Araştırma Makalesi
BibTex RIS Kaynak Göster

Monitoring Training Load and Data Analysis Methods in Football

Yıl 2020, Cilt: 14 Sayı: 3, 481 - 493, 10.12.2020

Öz

Given the nature of the game pace and weekly fixture density of today's football, athletes with millions of lira costs should be protected from injuries and reached their optimum performance levels. The meaningful information revealed by the follow-up of the training load and the analysis of the data obtained facilitates the athletes to reach their goals by making it easier to cope with the pace of today's football. Therefore, it is very important for the football world to transform and make sense of the physiological, kinematic, psychological and mechanical loads created by training and competitions on athletes. The training load tracking methods that allow the observation of the positive and negative situations occurring in athletes and to take action according to these situations, the development of technological tools today and the fact that the users in the world of sports science are more experienced than the past, facilitates the loads more effective in the training of athletes.The systems that enable us to direct the training by transforming the obtained data into understandable information as well as measuring the training load are developing in parallel with the technology today. It is thought that sports scientists and coaches can transform the information they have gained from all these methods and technologies into understandable visuals that enable them to communicate easily with technical staff or players in the team. In this review, contrary to the studies that have been done previously and have not only examined the training load tracking methods but can not answer the questions how we can analyze the obtained data and transform it into practical usable information, however, how the data obtained in the analysis methods should be converted into understandable visuals. Intended to pass on to readers.

Kaynakça

  • 1. Djaoui L., Haddad M., Chamari K., Dellal A. (2017). Monitoring training load and fatigue in soccer players with physiological markers. Physiology & Behavior. 181, 86-94.
  • 2. Stølen T., Chamari K., Castagna C., Wisløff U. (2005). Physiology of soccer. Sports Medicine. 35(6), 501-536.
  • 3. Vanrenterghem J., Nedergaard NJ., Robinson MA., Drust B. (2017). Training load monitoring in team sports: a novel framework separating physiological and biomechanical load-adaptation pathways. Sports Medicine. 47(11), 2135-2142.
  • 4. Bompa T., Buzzichelli C. (2015). Periodization training for sports, 3. Baskı Human Kinetics.
  • 5. Soligard T., Schwellnus M., Alonso JM., Bahr R., Clarsen B., Dijkstra HP., Dijkstra HP., Gabbett T.,Gleeson M., Hägglund M., Hutchinson MR., van Rensburg CJ., Khan KM., Meeusen R., Orchard JW., Pluim BM., Raftery M., Budgett R. van Rensburg CJ. (2016). How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. British Journal of Sports Medicine. 50(17), 1030-1041.
  • 6. Hausswirth C., Mujika I. (2013). Recovery for performance in sport. Human Kinetics.
  • 7. Wang T., Lin Z., Day RE., Gardiner B., Landao‐Bassonga E., Rubenson J., Kirk TB., Smith DW., Lloyd DG., Hardisty G., Wang A., Zheng Q., Zheng MH. (2013). Programmable mechanical stimulation influences tendon homeostasis in a bioreactor system. Biotechnology and Bioengineering. 110(5), 1495-1507.
  • 8. Gabbett TJ. (2003). Incidence of injury in semi-professional rugby league players. British Journal of Sports Medicine. 37(1), 36-44.
  • 9. Stevens TG., De Ruiter CJ., Van Maurik D., van Lierop CJ., Savelsbergh GJ., Beek PJ. (2015). Measured and estimated energy cost of constant and shuttle running in soccer players. Medicine & Science in Sports Exercise. 47(6), 1219-1224.
  • 10. Di Prampero PE., Osgnach C. (2018). Metabolic power in team sports-part 1: an update. International Journal of Sports Medicine. 39(8), 581-587.
  • 11. Cummins C., Orr R., O’Connor H., West C. (2013). Global positioning systems (GPS) and microtechnology sensors in team sports: A systematic review. Sports Medicine. 43(10), 1025-1042.
  • 12. Dupont G., Nedelec M., McCall A., McCormack D., Berthoin S., Wisløff U. (2010). Effect of 2 soccer matches in a week on physical performance and injury rate. The American Journal of Sports Medicine. 38(9), 1752-1758.
  • 13. Bengtsson H., Ekstrand J., Waldén M., Hägglund M. (2013). Match injury rates in professional soccer vary with match result, match venue, and type of competition. The American Journal of Sports Medicine. 41(7), 1505-1510.
  • 14. Aughey RJ. (2011). Applications of GPS technologies to field sports. International Journal of Sports Physiology and Performance. 6(3), 295-310.
  • 15. Halson SL. (2014). Monitoring training load to understand fatigue in athletes. Sports Medicine. 44(2), 139-147.
  • 16. Marqués-Jiménez D., Calleja-González J., Arratibel I., Delextrat A., Terrados N. (2017). Fatigue and recovery in soccer: Evidence and challenges. The Open Sports Sciences Journal. 10(1), 52-70.
  • 17. Wisbey B., Montgomery PG., Pyne DB., Rattray B. (2010). Quantifying movement demands of AFL football using GPS tracking. Journal of Science and Medicine in Sport. 13(5), 531-536.
  • 18. Windt J., Gabbett TJ., Ferris D., Khan KM. (2017). Training load--injury paradox: Is greater preseason participation associated with lower in-season injury risk in elite rugby league players?. British Journal of Sports Medicine. 51(8), 645-650.
  • 19. Snyder AC., Jeukendrup AE., Hesselink MKC., Kuipers H., Foster C. (1993). A physiological/psychological indicator of over-reaching during intensive training. International Journal of Sports Medicine. 14(1), 29-32.
  • 20. Beneke R., Leithäuser RM., Ochentel O. (2011). Blood lactate diagnostics in exercise testing and training. International Journal of Sports Physiology and Performance. 6(1), 8-24.
  • 21. Smith RE., Schutz RW., Smoll FL., Ptacek JT. (1995). Development and validation of a multidimensional measure of sport-specific psychological skills: The Athletic Coping Skills Inventory-28. Journal of Sport and Exercise Psychology. 17(4), 379-398.
  • 22. Smith RE., Smoll FL., Schutz RW. (1990). Measurement and correlates of sport-specific cognitive and somatic trait anxiety: The sport anxiety scale. Anxiety Research. 2(4), 263-280.
  • 23. Gustavsson JP., Bergman H., Edman G., Ekselius L., Von Knorring L., Linder J. (2000). Swedish universities scales of personality (SSP): construction, internal consistency and normative data. Acta Psychiatrica Scandinavica. 102(3), 217-225.
  • 24. Guastello SJ. (2014). Nonlinear dynamical models in psychology are widespread and testable. American Psychologist. 69(6), 628-629.
  • 25. Main L., Grove JR. (2009). A multi-component assessment model for monitoring training distress among athletes. European Journal of Sport Science. 9(4), 195-202.
  • 26. Petrie TA. (1992). Psychosocial antecedents of athletic injury: The effects of life stress and social support on female collegiate gymnasts. Behavioral Medicine. 18(3), 127-138.
  • 27. Rushall BS. (1990). A tool for measuring stress tolerance in elite athletes. Journal of Applied Sport Psychology. 2(1), 51-66.
  • 28. Morgan WP., Brown DR., Raglin JS., O'connor PJ., Ellickson KA. (1987). Psychological monitoring of overtraining and staleness. British Journal of Sports Medicine. 21(3), 107-114.
  • 29. Coen B., Schwarz L., Urhausen A., Kindermann W. (1991). Control of training in middle-and long-distance running by means of the individual anaerobic threshold. International Journal of Sports Medicine. 12(6), 519-524.
  • 30. Foster C. (1998). Monitoring training in athletes with reference to overtraining syndrome. Medicine & Science in Sports Exercise. 30(7), 1164-1168.
  • 31. Millet GP., Candau RB., Barbier B., Busso T., Rouillon JD., Chatard JC. (2002). Modelling the transfers of training effects on performance in elite triathletes. International Journal of Sports Medicine. 23(1), 55-63.
  • 32. Plews DJ., Laursen PB., Stanley J., Kilding AE., Buchheit M. (2013). Training adaptation and heart rate variability in elite endurance athletes: Opening the door to effective monitoring. Sports Medicine. 43(9), 773-781.
  • 33. Daanen HA., Lamberts RP., Kallen VL., Jin A., Van Meeteren NL. (2012). A systematic review on heart-rate recovery to monitor changes in training status in athletes. International Journal of Sports Physiology and Performance. 7(3), 251-260.
  • 34. Crowcroft S., Duffield R., McCleave E., Slattery K., Wallace LK., Coutts AJ. (2015). Monitoring training to assess changes in fitness and fatigue: The effects of training in heat and hypoxia. Scandinavian Journal of Medicine & Science in Sports. 25, 287-295.
  • 35. Hopkins WG. (1991). Quantification of training in competitive sports. Sports Medicine. 12(3), 161-183.
  • 36. Nederhof E., Lemmink KA., Visscher C., Meeusen R., Mulder T. (2006). Psychomotor speed. Sports Medicine. 36(10), 817-828.
  • 37. Halson SL. (2014). Sleep in elite athletes and nutritional interventions to enhance sleep. Sports Medicine. 44(1), 13-23.
  • 38. Davis C., Brewer H., Ratusny D. (1993). Behavioral frequency and psychological commitment: Necessary concepts in the study of excessive exercising. Journal of Behavioral Medicine. 16(6), 611-628.
  • 39. Buchheit M. (2017). Want to see my report, coach. Aspetar Sports Medicine Journal. 6, 36-43.
  • 40. Thornton HR., Delaney JA., Duthie GM., Dascombe BJ. (2019). Developing athlete monitoring systems in team sports: Data analysis and visualization. International Journal of Sports Physiology and Performance. 14(6), 698-705.
  • 41. Williams S., Trewartha G., Cross MJ., Kemp SP., Stokes KA. (2017). Monitoring what matters: A systematic process for selecting training-load measures. International Journal of Sports Physiology and Performance. 12(2), 101-106.
  • 42. Team RDC. (2013). A language and environment for statistical computing. Foundation for statistical computing: Vienna, Austria. Computing. 1, 12-21.
  • 43. Rogalski B., Dawson B., Heasman J., Gabbett TJ. (2013). Training and game loads and injury risk in elite Australian footballers. Journal of Science and Medicine in Sport. 16(6), 499-503.
  • 44. Colby MJ., Dawson B., Heasman J., Rogalski B., Gabbett TJ. (2014). Accelerometer and GPS-derived running loads and injury risk in elite Australian footballers. The Journal of Strength & Conditioning Research. 28(8), 2244-2252.
  • 45. Gabbett TJ., Ullah S., Jenkins D., Abernethy B. (2012). Skill qualities as risk factors for contact injury in professional rugby league players. Journal of Sports Sciences. 30(13), 1421-1427.
  • 46. Gabbett TJ., Jenkins DG. (2011). Relationship between training load and injury in professional rugby league players. Journal of Science and Medicine in Sport. 14(3), 204-209.
  • 47. Gabbett TJ., Domrow N. (2007). Relationships between training load, injury, and fitness in sub-elite collision sport athletes. Journal of Sports Sciences. 25(13), 1507-1519.
  • 48. Gabbett TJ., Ullah S., Finch CF. (2012). Identifying risk factors for contact injury in professional rugby league players-application of a frailty model for recurrent injury. Journal of Science and Medicine in Sport. 15(6), 496-504.
  • 49. Gabbett TJ. (2010). The development and application of an injury prediction model for noncontact, soft-tissue injuries in elite collision sport athletes. The Journal of Strength & Conditioning Research. 24(10), 2593-2603.
  • 50. Cross MJ., Williams S., Trewartha G., Kemp SP., Stokes KA. (2016). The influence of in-season training loads on injury risk in professional rugby union. International Journal of Sports Physiology and Performance. 11(3), 350-355.
  • 51. Hulin BT., Gabbett TJ., Lawson DW., Caputi P., Sampson JA. (2016). The acute chronic workload ratio predicts injury: High chronic workload may decrease injury risk in elite rugby league players. British Journal of Sports Medicine. 50(4), 231-236.
  • 52. Hulin BT., Gabbett TJ., Blanch P., Chapman P., Bailey D., Orchard JW. (2014). Spikes in acute workload are associated with increased injury risk in elite cricket fast bowlers. British Journal of Sports Medicine. 48(8), 708-712.
  • 53. Akenhead R., Nassis, GP. (2016). Training load and player monitoring in high-level football: Current practice and perceptions. International Journal of Sports Physiology And Performance. 11(5), 587-593.
  • 54. Akenhead R., Harley JA., Tweddle SP. (2016). Examining the external training load of an English Premier League football team with special reference to acceleration. Journal of Strength and Conditioning Research. 30(9), 2424-2432.
  • 55. Martín-García A., Díaz AG., Bradley PS., Morera F., Casamichana D. (2018). Quantification of a professional football team's external load using a microcycle structure. The Journal of Strength & Conditioning Research. 32(12), 3511-3518.
  • 56. Holt CC. (2004). Forecasting seasonals and trends by exponentially weighted moving averages. International Journal of Forecasting. 20(1), 5-10.
  • 57. Menaspà MJ., Menaspà P., Clark SA., Fanchini M. (2018). Validity of the online athlete management system to assess training load. International Journal of Sports Physiology and Performance. 13(6), 750-754.
  • 58. Robertson S., Bartlett JD., Gastin PB. (2017). Red, amber, or green? Athlete monitoring in team sport: The need for decision-support systems. International Journal of Sports Physiology and Performance. 12(2), 273-279.
  • 59. Lacom M., Simpson B., Buchheit M. (2018). Monitoring training status with player-tracking technology: Still on the road to Rome. Aspetar Sports Medicine Journal. 7, 54-63.

FUTBOLDA ANTRENMAN YÜKÜ TAKİBİ VE VERİ ANALİZ YÖNTEMLERİ

Yıl 2020, Cilt: 14 Sayı: 3, 481 - 493, 10.12.2020

Öz

Günümüzdeki futbolun maç temposunun ve haftalık fikstür yoğunluğunun yapısı göz önünde bulundurulduğunda, milyonlarca liralık maliyetleri olan sporcuların sakatlıklardan korunmaları ve optimum performans seviyelerine ulaştırılmaları gerekmektedir. Antrenman yükünün takibi ve elde edilen verilerin analizi sonucu ortaya koyulan anlamlı bilgilerde sporcuların günümüz futbolundaki tempoyla başa çıkmalarını kolaylaştırarak amaçlarına ulaşmalarını kolaylaştırmaktadır. Bu nedenle antrenmanların ve müsabakaların sporcular üzerinde oluşturduğu fizyolojik, kinematik, psikolojik ve mekanik yükleri objektif verilere dönüştürüp anlamlandırmak futbol dünyası için oldukça önemlidir. Sporcularda oluşan pozitif ve negatif durumları gözlemleyip bu durumlara göre aksiyon almayı sağlayan antrenman yükü takip yöntemleri, günümüzde teknolojik araçların gelişmesi ve spor bilimi dünyasındaki kullanıcıların geçmişe göre daha tecrübeli olması, sporcuların antrenmanlarında oluşan yüklerin daha efektif bir şekilde elde edilmesini kolaylaştırmaktadır. Antrenman yükünün ölçülmesi kadar, elde edilen verilerin işlenip anlaşılabilir bilgilere dönüştürülerek antrenmanlara yön verebilmemizi sağlayan sistemlerde günümüzde teknolojiye paralel bir şekilde gelişmektedir. Spor bilimciler ve antrenörler tüm bu yöntemler ve teknolojilerden elde etmiş olduğu bilgileri anlaşılabilir görsellere dönüştürerek takımdaki teknik personellerle ya da oyuncularla kolay iletişim kurmalarını sağlayabilirler. Bu derlemede daha önce yapılmış olan ve sadece antrenman yükü takip yöntemlerini incelemiş fakat elde edilen verileri nasıl analiz ederek pratik kullanılabilir bilgilere dönüştürebiliriz sorularına cevap veremeyen çalışmaların aksine, antrenman yükü takibini ve elde edilen verilerin analizini aynı zamanda analiz yöntemlerinde elde edilen verilerin anlaşılabilir görsellere nasıl dönüştürülmesini gerektiğini okuyuculara aktarmak amaçlanmıştır.

Kaynakça

  • 1. Djaoui L., Haddad M., Chamari K., Dellal A. (2017). Monitoring training load and fatigue in soccer players with physiological markers. Physiology & Behavior. 181, 86-94.
  • 2. Stølen T., Chamari K., Castagna C., Wisløff U. (2005). Physiology of soccer. Sports Medicine. 35(6), 501-536.
  • 3. Vanrenterghem J., Nedergaard NJ., Robinson MA., Drust B. (2017). Training load monitoring in team sports: a novel framework separating physiological and biomechanical load-adaptation pathways. Sports Medicine. 47(11), 2135-2142.
  • 4. Bompa T., Buzzichelli C. (2015). Periodization training for sports, 3. Baskı Human Kinetics.
  • 5. Soligard T., Schwellnus M., Alonso JM., Bahr R., Clarsen B., Dijkstra HP., Dijkstra HP., Gabbett T.,Gleeson M., Hägglund M., Hutchinson MR., van Rensburg CJ., Khan KM., Meeusen R., Orchard JW., Pluim BM., Raftery M., Budgett R. van Rensburg CJ. (2016). How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. British Journal of Sports Medicine. 50(17), 1030-1041.
  • 6. Hausswirth C., Mujika I. (2013). Recovery for performance in sport. Human Kinetics.
  • 7. Wang T., Lin Z., Day RE., Gardiner B., Landao‐Bassonga E., Rubenson J., Kirk TB., Smith DW., Lloyd DG., Hardisty G., Wang A., Zheng Q., Zheng MH. (2013). Programmable mechanical stimulation influences tendon homeostasis in a bioreactor system. Biotechnology and Bioengineering. 110(5), 1495-1507.
  • 8. Gabbett TJ. (2003). Incidence of injury in semi-professional rugby league players. British Journal of Sports Medicine. 37(1), 36-44.
  • 9. Stevens TG., De Ruiter CJ., Van Maurik D., van Lierop CJ., Savelsbergh GJ., Beek PJ. (2015). Measured and estimated energy cost of constant and shuttle running in soccer players. Medicine & Science in Sports Exercise. 47(6), 1219-1224.
  • 10. Di Prampero PE., Osgnach C. (2018). Metabolic power in team sports-part 1: an update. International Journal of Sports Medicine. 39(8), 581-587.
  • 11. Cummins C., Orr R., O’Connor H., West C. (2013). Global positioning systems (GPS) and microtechnology sensors in team sports: A systematic review. Sports Medicine. 43(10), 1025-1042.
  • 12. Dupont G., Nedelec M., McCall A., McCormack D., Berthoin S., Wisløff U. (2010). Effect of 2 soccer matches in a week on physical performance and injury rate. The American Journal of Sports Medicine. 38(9), 1752-1758.
  • 13. Bengtsson H., Ekstrand J., Waldén M., Hägglund M. (2013). Match injury rates in professional soccer vary with match result, match venue, and type of competition. The American Journal of Sports Medicine. 41(7), 1505-1510.
  • 14. Aughey RJ. (2011). Applications of GPS technologies to field sports. International Journal of Sports Physiology and Performance. 6(3), 295-310.
  • 15. Halson SL. (2014). Monitoring training load to understand fatigue in athletes. Sports Medicine. 44(2), 139-147.
  • 16. Marqués-Jiménez D., Calleja-González J., Arratibel I., Delextrat A., Terrados N. (2017). Fatigue and recovery in soccer: Evidence and challenges. The Open Sports Sciences Journal. 10(1), 52-70.
  • 17. Wisbey B., Montgomery PG., Pyne DB., Rattray B. (2010). Quantifying movement demands of AFL football using GPS tracking. Journal of Science and Medicine in Sport. 13(5), 531-536.
  • 18. Windt J., Gabbett TJ., Ferris D., Khan KM. (2017). Training load--injury paradox: Is greater preseason participation associated with lower in-season injury risk in elite rugby league players?. British Journal of Sports Medicine. 51(8), 645-650.
  • 19. Snyder AC., Jeukendrup AE., Hesselink MKC., Kuipers H., Foster C. (1993). A physiological/psychological indicator of over-reaching during intensive training. International Journal of Sports Medicine. 14(1), 29-32.
  • 20. Beneke R., Leithäuser RM., Ochentel O. (2011). Blood lactate diagnostics in exercise testing and training. International Journal of Sports Physiology and Performance. 6(1), 8-24.
  • 21. Smith RE., Schutz RW., Smoll FL., Ptacek JT. (1995). Development and validation of a multidimensional measure of sport-specific psychological skills: The Athletic Coping Skills Inventory-28. Journal of Sport and Exercise Psychology. 17(4), 379-398.
  • 22. Smith RE., Smoll FL., Schutz RW. (1990). Measurement and correlates of sport-specific cognitive and somatic trait anxiety: The sport anxiety scale. Anxiety Research. 2(4), 263-280.
  • 23. Gustavsson JP., Bergman H., Edman G., Ekselius L., Von Knorring L., Linder J. (2000). Swedish universities scales of personality (SSP): construction, internal consistency and normative data. Acta Psychiatrica Scandinavica. 102(3), 217-225.
  • 24. Guastello SJ. (2014). Nonlinear dynamical models in psychology are widespread and testable. American Psychologist. 69(6), 628-629.
  • 25. Main L., Grove JR. (2009). A multi-component assessment model for monitoring training distress among athletes. European Journal of Sport Science. 9(4), 195-202.
  • 26. Petrie TA. (1992). Psychosocial antecedents of athletic injury: The effects of life stress and social support on female collegiate gymnasts. Behavioral Medicine. 18(3), 127-138.
  • 27. Rushall BS. (1990). A tool for measuring stress tolerance in elite athletes. Journal of Applied Sport Psychology. 2(1), 51-66.
  • 28. Morgan WP., Brown DR., Raglin JS., O'connor PJ., Ellickson KA. (1987). Psychological monitoring of overtraining and staleness. British Journal of Sports Medicine. 21(3), 107-114.
  • 29. Coen B., Schwarz L., Urhausen A., Kindermann W. (1991). Control of training in middle-and long-distance running by means of the individual anaerobic threshold. International Journal of Sports Medicine. 12(6), 519-524.
  • 30. Foster C. (1998). Monitoring training in athletes with reference to overtraining syndrome. Medicine & Science in Sports Exercise. 30(7), 1164-1168.
  • 31. Millet GP., Candau RB., Barbier B., Busso T., Rouillon JD., Chatard JC. (2002). Modelling the transfers of training effects on performance in elite triathletes. International Journal of Sports Medicine. 23(1), 55-63.
  • 32. Plews DJ., Laursen PB., Stanley J., Kilding AE., Buchheit M. (2013). Training adaptation and heart rate variability in elite endurance athletes: Opening the door to effective monitoring. Sports Medicine. 43(9), 773-781.
  • 33. Daanen HA., Lamberts RP., Kallen VL., Jin A., Van Meeteren NL. (2012). A systematic review on heart-rate recovery to monitor changes in training status in athletes. International Journal of Sports Physiology and Performance. 7(3), 251-260.
  • 34. Crowcroft S., Duffield R., McCleave E., Slattery K., Wallace LK., Coutts AJ. (2015). Monitoring training to assess changes in fitness and fatigue: The effects of training in heat and hypoxia. Scandinavian Journal of Medicine & Science in Sports. 25, 287-295.
  • 35. Hopkins WG. (1991). Quantification of training in competitive sports. Sports Medicine. 12(3), 161-183.
  • 36. Nederhof E., Lemmink KA., Visscher C., Meeusen R., Mulder T. (2006). Psychomotor speed. Sports Medicine. 36(10), 817-828.
  • 37. Halson SL. (2014). Sleep in elite athletes and nutritional interventions to enhance sleep. Sports Medicine. 44(1), 13-23.
  • 38. Davis C., Brewer H., Ratusny D. (1993). Behavioral frequency and psychological commitment: Necessary concepts in the study of excessive exercising. Journal of Behavioral Medicine. 16(6), 611-628.
  • 39. Buchheit M. (2017). Want to see my report, coach. Aspetar Sports Medicine Journal. 6, 36-43.
  • 40. Thornton HR., Delaney JA., Duthie GM., Dascombe BJ. (2019). Developing athlete monitoring systems in team sports: Data analysis and visualization. International Journal of Sports Physiology and Performance. 14(6), 698-705.
  • 41. Williams S., Trewartha G., Cross MJ., Kemp SP., Stokes KA. (2017). Monitoring what matters: A systematic process for selecting training-load measures. International Journal of Sports Physiology and Performance. 12(2), 101-106.
  • 42. Team RDC. (2013). A language and environment for statistical computing. Foundation for statistical computing: Vienna, Austria. Computing. 1, 12-21.
  • 43. Rogalski B., Dawson B., Heasman J., Gabbett TJ. (2013). Training and game loads and injury risk in elite Australian footballers. Journal of Science and Medicine in Sport. 16(6), 499-503.
  • 44. Colby MJ., Dawson B., Heasman J., Rogalski B., Gabbett TJ. (2014). Accelerometer and GPS-derived running loads and injury risk in elite Australian footballers. The Journal of Strength & Conditioning Research. 28(8), 2244-2252.
  • 45. Gabbett TJ., Ullah S., Jenkins D., Abernethy B. (2012). Skill qualities as risk factors for contact injury in professional rugby league players. Journal of Sports Sciences. 30(13), 1421-1427.
  • 46. Gabbett TJ., Jenkins DG. (2011). Relationship between training load and injury in professional rugby league players. Journal of Science and Medicine in Sport. 14(3), 204-209.
  • 47. Gabbett TJ., Domrow N. (2007). Relationships between training load, injury, and fitness in sub-elite collision sport athletes. Journal of Sports Sciences. 25(13), 1507-1519.
  • 48. Gabbett TJ., Ullah S., Finch CF. (2012). Identifying risk factors for contact injury in professional rugby league players-application of a frailty model for recurrent injury. Journal of Science and Medicine in Sport. 15(6), 496-504.
  • 49. Gabbett TJ. (2010). The development and application of an injury prediction model for noncontact, soft-tissue injuries in elite collision sport athletes. The Journal of Strength & Conditioning Research. 24(10), 2593-2603.
  • 50. Cross MJ., Williams S., Trewartha G., Kemp SP., Stokes KA. (2016). The influence of in-season training loads on injury risk in professional rugby union. International Journal of Sports Physiology and Performance. 11(3), 350-355.
  • 51. Hulin BT., Gabbett TJ., Lawson DW., Caputi P., Sampson JA. (2016). The acute chronic workload ratio predicts injury: High chronic workload may decrease injury risk in elite rugby league players. British Journal of Sports Medicine. 50(4), 231-236.
  • 52. Hulin BT., Gabbett TJ., Blanch P., Chapman P., Bailey D., Orchard JW. (2014). Spikes in acute workload are associated with increased injury risk in elite cricket fast bowlers. British Journal of Sports Medicine. 48(8), 708-712.
  • 53. Akenhead R., Nassis, GP. (2016). Training load and player monitoring in high-level football: Current practice and perceptions. International Journal of Sports Physiology And Performance. 11(5), 587-593.
  • 54. Akenhead R., Harley JA., Tweddle SP. (2016). Examining the external training load of an English Premier League football team with special reference to acceleration. Journal of Strength and Conditioning Research. 30(9), 2424-2432.
  • 55. Martín-García A., Díaz AG., Bradley PS., Morera F., Casamichana D. (2018). Quantification of a professional football team's external load using a microcycle structure. The Journal of Strength & Conditioning Research. 32(12), 3511-3518.
  • 56. Holt CC. (2004). Forecasting seasonals and trends by exponentially weighted moving averages. International Journal of Forecasting. 20(1), 5-10.
  • 57. Menaspà MJ., Menaspà P., Clark SA., Fanchini M. (2018). Validity of the online athlete management system to assess training load. International Journal of Sports Physiology and Performance. 13(6), 750-754.
  • 58. Robertson S., Bartlett JD., Gastin PB. (2017). Red, amber, or green? Athlete monitoring in team sport: The need for decision-support systems. International Journal of Sports Physiology and Performance. 12(2), 273-279.
  • 59. Lacom M., Simpson B., Buchheit M. (2018). Monitoring training status with player-tracking technology: Still on the road to Rome. Aspetar Sports Medicine Journal. 7, 54-63.
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Spor Hekimliği
Bölüm Case Report
Yazarlar

Zeki Akyıldız 0000-0002-1743-5989

Cengiz Akarçeşme 0000-0001-6231-0950

Yayımlanma Tarihi 10 Aralık 2020
Gönderilme Tarihi 5 Ağustos 2020
Kabul Tarihi 27 Ekim 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 14 Sayı: 3

Kaynak Göster

APA Akyıldız, Z., & Akarçeşme, C. (2020). FUTBOLDA ANTRENMAN YÜKÜ TAKİBİ VE VERİ ANALİZ YÖNTEMLERİ. Beden Eğitimi Ve Spor Bilimleri Dergisi, 14(3), 481-493.

16227

16228

16229

16230