteria from a cafeteria kitchen and their biofilm formation and disinfectant susceptibility. LWT 2017; 77: 376-382.
  • 39. Pardo SMM, Patel RH, Ramsakal A, Greene J. Disseminated Corynebacterium jeikeium infection in cancer patients. Cureus 2020; 12(6).
  • 40. Li Q, Zhou F, Su Z, Li Y, Li J. Corynebacterium matruchotii: a confirmed calcifying bacterium with a potentially important role in the supragingival plaque. Frontiers in Microbiology 2022; 13: 940643.
  • 41. Almeida E, Puri S, Labossiere A, Elangovan S, Kim J, et al. Bacterial multispecies interaction mechanisms dictate biogeographic arrangement between the oral commensals Corynebacterium matruchotii and Streptococcus mitis. Msystems 2023; 8(5): e00115-23.
  • 42. Do T, Jolley KA, Maiden MC, Gilbert SC, Clark D, et al. Population structure of Streptococcus oralis Microbiology 2009; 155(8): 2593-2602.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Bilimleri (Diğer), Veteriner Gıda Hijyeni ve Teknolojisi
Bölüm Araştırma Makaleleri
Yazarlar

Yasin Özkaya 0000-0002-4746-5492

Dursun Alp Gündoğ 0000-0002-1581-1813

Candan Güngör 0000-0002-4321-2770

Nurhan Ertaş Onmaz 0000-0002-4679-6548

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 2 Eylül 2024
Kabul Tarihi 30 Eylül 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

Vancouver Özkaya Y, Gündoğ DA, Güngör C, Ertaş Onmaz N. Hayvansal Gıdalardan Elde Edilen Kocuria Varians İzolatlarının Biyofilm Üretim Ve Antibakteriyel Direnç Profillerinin Araştırılması. Bozok Vet Sci. 2024;5(2):48-54.