Derleme
BibTex RIS Kaynak Göster

Pastırma Mikrobiyatası

Yıl 2021, Cilt: 2 Sayı: 2, 115 - 125, 31.12.2021

Öz

Pastırma, tuzlu ve kuru işlenmiş, çemenle kaplı, orta nemli gıdalar sınıfında, tüketime hazır geleneksel Türk et ürünlerinden birisidir. Biyotayı ekseriyetle koagülaz negatif stafilokoklar ve laktik asit bakterileri oluşturmaktadır. Pastırmanın imalat ve sonrası işlem aşamalarında mikrobiyotada değişiklikler gerçekleşmektedir. Et mikrobiyal bozulma yönünden dayanıksız bir gıda maddesi olmasına rağmen sağlıklı ve yüksek verim özelliğine sahip hayvanlardan tekniğine uygun olarak elde edilen etlerinin kullanılması başlangıç mikroorganizma sayısının düşük olmasını sağlamaktadır. Üretim ve satış yerlerinde gıda ile temas halinde bulunan personel hijyenine dikkat edildiğinde ve yetersiz ya da yanlış hijyenik uygulamalar ile çapraz kontaminasyonların önüne geçildiğinde mikrobiyal ajanların gıdalara geçişi en az seviyeye indirgenecektir. Kürleme ve kurutma işlemleri ile su aktivitesi azaltılarak güvenilir ve stabil bir et ürünü elde edilmektedir. Pastırmalık etlerin çemenlenmesi ile çemenin bileşimindeki biyoaktif maddeler bazı patojenlerin gelişimini engellerken, etin yüzeyinde küfün gelişmesini engelleyici bir yapı olarak fonksiyon göstermektedir. Laktik asit bakterilerinin ürettikleri bakteriyosinler, engel teknolojisinin önemli bir bileşeni olarak görülürken aynı zamanda işletmenin çalışma alanlarında biyofilm oluşumunu engelleyici fonksiyonları dolayısı ile dikkat çekmektedir. Kritik kontrol noktalarının etkin çalıştırılması ve üretim hijyeni ile pastırmanın güvenilir olmasının yakın ilişkilisi ve pastırmanın doğal biyotasının faydaları göz önüne alındığında, pastırma mikrobiyolojik kalite sorunu olarak halk sağlığı açısından oldukça az endişe oluşturduğu sonucuna varılmaktadır.

Kaynakça

  • 1. Pereira PMDCC, Vicente AFDRB. Meat nutritional composition and nutritive role in the human diet. Meat Science 2013; 93: 586-592. doi: 10.1016/j.meatsci.2012.09.018.
  • 2. Kołożyn-Krajewska D, Dolatowski ZJ. Probiotics in fermented meat products. Acta Scientiarum Polonorum Technologia Alimentaria 2009; 8: 61-74.
  • 3. Castellano P, Pérez Ibarreche M, Blanco Massani M, Fontana C, Vignolo GM. Strategies for pathogen biocontrol using lactic acid bacteria and their metabolites: a focus on meat ecosystems and industrial environments. Microorganisms 2017; 5: 38. doi:10.3390/microorganisms5030038.
  • 4. Leroy F, Geyzen A, Janssens M, De Vuyst L, Scholliers P. Meat fermentation at the crossroads of innovation and tradition: a historical outlook. Trends in Food Science Technology 2013; 31: 130-137. doi: 10.1016/j.tifs.2013.03.008.
  • 5. Toldrá F. The Storage and Preservation of Meat: III-Meat Processing. Toldrá F. ed. In: Lawrie´s Meat Science, United Kingdom: Woodhead Publishing, 2017; p. 265-296.
  • 6. Talon R, Leroy S. Fermented meat products and the role of starter cultures. Batt CA, Tortorello ML. eds. In: Encyclopedia of Food Microbiology. Amsterdam: Academic Press, Elsevier Ltd, 2014; p. 870-874.
  • 7. Karabıyıklı Ş, Öncül N, Cevahiroğlu H. Microbiological safety of pastrami: a traditional meat product. LWT-Food Science and Technology 2015; 64: 1-5. doi:10.1016%2Fj.lwt.2015.05.006.
  • 8. Anonim. Pastırma Standardı. Pastırma. Türk Standartları Enstitüsü, 5 Şubat 2002 tarih ve 1071 numaralı standart, Ankara. 2002.
  • 9. Kılıç B. Current trends in traditional Turkish meat products and cuisine. LWT-Food Science and Technology 2009; 42: 1581-1589. doi:10.1016/j.lwt.2009.05.016.
  • 10. Mattiello S, Caroprese M, Crovetto GM, Fortina R, Martini A, et al. Typical edible non-dairy animal products in Africa from local animal resources. Italian Journal of Animal Science 2018; 17: 202-217. doi:10.1080/1828051X.2017.1348915.
  • 11. Dinçer E, Kıvanç M. Characterization of lactic acid bacteria from Turkish pastirma. Annals of Microbiology 2012; 62: 1155-1163. doi: doi.org/10.1007/s13213-011-0355-x.
  • 12. Kaban G. Sucuk and pastırma: Microbiological changes and formation of volatile compounds. Meat Science 2013; 95: 912-918. doi:10.1016/j.meatsci.2013.03.021.
  • 13. Akköse A, Aktaş N. Curing and diffusion coefficient study in pastırma, a Turkish traditional meat product. Meat Science 2014; 96: 311-314. doi:10.1016/j.meatsci.2013.07.026.
  • 14. İnat G. Pastırma Üretiminde Kontaminasyon Kaynaklarının Belirlenmesi ve İyileştirme Koşullarının Araştırılması. Uludağ Üniversitesi Veteriner Fakültesi Dergisi 2008; 27: 53-59.
  • 15. Elmali M, Yaman H, Ulukanli Z, Tekinsen KK. Microbiological and some chemical features of the pastrami sold in Turkey. Medycyna Weterynaryjna 2007; 63: 931.
  • 16. Kaban G. Changes in the composition of volatile compounds and in microbiological and physicochemical parameters during pastırma processing. Meat Science 2009; 82: 17-23. doi: 10.1016/j.meatsci.2008.11.017.
  • 17. Doğruer Y, Gürbüz Ü, Nizamlıoğlu M. Konya’da Tüketime Sunulan Pastırmaların Kalitesi. Veteriner Bilimleri Dergisi 1995; 11: 77-81.
  • 18. Ozdemir H, Sireli U, Sarımehmetoğlu B. Ankara’da tüketime sunulan pastırmalarda mikrobiyal floranın incelenmesi. Turkish Journal of Veterinary and Animal Science 1999; 23: 57-62.
  • 19. Aksu Mİ, Kaya M. Some Microbiological, Chemical and Physical Characteristics of Pastırma Marketed in Erzurum. Turkish Journal of Veterinary and Animal Sciences 2001; 25: 319-326.
  • 20. Dinçer E. Et ve et ürünlerinde laktik asit bakterilerinin izolasyonu ve bunların antimikrobiyal aktivitelerinin belirlenmesi, Yüksek Lisans Tezi, Anadolu Üniv Fen Bil Ens, Eskişehir, 2007. (thesis in Turkish with an English abstract).
  • 21. Ertekin Ö. Pastırmadan Enterokokların İzolasyonu/İdentifikasyonu ve Karakterizasyonu, Doktora Tezi, Atatürk Üniv Fen Bil Ens, Erzurum, 2016. (thesis in Turkish with an English abstract).
  • 22. Çakıcı N, Aksu Mİ, Erdemir E. A survey of the physico-chemical and microbiological quality of different pastırma types: A dry-cured meat product. CyTA-Journal of Food 2015; 13: 196-203. doi:10.1080/19476337.2014.938123.
  • 23. Hastaoglu E, Vural H. New approaches to production of Turkish-type dry-cured meat product “Pastirma”: salt reduction and different drying techniques. Korean journal for food science of animal resources 2018; 38: 224. doi: 10.5851%2Fkosfa.2018.38.2.224.
  • 24. Honikel KO. The use and control of nitrate and nitrite for the processing of meat products. Meat Science 2008; 78: 68-76. doi: 10.1016/j.meatsci.2007.05.030.
  • 25. Aksu MI, Erdemir E, Çakıcı N. Changes in the physico-chemical and microbial quality during the production of pastırma cured with different levels of sodium nitrite. Korean Journal for Food Science of Animal Resources 2016; 36: 617. doi: 10.5851%2Fkosfa.2016.36.5.617.
  • 26. Büyükünal ŞK, Şakar FŞ, Turhan İ, Erginbaş Ç, Sandıkçı Altunatmaz S et al. Presence of Salmonella spp., Listeria monocytogenes, Escherichia coli O157 and Nitrate-Nitrite Residue Levels in Turkish Traditional Fermented Meat Products (Sucuk and Pastırma). Kafkas Üniversitesi Veteriner Fakültesi Dergisi 2016; 22: 233-236. doi:10.9775/kvfd.2015.14238.
  • 27. Gómez I, Janardhanan R, Ibañez FC, Beriain MJ. The Effects of Processing and Preservation Technologies on Meat Quality: Sensory and Nutritional Aspects. Foods 2020; 9: 1416. doi: 10.3390/foods9101416.
  • 28. Govari M, Pexara A. Nitrates and Nitrites in meat products. Journal of the Hellenic Veterinary Medical Society 2015; 66: 127-140. doi:10.12681/jhvms.15856.
  • 29. Guerrero-Legarreta I. Spoilage of Cooked Meat and Meat Products. Batt CA, Tortorello ML. eds. In: Encyclopedia of Food Microbiology, London: Academic Press, 2014; p. 508-513.
  • 30. Ras G, Zuliani V, Derkx P, Seibert TM, Leroy S, et al. Evidence for nitric oxide synthase activity in Staphylococcus xylosus mediating nitrosoheme formation. Frontiers in Microbiology 2017; 8: 598. doi:10.3389/fmicb.2017.00598.
  • 31. Stavropoulou DA, De Maere H, Berardo A, Janssens B, Filippou P et al. Species pervasiveness within the group of coagulase-negative staphylococci associated with meat fermentation is modulated by pH. Frontiers in Microbiology 2018; 9: 2232. doi: 10.3389/fmicb.2018.02232.
  • 32. Kaban G, Kaya M. Identification of lactic acid bacteria and Gram‐positive catalase‐positive cocci isolated from naturally fermented sausage (sucuk). Journal of Food Science 2008; 73: M385-M388. doi: doi.org/10.1111/j.1750-3841.2008.00906.x.
  • 33. Leroy S, Giammarinaro P, Chacornac JP, Lebert I, Talon R. Biodiversity of indigenous Staphylococci of Naturally Fermented Dry Sausages and Manufacturing Environments of small scale processing units. Food Microbiology 2010; 27: 294-301. doi: 10.1016/j.fm.2009.11.005.
  • 34. EU Commission. Commission Regulation (EU) No 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. Official Journal of the European Union L 2011; 295: 1-177.
  • 35. Laranjo M, Elias M, Fraqueza MJ. The use of starter cultures in traditional meat products. Journal of Food Quality 2017; 9546026. doi:10.1155/2017/9546026.
  • 36. Ras G, Bailly X, Chacornac JP, Zuliani V, Derkx P, et al. Contribution of nitric oxide synthase from coagulase-negative staphylococci to the development of red myoglobin derivatives. International Journal of Food Microbiology 2018; 266: 310-316. doi:10.1016/j.ijfoodmicro.2017.11.005.
  • 37. Sapp AM, Mogen AB, Almand EA, Rivera FE, Shaw LN, et al. Contribution of the nos-pdt operon to virulence phenotypes in methicillinsensitive Staphylococcus aureus. PLoS One 2014; 9: e108868. doi:10.1371/journal.pone.0108868.
  • 38. Vermassen A, de la Foye A, Loux V, Talon R, Leroy S. Transcriptomic analysis of Staphylococcus xylosus in the presence of nitrate and nitrite in meat reveals its response to nitrosative stress. Frontiers in Microbiology 2014; 5: 691. doi: 10.3389/fmicb.2014.00691.
  • 39. Thomas DD. Breathing new life into nitric oxide signaling: a brief overview of the interplay between oxygen and nitric oxide. Redox Biology 2015; 5: 225-233. doi:10.1016/j.redox.2015.05.002.
  • 40. Taormina PJ. Meat and poultry: Curing of meat. Batt CA, Tortorello ML. eds. In: Encyclopedia of Food Microbiology, London: Academic Press, 2014; p. 501-507.
  • 41. Piližota V. Fruits and vegetables (including herbs). Motarjemi Y, Lelieveld H. eds. In: Food Safety Management. Oxford: Academic Press, 2014; p. 213-249.
  • 42. Leistner L, Gorris L. Hurdle Technologies Combination Treatments for Food Stability, Safety and Quality. First Edition. New York: Springer Science Business Media, 2002; p. 93-94.
  • 43. Yetim H, Sagdic O, Dogan M, Ockerman HW. Sensitivity of three pathogenic bacteria to Turkish cemen paste and its ingredients. Meat Science 2006; 74: 354-358. doi: 10.1016/j.meatsci.2006.04.001.
  • 44. Erginkaya Z, Konuray G. Microbial Assessment of Fenugreek Paste during Storage and Antimicrobial Effect of Greek Clover, Trigonella foenum-graecum. International Journal of Nutrition and Food Engineering 2016; 10: 855-858. doi: 10.5281/zenodo.1128281.
  • 45. Laranjo M, Potes ME, Elias M. Role of starter cultures on the safety of fermented meat products. Frontiers in Microbiology 2019; 10: 853. doi:10.3389/fmicb.2019.00853.
  • 46. Ananou S, Maqueda M, Martínez-Bueno M, Valdivia E. Biopreservation, an ecological approach to improve the safety and shelf life of foods. Méndez-Vilas A. ed. Communicating current research and educational topics and trends in applied microbiology. Badajoz, Spain: Formatex, 2007; p. 475-486.
  • 47. Holzapfel WH, Wood BJB. Lactic acid bacteria biodiversity and taxonomy. First Edition Chicester, UK: Wiley and Sons, 2014.
  • 48. Lorenzo JM, Munekata PE, Dominguez R, Pateiro M, Saraiva JA et al. Main groups of microorganisms of relevance for food safety and stability: general aspects and overall description. Barba F, Sant'Ana A, Orlien V, Koubaa M. eds. In: Innovative Technologies for Food Preservation. London; Academic Press, 2018; p. 53-107.
  • 49. El Adab S, Essid I, Hassouna M. Effect of starter cultures on microbial and physicochemical parameters of a dry fermented poultry meat sausage. African Journal of Biotechnology 2014; 13: 4155-4164. doi:10.5897/AJB2014.13874.
  • 50. Flores M, Toldra F. Microbial enzymatic activities for improved fermented meats. Trends in Food Science & Technology 2011; 22: 81-90. doi:10.1016/J.TIFS.2010.09.007.
  • 51. Olivares A, Navarro JL, Flores M. Establishment of the contribution of volatile compounds to the aroma of fermented sausages at different stages of processing and storage. Food Chemistry 2009; 115: 1464-1472. doi: 10.1016/J.FOODCHEM.2009.01.083.
  • 52. Vieco-Saiz N, Belguesmia Y, Raspoet R, Auclair E, Gancel F, et al. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Frontiers in Microbiology 2019; 10: 57. doi:10.3389%2Ffmicb.2019.00057.
  • 53. Silva CC, Silva SP, Ribeiro SC. Application of bacteriocins and protective cultures in dairy food preservation. Frontiers in Microbiology 2018; 9: 594. doi:10.3389%2Ffmicb.2018.00594.
  • 54. EC Regulation No 178/2002 of the European Parliament and of the Council of 28th January 2002 laying down the general principle and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety (OJ L 31 1.2.2002).
  • 55. Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, et al. Update of the list of QPS‐recommended biological agents intentionally added to food or feed as notified to EFSA 13: suitability of taxonomic units notified to EFSA until September 2020. EFSA Journal 2021; 19: e06377. doi: 10.2903/j.efsa.2021.6377.
  • 56. Di Gioia D. Chapter 7-Safety of Fermented Meat. Vishweshwaraiah P, Martin-Belloso O, Keener L, Astley S, Braun S, McMahon H, Lelieveld. eds. In: Regulating Safety of Traditional and Ethnic Foods. San Diego: Academic Press, 2016; 125-148.
  • 57. Aksu Mİ, Kaya M. The effect of starter culture use in pastırma production on the properties of end product. Turkish Journal of Veterinary and Animal Science 2001; 25: 847-854.
  • 58. Ledesma E, Rendueles M, Diaz M. Contamination of meat products during smoking by polycyclic aromatic hydrocarbons: Processes and prevention. Food Control 2016; 60: 64-87. doi: 10.1016/j.foodcont.2015.07.016.
  • 59. Gürbüz Ü, Doğruer Y, Nizamlıoğlu M. Pastırma Üretiminde Dumanlama İşleminin Uygulanabilme İmkanları ve Kaliteye Etkileri. Veteriner Bilim Dergisi 1997; 13: 57-68.
  • 60. Garcia-Esteban M, Ansorena D, Astiasaran I. Comparison of modified atmosphere packaging and vacuum packaging for long period storage of dry-cured ham: effects on colour, texture and microbiological quality. Meat Science 2004; 67: 57-63. doi: 10.1016/j.meatsci.2003.09.005.
  • 61. Yildirim Y, Onmaz NE, Gönülalan Z, Al S, Yildirim A, et al. Microbiological quality of pastrami and associated surfaces at the point of sale in Kayseri, Turkey. Public Health 2017; 146: 152-158. doi: doi.org/10.1016/j.puhe.2017.01.003.
  • 62. Younis RI, Nasef SA, Salem WM. Detection of Multi-Drug Resistant Food-borne Bacteria in Ready-to-Eat Meat Products in Luxor City, Egypt. SVU-International Journal of Veterinary Sciences 2019; 2: 20-35. doi:10.21608/SVU.2019.23168.
  • 63. Campos J, Gil J, Mourão J, Peixe L, Antunes P. Ready-to-eat street-vended food as a potential vehicle of bacterial pathogens and antimicrobial resistance: an exploratory study in Porto region, Portugal. International Journal of Food Microbiology 2015; 206: 1-6. doi:10.1016/j.ijfoodmicro.2015.04.016. 64. Buzby JC, Roberts T. Economic costs and trade impacts of microbial foodborne illness. World Health Statistic 1997; 50: 57-66.
  • 65. Zhu M, Du M, Cordray J, Ahn DU. Control of Listeria monocytogenes contamination in ready‐to‐eat meat products. Comprehensive Reviews in Food Science and Food Safety 2005; 4: 34-42. doi:10.1111/j.1541-4337.2005.tb00071.x.
  • 66. Beumer RR, Te Giffel MC, De Boer E, Rombouts, FM. Growth ofListeria monocytogeneson sliced cooked meat products. Food Microbiology 1996; 13: 333-340. doi:10.1006/fmic.1996.0039.
  • 67. Talon R, Leroy S, Lebert I. Microbial ecosystems of traditional fermented meat products: The importance of indigenous starters. Meat Science 2007; 77: 55-62. doi:10.1016/j.meatsci.2007.04.023.
  • 68. Menéndez RA, Rendueles E, Sanz JJ, Santos JA, García-Fernández MC. Physicochemical and microbiological characteristics of diverse Spanish cured meat products. CyTA-Journal of Food 2018; 16: 199-204. doi:10.1080/19476337.2017.1379560.
  • 69. Reynolds AE, Harrison MA, Rose-Morrow R, Lyon CE. Validation of dry cured ham process for control of pathogens. Journal of Food Science 2001; 66: 1373-1379. doi:10.1111/j.1365-2621.2001.tb15217.x.
  • 70. Rainaldi L, Luciani MA, Picconi F. Behavior of Listeria spp. in meat products. Italian Journal of Food Science 1991; 34: 291-297.
  • 71. Huerta T, Hernandez J, Guamis B, Hernandez E. Microbiological and physico-chemical aspects in dry-salted Spanish ham. Zentralbl Microbiol 1988; 143: 475-482.
  • 72. Blagojevic B, Robertson LJ, Vieira-Pinto M, Vang Johansen M, Laranjo-González M et al. Bovine cysticercosis in the European Union: Impact and current regulations, and an approach towards risk-based control. Food Control 2017; 78: 64-71. doi:10.1016/j.foodcont.2017.02.052.
  • 73. Weiss LM, Kiss K. Toxoplasma Gondii: The Model Apicomplexan-Perspectives and Methods. Second Edition. London: Academic Press Elsevier, 2013; p.1085.
  • 74. Jones JL, Dubey JP. Foodborne toxoplasmosis. Clinical Infectious Diseases 2012; 55: 845-851. doi:10.1093/cid/cis508.
  • 75. Herrero L, Gracia MJ, Pe´rez-Arquillue´C, La`zaro R, Herrera A, et al. Toxoplasma gondii in raw and dry-cured ham: The influence of the curing process. Food Microbiology 2017; 65: 213-220. doi: 10.1016/j.fm.2017.02.010.

Microbiota of Pastırma

Yıl 2021, Cilt: 2 Sayı: 2, 115 - 125, 31.12.2021

Öz

Pastırma is one of the traditional Turkish meat product that is ready to eat, salted and dried, covered with cemen, and categorized as a medium moisture food. The biota mostly harbour coagulase negative staphylococci and lactic acid bacteria. Changes emerge in the microbiota during the manufacturing and post-processing stages of pastırma. Notwithstanding being a perishable food item of meat, healthy and high yielding animals’ meat slaughtertered in accordance with technique ensures that initial microbial count is low. The transmission of microbial agents to food will be minimized when attention is paid to the hygiene of personnel in contact with food in production and sales areas, inadequate or erroneous hygienic practices and cross-contaminations are prevented. A reliable and stable meat product is acquired by reducing the water activity via curing and drying processes. The bioactive substances originated from cemen inhibite some pathogens and play role as a structure that prevents the development of mold on the surface of the meat. Bacteriocins produced by lactic acid bacteria is considered as an crucial hurdle technology member and take attention due to hindering biofilm formation in facility. With regard to the effective operation of critical control points and the close relationship between hygiene and reliability of pastırma, and the benefits of natural biota, pastrami poses less public health concern as a microbiological quality issue.

Kaynakça

  • 1. Pereira PMDCC, Vicente AFDRB. Meat nutritional composition and nutritive role in the human diet. Meat Science 2013; 93: 586-592. doi: 10.1016/j.meatsci.2012.09.018.
  • 2. Kołożyn-Krajewska D, Dolatowski ZJ. Probiotics in fermented meat products. Acta Scientiarum Polonorum Technologia Alimentaria 2009; 8: 61-74.
  • 3. Castellano P, Pérez Ibarreche M, Blanco Massani M, Fontana C, Vignolo GM. Strategies for pathogen biocontrol using lactic acid bacteria and their metabolites: a focus on meat ecosystems and industrial environments. Microorganisms 2017; 5: 38. doi:10.3390/microorganisms5030038.
  • 4. Leroy F, Geyzen A, Janssens M, De Vuyst L, Scholliers P. Meat fermentation at the crossroads of innovation and tradition: a historical outlook. Trends in Food Science Technology 2013; 31: 130-137. doi: 10.1016/j.tifs.2013.03.008.
  • 5. Toldrá F. The Storage and Preservation of Meat: III-Meat Processing. Toldrá F. ed. In: Lawrie´s Meat Science, United Kingdom: Woodhead Publishing, 2017; p. 265-296.
  • 6. Talon R, Leroy S. Fermented meat products and the role of starter cultures. Batt CA, Tortorello ML. eds. In: Encyclopedia of Food Microbiology. Amsterdam: Academic Press, Elsevier Ltd, 2014; p. 870-874.
  • 7. Karabıyıklı Ş, Öncül N, Cevahiroğlu H. Microbiological safety of pastrami: a traditional meat product. LWT-Food Science and Technology 2015; 64: 1-5. doi:10.1016%2Fj.lwt.2015.05.006.
  • 8. Anonim. Pastırma Standardı. Pastırma. Türk Standartları Enstitüsü, 5 Şubat 2002 tarih ve 1071 numaralı standart, Ankara. 2002.
  • 9. Kılıç B. Current trends in traditional Turkish meat products and cuisine. LWT-Food Science and Technology 2009; 42: 1581-1589. doi:10.1016/j.lwt.2009.05.016.
  • 10. Mattiello S, Caroprese M, Crovetto GM, Fortina R, Martini A, et al. Typical edible non-dairy animal products in Africa from local animal resources. Italian Journal of Animal Science 2018; 17: 202-217. doi:10.1080/1828051X.2017.1348915.
  • 11. Dinçer E, Kıvanç M. Characterization of lactic acid bacteria from Turkish pastirma. Annals of Microbiology 2012; 62: 1155-1163. doi: doi.org/10.1007/s13213-011-0355-x.
  • 12. Kaban G. Sucuk and pastırma: Microbiological changes and formation of volatile compounds. Meat Science 2013; 95: 912-918. doi:10.1016/j.meatsci.2013.03.021.
  • 13. Akköse A, Aktaş N. Curing and diffusion coefficient study in pastırma, a Turkish traditional meat product. Meat Science 2014; 96: 311-314. doi:10.1016/j.meatsci.2013.07.026.
  • 14. İnat G. Pastırma Üretiminde Kontaminasyon Kaynaklarının Belirlenmesi ve İyileştirme Koşullarının Araştırılması. Uludağ Üniversitesi Veteriner Fakültesi Dergisi 2008; 27: 53-59.
  • 15. Elmali M, Yaman H, Ulukanli Z, Tekinsen KK. Microbiological and some chemical features of the pastrami sold in Turkey. Medycyna Weterynaryjna 2007; 63: 931.
  • 16. Kaban G. Changes in the composition of volatile compounds and in microbiological and physicochemical parameters during pastırma processing. Meat Science 2009; 82: 17-23. doi: 10.1016/j.meatsci.2008.11.017.
  • 17. Doğruer Y, Gürbüz Ü, Nizamlıoğlu M. Konya’da Tüketime Sunulan Pastırmaların Kalitesi. Veteriner Bilimleri Dergisi 1995; 11: 77-81.
  • 18. Ozdemir H, Sireli U, Sarımehmetoğlu B. Ankara’da tüketime sunulan pastırmalarda mikrobiyal floranın incelenmesi. Turkish Journal of Veterinary and Animal Science 1999; 23: 57-62.
  • 19. Aksu Mİ, Kaya M. Some Microbiological, Chemical and Physical Characteristics of Pastırma Marketed in Erzurum. Turkish Journal of Veterinary and Animal Sciences 2001; 25: 319-326.
  • 20. Dinçer E. Et ve et ürünlerinde laktik asit bakterilerinin izolasyonu ve bunların antimikrobiyal aktivitelerinin belirlenmesi, Yüksek Lisans Tezi, Anadolu Üniv Fen Bil Ens, Eskişehir, 2007. (thesis in Turkish with an English abstract).
  • 21. Ertekin Ö. Pastırmadan Enterokokların İzolasyonu/İdentifikasyonu ve Karakterizasyonu, Doktora Tezi, Atatürk Üniv Fen Bil Ens, Erzurum, 2016. (thesis in Turkish with an English abstract).
  • 22. Çakıcı N, Aksu Mİ, Erdemir E. A survey of the physico-chemical and microbiological quality of different pastırma types: A dry-cured meat product. CyTA-Journal of Food 2015; 13: 196-203. doi:10.1080/19476337.2014.938123.
  • 23. Hastaoglu E, Vural H. New approaches to production of Turkish-type dry-cured meat product “Pastirma”: salt reduction and different drying techniques. Korean journal for food science of animal resources 2018; 38: 224. doi: 10.5851%2Fkosfa.2018.38.2.224.
  • 24. Honikel KO. The use and control of nitrate and nitrite for the processing of meat products. Meat Science 2008; 78: 68-76. doi: 10.1016/j.meatsci.2007.05.030.
  • 25. Aksu MI, Erdemir E, Çakıcı N. Changes in the physico-chemical and microbial quality during the production of pastırma cured with different levels of sodium nitrite. Korean Journal for Food Science of Animal Resources 2016; 36: 617. doi: 10.5851%2Fkosfa.2016.36.5.617.
  • 26. Büyükünal ŞK, Şakar FŞ, Turhan İ, Erginbaş Ç, Sandıkçı Altunatmaz S et al. Presence of Salmonella spp., Listeria monocytogenes, Escherichia coli O157 and Nitrate-Nitrite Residue Levels in Turkish Traditional Fermented Meat Products (Sucuk and Pastırma). Kafkas Üniversitesi Veteriner Fakültesi Dergisi 2016; 22: 233-236. doi:10.9775/kvfd.2015.14238.
  • 27. Gómez I, Janardhanan R, Ibañez FC, Beriain MJ. The Effects of Processing and Preservation Technologies on Meat Quality: Sensory and Nutritional Aspects. Foods 2020; 9: 1416. doi: 10.3390/foods9101416.
  • 28. Govari M, Pexara A. Nitrates and Nitrites in meat products. Journal of the Hellenic Veterinary Medical Society 2015; 66: 127-140. doi:10.12681/jhvms.15856.
  • 29. Guerrero-Legarreta I. Spoilage of Cooked Meat and Meat Products. Batt CA, Tortorello ML. eds. In: Encyclopedia of Food Microbiology, London: Academic Press, 2014; p. 508-513.
  • 30. Ras G, Zuliani V, Derkx P, Seibert TM, Leroy S, et al. Evidence for nitric oxide synthase activity in Staphylococcus xylosus mediating nitrosoheme formation. Frontiers in Microbiology 2017; 8: 598. doi:10.3389/fmicb.2017.00598.
  • 31. Stavropoulou DA, De Maere H, Berardo A, Janssens B, Filippou P et al. Species pervasiveness within the group of coagulase-negative staphylococci associated with meat fermentation is modulated by pH. Frontiers in Microbiology 2018; 9: 2232. doi: 10.3389/fmicb.2018.02232.
  • 32. Kaban G, Kaya M. Identification of lactic acid bacteria and Gram‐positive catalase‐positive cocci isolated from naturally fermented sausage (sucuk). Journal of Food Science 2008; 73: M385-M388. doi: doi.org/10.1111/j.1750-3841.2008.00906.x.
  • 33. Leroy S, Giammarinaro P, Chacornac JP, Lebert I, Talon R. Biodiversity of indigenous Staphylococci of Naturally Fermented Dry Sausages and Manufacturing Environments of small scale processing units. Food Microbiology 2010; 27: 294-301. doi: 10.1016/j.fm.2009.11.005.
  • 34. EU Commission. Commission Regulation (EU) No 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. Official Journal of the European Union L 2011; 295: 1-177.
  • 35. Laranjo M, Elias M, Fraqueza MJ. The use of starter cultures in traditional meat products. Journal of Food Quality 2017; 9546026. doi:10.1155/2017/9546026.
  • 36. Ras G, Bailly X, Chacornac JP, Zuliani V, Derkx P, et al. Contribution of nitric oxide synthase from coagulase-negative staphylococci to the development of red myoglobin derivatives. International Journal of Food Microbiology 2018; 266: 310-316. doi:10.1016/j.ijfoodmicro.2017.11.005.
  • 37. Sapp AM, Mogen AB, Almand EA, Rivera FE, Shaw LN, et al. Contribution of the nos-pdt operon to virulence phenotypes in methicillinsensitive Staphylococcus aureus. PLoS One 2014; 9: e108868. doi:10.1371/journal.pone.0108868.
  • 38. Vermassen A, de la Foye A, Loux V, Talon R, Leroy S. Transcriptomic analysis of Staphylococcus xylosus in the presence of nitrate and nitrite in meat reveals its response to nitrosative stress. Frontiers in Microbiology 2014; 5: 691. doi: 10.3389/fmicb.2014.00691.
  • 39. Thomas DD. Breathing new life into nitric oxide signaling: a brief overview of the interplay between oxygen and nitric oxide. Redox Biology 2015; 5: 225-233. doi:10.1016/j.redox.2015.05.002.
  • 40. Taormina PJ. Meat and poultry: Curing of meat. Batt CA, Tortorello ML. eds. In: Encyclopedia of Food Microbiology, London: Academic Press, 2014; p. 501-507.
  • 41. Piližota V. Fruits and vegetables (including herbs). Motarjemi Y, Lelieveld H. eds. In: Food Safety Management. Oxford: Academic Press, 2014; p. 213-249.
  • 42. Leistner L, Gorris L. Hurdle Technologies Combination Treatments for Food Stability, Safety and Quality. First Edition. New York: Springer Science Business Media, 2002; p. 93-94.
  • 43. Yetim H, Sagdic O, Dogan M, Ockerman HW. Sensitivity of three pathogenic bacteria to Turkish cemen paste and its ingredients. Meat Science 2006; 74: 354-358. doi: 10.1016/j.meatsci.2006.04.001.
  • 44. Erginkaya Z, Konuray G. Microbial Assessment of Fenugreek Paste during Storage and Antimicrobial Effect of Greek Clover, Trigonella foenum-graecum. International Journal of Nutrition and Food Engineering 2016; 10: 855-858. doi: 10.5281/zenodo.1128281.
  • 45. Laranjo M, Potes ME, Elias M. Role of starter cultures on the safety of fermented meat products. Frontiers in Microbiology 2019; 10: 853. doi:10.3389/fmicb.2019.00853.
  • 46. Ananou S, Maqueda M, Martínez-Bueno M, Valdivia E. Biopreservation, an ecological approach to improve the safety and shelf life of foods. Méndez-Vilas A. ed. Communicating current research and educational topics and trends in applied microbiology. Badajoz, Spain: Formatex, 2007; p. 475-486.
  • 47. Holzapfel WH, Wood BJB. Lactic acid bacteria biodiversity and taxonomy. First Edition Chicester, UK: Wiley and Sons, 2014.
  • 48. Lorenzo JM, Munekata PE, Dominguez R, Pateiro M, Saraiva JA et al. Main groups of microorganisms of relevance for food safety and stability: general aspects and overall description. Barba F, Sant'Ana A, Orlien V, Koubaa M. eds. In: Innovative Technologies for Food Preservation. London; Academic Press, 2018; p. 53-107.
  • 49. El Adab S, Essid I, Hassouna M. Effect of starter cultures on microbial and physicochemical parameters of a dry fermented poultry meat sausage. African Journal of Biotechnology 2014; 13: 4155-4164. doi:10.5897/AJB2014.13874.
  • 50. Flores M, Toldra F. Microbial enzymatic activities for improved fermented meats. Trends in Food Science & Technology 2011; 22: 81-90. doi:10.1016/J.TIFS.2010.09.007.
  • 51. Olivares A, Navarro JL, Flores M. Establishment of the contribution of volatile compounds to the aroma of fermented sausages at different stages of processing and storage. Food Chemistry 2009; 115: 1464-1472. doi: 10.1016/J.FOODCHEM.2009.01.083.
  • 52. Vieco-Saiz N, Belguesmia Y, Raspoet R, Auclair E, Gancel F, et al. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Frontiers in Microbiology 2019; 10: 57. doi:10.3389%2Ffmicb.2019.00057.
  • 53. Silva CC, Silva SP, Ribeiro SC. Application of bacteriocins and protective cultures in dairy food preservation. Frontiers in Microbiology 2018; 9: 594. doi:10.3389%2Ffmicb.2018.00594.
  • 54. EC Regulation No 178/2002 of the European Parliament and of the Council of 28th January 2002 laying down the general principle and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety (OJ L 31 1.2.2002).
  • 55. Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, et al. Update of the list of QPS‐recommended biological agents intentionally added to food or feed as notified to EFSA 13: suitability of taxonomic units notified to EFSA until September 2020. EFSA Journal 2021; 19: e06377. doi: 10.2903/j.efsa.2021.6377.
  • 56. Di Gioia D. Chapter 7-Safety of Fermented Meat. Vishweshwaraiah P, Martin-Belloso O, Keener L, Astley S, Braun S, McMahon H, Lelieveld. eds. In: Regulating Safety of Traditional and Ethnic Foods. San Diego: Academic Press, 2016; 125-148.
  • 57. Aksu Mİ, Kaya M. The effect of starter culture use in pastırma production on the properties of end product. Turkish Journal of Veterinary and Animal Science 2001; 25: 847-854.
  • 58. Ledesma E, Rendueles M, Diaz M. Contamination of meat products during smoking by polycyclic aromatic hydrocarbons: Processes and prevention. Food Control 2016; 60: 64-87. doi: 10.1016/j.foodcont.2015.07.016.
  • 59. Gürbüz Ü, Doğruer Y, Nizamlıoğlu M. Pastırma Üretiminde Dumanlama İşleminin Uygulanabilme İmkanları ve Kaliteye Etkileri. Veteriner Bilim Dergisi 1997; 13: 57-68.
  • 60. Garcia-Esteban M, Ansorena D, Astiasaran I. Comparison of modified atmosphere packaging and vacuum packaging for long period storage of dry-cured ham: effects on colour, texture and microbiological quality. Meat Science 2004; 67: 57-63. doi: 10.1016/j.meatsci.2003.09.005.
  • 61. Yildirim Y, Onmaz NE, Gönülalan Z, Al S, Yildirim A, et al. Microbiological quality of pastrami and associated surfaces at the point of sale in Kayseri, Turkey. Public Health 2017; 146: 152-158. doi: doi.org/10.1016/j.puhe.2017.01.003.
  • 62. Younis RI, Nasef SA, Salem WM. Detection of Multi-Drug Resistant Food-borne Bacteria in Ready-to-Eat Meat Products in Luxor City, Egypt. SVU-International Journal of Veterinary Sciences 2019; 2: 20-35. doi:10.21608/SVU.2019.23168.
  • 63. Campos J, Gil J, Mourão J, Peixe L, Antunes P. Ready-to-eat street-vended food as a potential vehicle of bacterial pathogens and antimicrobial resistance: an exploratory study in Porto region, Portugal. International Journal of Food Microbiology 2015; 206: 1-6. doi:10.1016/j.ijfoodmicro.2015.04.016. 64. Buzby JC, Roberts T. Economic costs and trade impacts of microbial foodborne illness. World Health Statistic 1997; 50: 57-66.
  • 65. Zhu M, Du M, Cordray J, Ahn DU. Control of Listeria monocytogenes contamination in ready‐to‐eat meat products. Comprehensive Reviews in Food Science and Food Safety 2005; 4: 34-42. doi:10.1111/j.1541-4337.2005.tb00071.x.
  • 66. Beumer RR, Te Giffel MC, De Boer E, Rombouts, FM. Growth ofListeria monocytogeneson sliced cooked meat products. Food Microbiology 1996; 13: 333-340. doi:10.1006/fmic.1996.0039.
  • 67. Talon R, Leroy S, Lebert I. Microbial ecosystems of traditional fermented meat products: The importance of indigenous starters. Meat Science 2007; 77: 55-62. doi:10.1016/j.meatsci.2007.04.023.
  • 68. Menéndez RA, Rendueles E, Sanz JJ, Santos JA, García-Fernández MC. Physicochemical and microbiological characteristics of diverse Spanish cured meat products. CyTA-Journal of Food 2018; 16: 199-204. doi:10.1080/19476337.2017.1379560.
  • 69. Reynolds AE, Harrison MA, Rose-Morrow R, Lyon CE. Validation of dry cured ham process for control of pathogens. Journal of Food Science 2001; 66: 1373-1379. doi:10.1111/j.1365-2621.2001.tb15217.x.
  • 70. Rainaldi L, Luciani MA, Picconi F. Behavior of Listeria spp. in meat products. Italian Journal of Food Science 1991; 34: 291-297.
  • 71. Huerta T, Hernandez J, Guamis B, Hernandez E. Microbiological and physico-chemical aspects in dry-salted Spanish ham. Zentralbl Microbiol 1988; 143: 475-482.
  • 72. Blagojevic B, Robertson LJ, Vieira-Pinto M, Vang Johansen M, Laranjo-González M et al. Bovine cysticercosis in the European Union: Impact and current regulations, and an approach towards risk-based control. Food Control 2017; 78: 64-71. doi:10.1016/j.foodcont.2017.02.052.
  • 73. Weiss LM, Kiss K. Toxoplasma Gondii: The Model Apicomplexan-Perspectives and Methods. Second Edition. London: Academic Press Elsevier, 2013; p.1085.
  • 74. Jones JL, Dubey JP. Foodborne toxoplasmosis. Clinical Infectious Diseases 2012; 55: 845-851. doi:10.1093/cid/cis508.
  • 75. Herrero L, Gracia MJ, Pe´rez-Arquillue´C, La`zaro R, Herrera A, et al. Toxoplasma gondii in raw and dry-cured ham: The influence of the curing process. Food Microbiology 2017; 65: 213-220. doi: 10.1016/j.fm.2017.02.010.
Toplam 74 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Veteriner Bilimleri
Bölüm Derlemeler
Yazarlar

Adalet Dışhan 0000-0001-8097-1648

Hasan Yetim

Zafer Gönülalan 0000-0002-3935-6296

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 10 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 2 Sayı: 2

Kaynak Göster

Vancouver Dışhan A, Yetim H, Gönülalan Z. Pastırma Mikrobiyatası. Bozok Vet Sci. 2021;2(2):115-2.